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Abstract

Magnesium, a non-competitive blocker of N-methyl-D-aspartate receptor, initially used for management of
preeclampsia, arrhythmia and bronchial asthma, is of great importance in anesthesia practice nowadays. It is being
used intravenously, intrathecally as well as epidurally for postoperative pain relief. Recently it has gained popularity
as an adjuvant in blocks. Anesthetic and analgesic sparing characteristics of magnesium enable anesthesiologists to
reduce the dose of anesthetics during surgery and the use of analgesics after surgery.
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Introduction
Magnesium plays a critical role in a variety of physiologic processes.

Ever since the study of magnesium sulphate in clinical anesthesia
beginning in 1996, magnesium has drawn attention in the field of
anesthesia and pain medicine [1]. Magnesium is the fourth most
important cation in the body and second most important intracellular
cation. It is found in abundance within the earth’s crust as deposits of
magnesite and dolomite. It was first isolated in 1808 by the English
chemist Sir Humphrey Davy using electrolysis of a mixture of
magnesia and mercury oxide.

Magnesium is of importance in anesthesia practice for several
reasons. First, this ion is essential for many biochemical reactions and
its deficiency may produce clinically important consequences during
anesthesia or in the intensive care unit. Second, the extensive use of
magnesium sulphate in obstetric practice requires that
anesthesiologists be familiar with the pharmacological action of this
drug and its interaction with anesthetic agents. Third, few of its
properties may be of value in certain areas of anesthetic practice [2,3].
The physiological role of magnesium is due to its calcium channel
blocking properties at smooth muscle, skeletal muscle and conduction
system levels. The analgesic properties are due to NMDA receptor
blocking action. It is a cost effective widely used drug with
multidisciplinary applications [4].

Physiology
In humans, magnesium is distributed principally between bone

(53%) and intracellular components of muscle (27%) and soft tissues
(19%). One percent of total body magnesium is found in serum and
red blood cells. Serum magnesium comprises only approximately 0.3%
of total body magnesium, where it is present in three states: ionised
(62%), protein bound (33%) mainly to albumin and complexes to
anions such as citrate and phosphate. The daily estimated average
requirement is 200 mg for females and 250 mg for males. The normal
range of magnesium in plasma is 1.4-2.2 meq/L (0.7-1.1 mmol/L) [5].

Available Formulation
The available formulation of magnesium for intramuscular and

intravenous use is magnesium sulphate. This drug is available in 2 ml
ampule. Each ml contains magnesium sulphate (heptahydrate) 500
mg, which provides 4.06 meq each of magnesium and sulphate and
water for injection q.s. The pH is 5.5-7.0. The solution contains no
bacteriostatic agent or other preservatives. The molecular formula is
MgSO4.7H2O and the molecular weight is 246.47.

Effects on Various Systems
By competing with calcium for membrane binding sites and by

stimulating calcium sequestration by sarcoplasmic reticulum,
magnesium helps to maintain a low resting intracellular free calcium
ion concentration which is important in many cellular functions. The
electrical properties of membranes and their permeability
characteristics are also affected by magnesium. Magnesium has
important effects on the cardiovascular system. It affects myocardial
contractility by influencing the intracellular calcum concentration and
the electrical activity of myocardial cells and the specialized
conducting system of the heart by its ability to influence movement of
ions such as sodium, potassium and calcium across the sacrolemmal
membrane. Magnesium may also affect the vascular smooth muscle
tone. Magnesium has a key role in many other important biological
processes such as cellular energy metabolism, cell replication and
protein synthesis [6].

Plasma concentration (mmol/L) Clinical effects

0.7-1.0 Normal range

3.0-5.0 ECG changes

4.0-5.0 Areflexia

6.0-7.0 Respiratory arrest

10.0-12.5 Cardiac arrest

Table 1: Adverse effects of Magnesium at different concentrations.
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The normal range of Magnesium in plasma is 0.7-1.1 mmol/L. The
adverse effects appear at different ranges (Table 1).

Mechanism of Action
Magnesium is a noncompetitive blocker of N-methyl-D-aspartate

(NMDA) receptor with antinociceptive effects. It is also a physiological
calcium antagonist at different voltage gated channels which may be
important in the mechanism of antinociception [7,8]. Magnesium is
not a primary analgesic itself, it enhances the analgesic actions of more
established analgesics as an adjuvant agent.

The role of magnesium for perioperative analgesia has been
investigated by many authors during general anesthesia as well as
spinal anesthesia. Magnesium sulphate has been reported to be
effective in perioperative pain treatment and in blunting somatic,
autonomic and endocrine reflexes provoked by noxious stimuli [9,10].
Usual regimens of magnesium sulphate administration were a loading
dose of 30-50 mg/kg followed by 6-20 mg/kg/h (continuous infusion )
till the end of surgery. However, a single dose of magnesium without
maintenance infusion was also effective for postoperative analgesia in
some reports. Various studies have shown a beneficial effect on
postoperative pain outcomes with a variety of magnesium
pretreatments ranging from intravenous single boluses to intravenous
infusions.

Role of Magnesium in Anesthesia
• Postoperative pain relief
• To obtund hypertensive response to intubation
• In pheochromocytoma
• In obstetrics and obstetric anaesthesia
• In cardiac anaesthesia
• In management of shivering
• Muscle Relaxation

Postoperative pain relief
Magnesium has been used intravenously, intrathecally as well as

epidurally for pain relief. Recently it has gained popularity as adjuvant
in blocks.

Role during general anaesthesia: Ryu et al. reported that
administration of magnesium sulphate 50 mg/kg immediately before
surgery followed by 15 mg/kg/h continuous infusion intraoperatively
till the end of surgery in gynaecology patients receiving propofol-
remifentanil TIVA significantly decreased the requirements of
neuroblocking agent during surgery and decreased the analgesic
consumption after surgery. Also patients receiving magnesium
displayed less postoperative nausea vomiting and shivering [11].
Similar observations have been made by Lee et al. [12]. Koinig et al. in
a study reported that perioperative administration of intravenous
magnesium sulphate reduces intraoperative as well as postoperative
analgesic requirement [13].

Kiran et al. studied the efficacy of single dose of intravenous
magnesium sulphate to reduce postoperative pain in patients
undergoing inguinal surgery under general anesthesia. Patients of
magnesium group received single dose of magnesium sulphate 50
mg/kg in 250 ml of normal saline infused over 30 minutes
preoperatively and concluded that administration of intravenous
magnesium sulphate significantly reduces postoperative pain [14].

Limitations as an analgesic: However, some studies have concluded
that magnesium sulphate has limited or no effect. Ko et al. and Paech
et al. reported that perioperative iv magnesium administration did not
reduce postoperative pain and analgesic consumption in patients
undergoing abdominal hysterectomy and caesarean delivery
respectively [15,16]. Tramer et al. also observed that the pretreatment
of magnesium sulphate in patients undergoing ambulatory ilioinguinal
hernia repair or varicose vein operations had no effect on
postoperative analgesia [17].

The normal range of magnesium in plasma is 1.4-2.2 meq/L.
Hypomagnesimia can occur frequently after surgeries such as
abdominal, orthopaedic and cardiac surgery as well as after minor
surgeries [13,18]. Tramer et al. hypothesized that magnesium
substitution was beneficial as an analgesic only in patients who had
hypomagnesimia [17]. Thus decrease in pain intensity was not due to a
direct analgesic effect of magnesium but rather to the prevention of
hypomagnesemia and thus prevention of subsequent NMDA
activation. Patients undergoing major surgery without magnesium
supplementation were shown to be at risk of developing
hypomagnesimia in the first 24 postoperative hours [19]. The decrease
was probably due to the large loss of fluids and fluid movement
between body compartments. Magnesium is a non-competitive
blocker of NMDA receptor. It was observed that in magnesium free
solutions, the excitatory amino acids L-glutamate and L-aspartate
opened the NMDA cation channels and in the presence of magnesium,
the probability of opening of the channel was reduced [20]. Thus,
substitution of Magnesium in surgical patients at risk of developing
hypomagnesimia should prevent hypomagnesimia related opening of
the NMDA receptors. An inverse relationship between the severity of
pain and serum magnesium levels has been observed in women during
labour and in patients with different medical conditions such as
myocardium infarction or pancreatitis. Hence the control of
perioperative serum magnesium levels and the prevention of
hypomagnesemia should be given priority [21].

Role during spinal anesthesia: Recent studies suggest the role of
magnesium sulphate as an adjuvant to local anesthetics in spinal
anesthesia in different doses. First prospective human study evaluating
whether intrathecal magnesium could prolong spinal opioid analgesia
was carried out by Buvanendran et al. Fifty two patients requesting
analgesia for labour were randomized to receive either intrathecal
fentanyl 25 µg plus saline or fentanyl 25 µg plus magnesium sulphate
50 mg as part of a combined spinal-epidural technique. Significant
prolongation in the median duration of analgesia (75 min) in the
magnesium plus fentanyl group was observed compared with the
fentanyl alone group (60 min) without increased adverse effects [22].
Ozalevli et al. in a study to investigate the effect of adding 50 mg
intrathecal magnesium sulphate to bupivacaine-fentanyl spinal
anesthesia in patients undergoing lower extremity surgery concluded
that magnesium sulphate significantly delayed the onset of sensory
and motor blockade but also prolonged the period of analgesia without
additional side effects [23]. Jaiswal et al. evaluated and compared the
effect of addition of two different doses i.e. either 50 mg or 100 mg of
intrathecal magnesium sulphate to bupivacaine on the quality of spinal
anesthesia in patients undergoing lower limb orthopedic surgery. A
significant increase in the duration of analgesia and anesthesia was
observed when magnesium sulphate was added to intrathecal
bupivacaine with no increased incidence of side effects rather
decreased the incidence of shivering significantly. Moreover, it
appeared that analgesia seemed to have dose related linear relationship
with magnesium sulphate [24].
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In addition Iv magnesium sulphate infusion during spinal
anesthesia was reported to improve postoperative analgesia and to
reduce cumulative consumption of analgesics after total hip
replacement arthroplasty [25]. Similar results have been observed by
Agrawal et al. [26]. Postoperative iv magnesium sulphate infusion also
increased the time to analgesic need and reduced the total
consumption of analgesics after spinal anaesthesia [27].

A study observed the effect of intravenous infusion vs intrathecal
magnesium sulphate during spinal anesthesia in patients undergoing
total hip arthroplasty surgery. The authors suggested that both iv
infusion and intrathecal injection of magnesium sulphate improved
postoperative analgesia. In addition iv infusion of magnesium sulphate
led to relative hypotension and decreased blood loss [28].

Role during epidural anaesthesia: Arcioni et al. observed that
intrathecal and epidural magnesium sulphate potentiated and
prolonged motor block. These authors concluded that in patients
undergoing orthopaedic surgery, supplementation of spinal anesthesia
with combined intrathecal and epidural magnesium sulphate
significantly reduced patients’ postoperative analgesic requirements.
Magnesium blunts NMDA channels in a voltage dependent way and
produces a dramatic reduction of NMDA induced currents [29].
Magnesium sulphate as an adjuvant to epidural bupivacaine prolonged
the duration of analgesia [30,31].

Role in blocks: In addition to central location of NMDA receptors,
these receptors have been identified peripherally. El Shamaa et al.
observed that the admixture of magnesium sulphate to local anesthetic
bupivavaine during femoral nerve block provided a profound
prolongation of duration of both sensory and motor block, in addition
to a significant decrease in postoperative pain scores and total dose of
rescue analgesia with a longer bearable pain periods in the first
postoperative day [32]. Magnesium affects peripheral nerves as it
interferes with release of neurotransmitters at the synaptic cleft or
potentiates local anaesthetic action [2]. Hassan et al. evaluated the
effect of magnesium sulphate as an adjuvant in potentiating the
analgesic effect of bupivacaine in paravertebral block in modified
radical mastectomy and concluded that adding magnesium sulphate to
bupivacaine resulted in more efficient analgesia with opioid-sparing
and decreased postoperative nausea and vomiting in first
postoperative 24 hours [33]. Goyal et al. concluded that administration
of a small dose of magnesium only in the axillary sheath during
brachial plexus analgesia resulted in prolonged time of postopearive
pain relief with reduction of postoperative analgesia requirement
without any major side effects [34].

To obtund hypertensive response to intubation
Magnesiium has been highlighted on its efficacy to attenuate

cardiovascular responses associated with tracheal intubation [35,36].
Laryngoscopy and tracheal intubation cause release of endogenous
catecholamines, increasing both blood pressure and heart rate with
possible sequelae such as intracranial bleeding and myocardial
ischemia. Magnesium can attribute to stabilization of cardiovascular
parameters and prevent hypertension at intubation. This effect can be
especially valuable in the context of the hypertensive diseases of
pregnancy. James et al. studied post intubation catecholamine levels
and impact of intubation on heart rate and blood pressure in a
randomized controlled trial of intravenous magnesium 60 mg/kg vs
0.9% saline administered preintubation. Noradrenaline levels were
significantly higher in the control group compared to those receiving
magnesium and this increased level persisted for 5 minutes post

intubation. Heart rate increased slightly on administration of
magnesium but then remained stable throughout intubation. The
control group showed significant increase in heart rate and blood
pressure [37].

In pheochromocytoma
Magnesium has a marked antiadrenergic property. In addition to

this, its vasodilator and antiarrythmic effect have led to the use of
magnesium during surgery for pheochromocytoma [5].

Role in obstetrics and obstetric anesthesia
Magnesium has an increasing role in the treatment of the parturient

with important implications for the obstetric anesthetist. Magnesium
has been used to treat acute hypertensive crisis especially in the
context of pheochromocytoma management and treatment of
pregnancy related hypertension. It is now well established in the
management of severe preeclampsia and prevention/treatment of
eclamptic seizures, where it is considered as standard therapy. It
prevents or controls convulsions by blocking neuromuscular
transmission and decreasing the release of acetylcholine at the motor
nerve terminals. Its antihypertensive action is due to its calcium
channel blocking action. The use of magnesium for neuroprotection of
preterm fetus, preventing disabling cerebral palsy in the newborn, will
undoubtedly continue to increase [38]. It is used to treat premature
labour. It has beneficial effects on both maternal and uteroplacental
hemodynamics in preeclampsia [5].

As an adjunct to general anesthesia, Lee and Kwon in their study
observed that intravenous administration of magnesium 45 mg/kg
before induction of anesthesia, led to greater hemodynamic stability
and lower bispectral index implying less risk of awareness [39].
However, pretreatment with magnesium sulphate did not lower serum
cardiac troponin I values in moderate preeclampsia undergoing
elective caesarean section using spinal anesthesia [40].

Role in cardiac anesthesia
The areas of particular relevance to anesthesiologist are arrhythmia

and cardiac surgery. It is a valuable anti-arrhythmic agent. It is
successfully used in the treatment of ventricular arrhythmias
associated with acute myocardial infarction, long QT syndrome and
digitalis toxicity [5]. There is high risk of magnesium depletion during
CABG surgery with CPB. This hypomagnesemia precipitates both
cardiac arrhythmias and vasoconstriction of either coronary arteries or
the used mammary graft which in turn aggravates arrhythmias.
Magnesium supplementation can stabilize the myocardial cell
membrane and provide some cardioprotective effect against
arrhythmias [41]. During on pump CABG surgery, the combined
administration of magnesium and lidocaine as a bolus dose starting
after intubation followed by continuous infusion reduced the
incidence of reperfusion VF by 62% and post-CPB ventricular
arrhythmias by 70%. Magnesium supplementation stabilized the
myocardial cell membrane and provided cardioprotective effect
against ventricular arrhythmias [42]. Magnesium administration
before, during surgically induced myocardial ischemia, and at the time
of myocardial reperfusion appears to improve post-ischemic
myocardial recovery but if given after myocardial reperfusion has
begun, it does not produce beneficial effect [43].
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Management of shivering
Magnesium sulphate is found to be effective in management of

postoperative shivering after general anesthesia as well as spinal
anesthesia [44,45]. Elsonbaty et al. found magnesium sulphate to be an
effective way for the control of shivering and suggested that it could
replace meperidine for treatment of shivering during spinal anesthesia
with low incidence of side effects. Antishivering effect may be due to
blocking of NMDA receptors leading to a decrease in norepinephrine
and 5 HT as both of these have role in thermoregulatory control.
Magnesium sulphate is an attractive choice for shivering control
because hypomagnesemia is observed during induced hypothermia
[45]. Ibrahim et al. further observed that following spinal anesthesia
prophylactic magnesium sulphate infusion lowered the incidence of
shivering [46].

Muscle relaxation
Magnesium potentiates the action of non-depolarizing

neuromuscular blockers by inhibiting the release of acetylcholine from
motor nerve terminal. It also decreases the sensitivity of postjunctional
membrane and reduces the excitability of nerve fibre. As a result
reduced doses of non-depolarizing muscle relaxants are recommended
when magnesium sulphate used [2].

There are diverse clinical implications of potentiation of muscle
relaxation by magnesium sulphate. First of all, it can be used as an
adjuvant to tracheal intubation. Kim et al. observed that magnesium
sulphate, when combined with rocuronium priming, improved rapid-
requence intubating conditions compared with either magnesium
sulphate or priming used alone [47]. Due to the effect of drug or
disease, sometimes patient exhibits resistance to non-depolarizing
muscle relaxants. Magnesium can be used effectively in these cases.
Kim et al. reported that valproic acid decreases rocuronium duration
resulting in increase in its requirement, but this increase was
attenuated by administration of magnesium [48]. Children with
cerebral palsy also show resistance to non-depolarizing muscle
relaxants. Rocuronium requirement was significantly decreased in
these patients on administration of magnesium [49]. In addition,
pretreatment with magnesium sulphate is associated with less
fasciculation induced by succinylcholine.

Role of Magnesium in Critical Care
Magnesium deficiency has been found in 65% adults and 30%

neonates in intensive care units as compared to 11% in general
hospital inpatients. It is used in the treatment of respiratory failure,
neonatal pulmonary hypertension and tetanus [5].

Many factors contribute to magnesium deficiency in critically ill
patients. These factors include impaired GI absorption, nasogastric
suction, poor content of magnesium in feeding formulae or TPN
solution, administration of drugs like diuretics, aminoglycosides,
amphotericin-B which cause renal wasting of magnesium [50].

Hypomagnesemia is associated with increased mortality in critical
care patients more so in patients with sepsis, diabetes and other
electrolyte abnormalities.

Mortality
Safavi et al. observed a higher mortality rate in hypomagnesemic

patients as compared to normomagnesemic patients (55% vs 35%)

[51]. Limaye et al. observed that mortality rate in hypomagnesemic
group was 57% which was significantly higher as compared to 31% in
the normomagnesemic group. The higher mortality rates in
hypomagnesemic patients was explained by greater incidence of
electrolyte abnormalities especially hypokalemia and cardiac
arrhythmias and a strong association of hypomagnesemia with sepsis
and septic shock. The need and duration for ventilator support was
significantly higher in the hypomagnesemic patients [52].

Sepsis and diabetes
Hypomagnesemia is associated with increased release of endothelin

and proinflammatory cytokines and leads to sepsis. There is a strong
relationship between hypomagnesemia and insulin resistance.
Magnesium supplementation leads to decreased requirement of
insulin.

Other electrolyte abnormalities
Hypomagnesemia is commonly associated with other electrolyte

abnormalities like hypokalemia, hypophosphatemia, hyponatremia
and hypocalcemia. Hypokalemia seen in hypomagnesemic patients is
relatively refractory to potassium supplementation until magnesium
deficiency is corrected. This is attributed to defective membrane
ATPase activity and also because the renal potassium loss is increased
in presence of hypomagnesemia. The mechanism of association of
hypocalcemia with hypomagnesemia involves defect in synthesis and
release of parathyroid hormone as well as the end organ resistance to
parathyroid hormone. In addition, magnesium deficiency may directly
act on bones to reduce calcium release independent of parathyroid
hormone. Hypocalcemia associated with magnesium depletion is also
difficult to correct unless magnesium depletion is corrected [52].

Conclusion
Magnesium sulphate, a very old drug having its initial use in

preeclampsia, cardiac arrhythmias and bronchial asthma, now has
been explored as an anesthetic and analgesic sparing drug in
anesthesia practice. There is emerging role of magnesium in critical
care patients where it has been shown to decrease mortality in various
studies, more so in patients with sepsis and diabetes.
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