
Volume 2 • Issue 5 • 1000e113J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Jha, J Inform Tech Softw Eng 2012, 2:5 
DOI; 10.4172/2165-7866.1000e113

Editorial Open Access

Machine Learning for Automated Synthesis of Complex Software
Susmit Jha*

Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA

*Corresponding author: Susmit Jha, Department of Electrical Engineering and 
Computer Science, University of California, Berkeley, CA 94709, USA, Tel: +1-510-
3257012; E-mail: jha@eecs.berkeley.edu

Received October 15, 2012; Accepted October 17, 2012; Published October 19, 
2012

Citation: Jha S (2012) Machine Learning for Automated Synthesis of Complex 
Software. J Inform Tech Softw Eng 2:e113. doi:10.4172/2165-7866.1000e113

Copyright: © 2012 Jha S, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

The automated construction of computer programs from formal 
behavioral specifications [1] has been a subject of active interest in 
the software engineering community for the last forty years. Several 
approaches for constructing programs from variants of temporal 
logics have been studied, and practical tools for generating programs 
from high-level specification languages such as UML have been 
implemented. However, little effort has been directed towards the 
automated synthesis of correct-by-construction software by leveraging 
complementary strengths of formal verification and modern machine 
learning techniques.

Machine learning methods are quite adept at learning linear and 
nonlinear relations between two or more variables of interest to a 
data scientist. While these methods are scalable and can learn models 
with millions of data points with ease, they suffer from learning errors 
and may not necessarily learn the concept class being taught. On the 
other hand, formal verification methods can algorithmically decide if 
a candidate program satisfies the specifications that constraint the set 
of behaviors expected from the program. However, formal verification 
cannot generate the correct program from the specification itself. By 
combining the strengths of machine learning and formal verification, 
it is feasible to algorithmically synthesize programs from various 
flavors of formal and informal specifications, including logics, input-
output examples, and a library of program templates. Conceptually, 
the synthesis technique [2] leverages inductive learning techniques as a 
student generalizing from sets of behaviors to candidate programs while 
deductive formal methods serve as a teacher rectifying generalizations 
to slowly guide the automated synthesis technique towards provably 
correct programs.

In practice, software engineering problems are too complex for a 
human expert to resolve on her own; these include the design of optimal 
control algorithms for cyber-physical systems and the optimization of 
software for upcoming SoC and embedded computing platforms. A 
prototypical example of the former class of problems is the automated 
synthesis of controllers for biomedical devices such as artificial 
pancreata. Unlike traditional control problems, such software has no 
scope for error and must quickly adapt to both inter-patient variations 
and possible failures in the hardware itself. Another challenging 
problem is the ability to port IEEE floating-point compliant numerical 
software from traditional x86 architecture to modern SoC platforms, 
GPGPU hardware, or fixed-point ECUs. These complex tasks provide 
exciting opportunities for the automated synthesis of complex correct-
by-construction software.

The algorithmic synthesis of complex and evolving software that 
can replace error-prone aspects of software engineering is an exciting 
area of research that will greatly benefit from cross-pollination between 
machine learning and formal verification.

References

1. Clarke EM, Emerson EA (1982) Design and synthesis of synchronization 
skeletons using branching time temporal logic. Lecture Notes in Computer 
Science 131: 52-71.

2. Jha S, Gulwani S, Seshia SA, Tiwari A (2010) Oracle-guided component-based 
program synthesis. ACM/IEEE 32nd International Conference on Software 
Engineering 1: 215-224.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

http://rd.springer.com/chapter/10.1007/BFb0025774
http://rd.springer.com/chapter/10.1007/BFb0025774
http://rd.springer.com/chapter/10.1007/BFb0025774
http://dl.acm.org/citation.cfm?id=1806833
http://dl.acm.org/citation.cfm?id=1806833
http://dl.acm.org/citation.cfm?id=1806833

	Title
	Corresponding author
	References 



