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Introduction
It goes without saying that electricity is vital to the well-being in 

general and hence a power system is expected to supply energy as 
economically as possible, as well as with a high degree of quality and 
reliability. Reliability in its broad sense refers to the probability that a 
component or system comprising components is able to perform its 
intended function satisfactorily during a specified period of time under 
normal operating conditions. Thus the reliability assessment of a power 
system is mainly concerned with its capability, which is related to the 
existence and availability of sufficient facilities to satisfy customer load. 
The basic facilities of a system are in the three sectors of its function, 
viz., generation, transmission and distribution, which are usually 
vertically integrated. Electric power produced at the generation end is 
carried to the consumers via transmission and distribution facilities. In 
this paper our focus is only on the generation sector.

A modern power system is very large and complex, composed of n 
power generating stations, where power is generated from fuels (fossil 
or nuclear) or by hydroelectric stations. Each generating station or plant 
consists of M plant units or generators, each with a rated capacity.  Each 
of the N stations has an installed capacity Ki megawatts (mw), which is 
the sum of the rated capacities of its M units, and the system installed 
capacity to supply power is the sum of the installed capacities of all the 
stations. In the case of a hydropower system, each power station has 
usually associated with it a big reservoir behind a dam that supplies 
hydraulic power to drive each of the M generators.

A power system is unique in that its product is one that must be 
generated the instant its service is demanded. Another significant 
characteristic is that the demand for electricity varies greatly at random 
according to the time of the day and the season of the year. Therefore 
a power system is designed to supply instantaneously the power 
demanded by consumers. However, failures in the system do occur 
when demand exceeds supply as in the case of any other goods and 
services. 

Demand can exceed supply for two main reasons. One is the random 
deviations of the demand from its expected level such that a very high 
peak demand exceeds the installed capacity of the system. Capacity of a 
power system is in general determined after taking due considerations 
of such unforeseen fluctuations in demand. This is affected by means of 
reserve or standby capacity over and above the expected peak period 
demand that is to be met. 

Shortage may still occur, even if the load is not far from its 

expectation; a high demand that does not exceed the installed capacity 
of the system can exceed the available capacity at that moment. This 
is due to generator de-ratings, scheduled preventive maintenance 
and forced outages of generators. Generator de-ratings result from 
equipment problems and changes in operating conditions, and are a 
function of the age of the equipment. Outage refers to a certain state 
of a unit when it becomes unavailable to perform its intended function 
due to some event directly associated with it. An outage may be either 
a scheduled one or a forced one. Scheduled outage (or maintenance 
outage) is a planned event, whereby a component/unit is deliberately 
taken out of service at a chosen time for preventive maintenance or 
overhaul or repair; this is to keep the generating units in proper 
running condition. Forced outage, on the other hand, results when a 
unit falls out of service due solely to random events such as breakdown, 
malfunction of equipment, etc. 

In the case of a hydropower system, besides these two scenarios, 
shortage can still occur if the hydraulic power in any storage is not 
sufficient to turn the concerned generator. The plant unit is then shut 
down, and the system capacity falls accordingly. 

A modest attempt is made in this paper to evaluate the reliability 
of the Kerala power system. Following a detailed discussion of the 
methodology used in this study, the maximum likelihood estimates of 
availability and forced outage rates as well as loss of load probability 
measures are calculated for the 10 hydropower plants of Kerala.

Loss of Load Probability: Theory
Availability and outage measures

In a Markov process, the life history of a repairable electric power 
system component during its useful life period is represented by a two-
state model, the two possible states being labeled ‘up’ or ‘functioning’ 
and ‘down’ or ‘unavailable’, denoted by 1 and 0 respectively. Thus when 
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the time-to-repair variable Y, so that the density function of Y, viz., the 

repair density function, g(y), is ( ) 1 expy yg
µ µ

 −



= 


, for y > 0. In this 
model, 1/µ is the constant repair rate and its reciprocal, , is the mean 
down (repair) time (MDT) or the expected outage time. The sum of 
MTTF and MDT is termed the mean-time-between-failures (MTBF) 
or cycle time. 

Shooman [1] and Gnedenko, Belyayev and Solovyev [2] have shown 
that for the above exponential models, the instantaneous availability of 
a power plant is

       ( ) 1 1( )
( (
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The steady-state availability is obtained by taking the limit of A(t) as 
t approaches infinity. This gives
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Corresponding to these availability measures, we can also define 
two down-state probabilities, instantaneous forced outage, denoted by 
R(t) and steady-state forced outage, denoted by R(∞) [3,4]. Thus the 
instantaneous forced outage rate of a plant is 

  ( ) 1 1exp ( )
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 and the long-run (steady-state) forced outage is

         
( ) MDT
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Now if we let Pij(t), (i, j = 0,1) be the probability of the transition 
of state from i to j in a small interval of time t, where 1 denotes ‘up’ 
and 0, ‘down’ state in a Markov chain, it can be shown  (ibid.) that the 
instantaneous availability and instantaneous forced outage rate, as 
obtained above, are nothing but the same state transition probabilities, 
P11(t) and P00(t) respectively. That is, P11(t) = A(t)  and   P00(t) = R(t). 
This gives us the remaining two transition probabilities (from ‘up’ to 
‘down’ state and from ‘down’ to ‘up’ state) of the Markov chain:

 ( )01 00
1 1)1 (P t P t e txpλ λ

λ µ λ µ λ µ
  

= − − − +  +  
=

+ 

 ( ) ( )10 111 1– 1P t P t exp tµ µ
λ µ λ µ λ µ

  
= = − − +  + +   

It is significant to note that the initial state probabilities obtained for 
t = 1 are nothing but the state transition probabilities, Pij. That is P01(t = 
1) = P01; P00(t = 1) = P00; P10(t = 1) = P10; and P11(t = 1) = P11.

When t → ∞, these probabilities are known as limiting state prob-
abilities that give the steady-state (or stationary or long-run) probabili-
ties of the Markov chain:

( ) ( )00 00 10 10lim ( ) lim  ( )  ) /(
t t

P t P P t P R lµ µ
→∞ →∞

= =∞= = +∞= ,

gives the forced outage rate (FOR) as defined earlier, and

∞→t
lim P11(t) = P11(∞) = 

∞→t
lim P01(t) = P01(∞) =  A =  λ/(λ + µ).    

is the availability rate.

Now it can be shown that 10

10 01

1/
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, and 

the component fails, it is said to undergo a transition from the up to the 
down state, and conversely, when repairs are over, it is said to return 
from the down to the up state. This idea then facilitates to interpret the 
concept of reliability in terms of the fraction of total time the compo-
nent remains in the up state. The length of functioning period is also 
referred to as the time-to-failure, and that of the period under repair 
as the downtime. 

The probabilistic approach to power system reliability analysis views 
the system as a stochastic process evolving over time. At any moment 
the system may change from one state to another because of events 
such as component outages or planned maintenance. Corresponding to 
a pair of states, say (i, j), there is a conditional probability of transition 
from the state i to the state j.

Suppose the performance of a power plant is continuously moni-
tored to record the sequence of failures and repairs during sustained 
operation in order to assess its performance. During each failure-repair 
cycle, the time to failure (when the plant is in upstate) and the time to 
repair (when the plant is in down state) are recorded. The number of 
failures per unit of time is known as the failure (or hazard) rate, and the 
number of repairs per unit of time, the repair rate. The reliability of a 
power plant is often measured in terms of two availability indices, viz., 
instantaneous availability, A(t), and steady-state (long-run) availability, 
A(∞). The former refers to the probability that the power plant is avail-
able for operation at any time (t) and the latter to its availability for large 
values of t, that is, in long run. Thus,

A(t) = Prob(available at time t), and 

( ) lim (  )
t

AA t
→∞

∞ =

The first step in an availability study is to specify certain probability 
models for the two variables, time-to-failure, denoted by X and time-
to-repair, denoted by Y. The second step is the derivation of the avail-
ability indices, which in general are the functions of the parameters of 
the statistical models specified for X and Y.

Usually the failure and repair rates are assumed to be constant; this 
leads to the assumption that the time-to-failure and the time-to-repair 
variables follow exponential distribution. The exponential distribution 
is one of the two (the other being the geometric distribution) unique 
distributions with the memory less or no-ageing property. That is, fu-
ture lifetime of a component remains the same irrespective of its previ-
ous use, if its lifetime distribution is exponential.

Thus we assume that the time-to-failure, X, is an exponential vari-
able with parameter λ, so that its density function, viz., failure (hazard) 
density function, f(x), is given by 

( ) 1 exp      f x x
λ λ

=
− 

 
 

, for x > 0

The parameter 1/λ is the constant failure (hazard) rate. For an 
exponential distribution of the above form, the mean is given by λ. 
Hence the Mean-Time-To-Failure (MTTF) of the power plant is equal 
to λ; this is also known as the expected survival time. The probability 
of a plant surviving at time t in a constant failure rate environment, i.e., 
its survival function, denoted by R(t), is then obtained by integrating 
the failure density function, f(x), and is given by R(t) = exp(−x/λ). The 
complement of this survival probability is the probability of failure in 
time t, given by 1−exp(−x/λ).

Similarly we assume an exponential model with parameter µ for 
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where Pij = Pij(1), (i, j = 0,1), as specified above.

From this it follows that P10 = 1/λ, and P01 = 1/µ, with P00 = 1 – P01 
and P11 = 1 – P10, where 1/λ is the failure rate and 1/µ is the constant re-
pair rate. That is, we are now able to estimate all the four state transition 
probabilities simply by using the MTTF and MDT. This is an important 
result.   

Maximum likelihood estimators

In practice, however, the parameters  λ and µ of the exponential 
models assumed for the time-to-failure (X) and time-to-repair (Y) are 
usually unknown. Thus the availability and outage indices are also un-
known for most practical problems. Hence we need to estimate these 
measures from a sample of values on X and Y. Note that both A(t) and 
A(∞) , as well as F(t) and F(∞), are functions of  λ and µ, the parameters 
of the exponential models assumed for X and Y. We can, therefore, ob-
tain the maximum likelihood estimates of these measures by substitut-
ing the maximum likelihood estimators (MLE) of λ and µ  in the above 
results [5].

To calculate the maximum likelihood estimators (MLE) of λ and 
µ, we observe the power plant unit through n  failure-repair cycles, 
and collect the data on T time-to-failure (x1, x2, ….., xT) and T time-
to-repair (y1, y2, ….., yT). Actually the data sets are two independent 
exponential samples.

The maximum likelihood procedure as developed in Kendall and 
Stuart [6] gives the following estimators:

the MLE of MTTF ˆ /i xx Tλ = Σ = , and

the MLE of MDT (µ):   ˆ /i yy Tµ = Σ = .

Then the maximum likelihood estimators of availability and outage 
are obtained by substituting λ and µ into the above results. 

Thus the MLE of availability, ˆ i

i i

x
A

x y
=

+
∑

∑ ∑
.                               

Thus the MLE of outage, ˆ i

i i

y
R

x y
=

+
∑

∑ ∑
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The steady-state (long-run) forced outage is generally known as 
forced outage rate (FOR), computed as a ratio of the unit’s average 
down-time  to the total available time, say, 720 hours a month; that is,

FOR = average forced outage hours/available hours.

The availability measure is then obtained as A = 1 – FOR.

Mobility

A measure of (what we call) ‘propensity to down’ (mobility) is given 
by

∑ ∑
= =

−=
k

i

k

j
jiijPiPD

1 1
|| , where k is the number of states of nature, 

Pi is the long run probability and Pij the transition probability, In the 
case of k = 2, with i, j = 0, 1, we have
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D varies between 0 for immobility (least propensity to down) and 1 
for extreme propensity to down. 

Capacity outage distribution

The next step in the generation reliability model is to combine the 
capacity and availability of the individual units to estimate expected 
available generation capacity in the system. Thus we obtain a capacity 
model, in which each generating unit is represented by its nominal 
capacity kj and its FOR, Rj,  j =1…N. Note that for each of the N units of 
the generating station, the expected available capacity A

jk , j =1…N, is 
a random variable that can take the value 0 with probability Rj and the 
value kj with probability Aj = 1 – Rj as shown below:

( )

( ),  1 – ,    ;

0, ,     .

( , )
j j j

j

k A R if unit is available

R if unit is in

A
i i i

outage

k k R
=


  

Then the expected available capacity of a plant unit j is j
A
j jk k A=  

and the expected total generating capacity available at the plant level 

is:  ∑=
N

j

A
j

A kK .

Note that the available capacity at both the unit A
jk  and the plant 

level KA is a random variable; and the units fail and get repaired 
independently of such events of other units. These conditions help us 
obtain the probability distribution of KA by combining the independent 
individual probabilities of A

jk . This in turn gives us a discrete (available) 
capacity distribution KA = (Ki, Ri}, i = 1,…,2N. The available capacity 
states takes on 2N values, equal to the number of combinations of up and 
down units (due to forced outages) in an N-unit system. Each capacity 
state represents an outage event with one or more units unavailable. 
This capacity probability distribution is tabulated and referred to as the 
capacity outage probability table.

The capacity of the ith state, Ki, with M available units and N – M 
failed units is the sum of the capacities of the M available units, that is,

Ki = K1 + K2 + ……+ KM

Given the outage or availability probabilities, the probability 
corresponding to each available capacity state can be calculated. 
Remember that the probability of the simultaneous occurrences of 
two or more independent events is the product of the respective event 
probabilities. Thus the probability of the ith  state is equal to the product 
of the availabilities Ai of the M available units and the FORs Ri of the 
N – M out-of-service units, that is:

Pi = A1A2….AMR1R2…RN–M.

For illustration, below we give the capacity outage probability tables 
for a 2-unit and 3-unit plants and their generalization: (Case 1 and 2)

In general,

Plant availability (capacity state probability, Pi)

Capacity state  Plant availability
 Unit 1 Unit 2

All up Up Up A1A2

1 up, 1 down Up Down A1R2 +
 Down Up A2R1 =

A1R2 + A2R1

All Down Down Down R1R2

Note: Rj = 1 – Aj  is the FOR and Aj  is the steady state availability of unit j.
Case 1: Case of a 2-unit Plant.
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when all plant units are up = Π Aj for all j.

when all plant units are down = Π (1 – Aj) for all j.

for a 2-unit plant, when 1 unit is up and 1 unit down = 

∑
≠

−
ji

ji AA )1( ; i, j = 1, 2.

for a 3-unit plant, when 2 units are up and 1 unit down = 

∑
≠≠

−
kji

kji AAA )1( ; i, j, k = 1, 2, 3.

for a 3-unit plant, when 2 units are down and 1 unit up =

(1 )(1 )i j k
i j k

A A A
≠ ≠

− −∑ ; i, j, k = 1, 2, 3.

Loss of load probability (LOLP)

The unreliability of a system in this context is viewed as its inability 
to meet the daily peak load. A loss of load occurs whenever the system 
load exceeds the available generating capacity. The overall probability 
that there will be a shortage of power (loss of load) is called the Loss-
of-Load Probability or LOLP. It is usually expressed in terms of days 
per year, hours per day or as a percentage of time. When expressed as 
the expected accumulated amount of time during which a shortage of 
power is experienced, the measure is more correctly referred to as the 
loss of load expectation (LOLE). The LOLP measure was first intro-
duced by [7].

By combining the availability of each capacity state with the system 
load duration curve (LDC), we obtain the expected risk of loss of load. 
A load duration curve is defined as a function whose abscissa speci-
fies the width of the time interval, usually the number of hours in a 
year, during which customer’s (peak) demand for power (D) equals or 
exceeds the associated level of available capacity (KA) given on the ordi-
nate (Fig. 1). Thus it shows the time duration for which a capacity out-
age would cause a loss of load (D ≥ K). By normalizing the time variable 
as a proportion of the total, the value at any point on the abscissa can 
be taken as the (cumulative) probability that the corresponding load 
will be equaled or exceeded (D ≥ K). When the daily peak load curve is 
used, the value of LOLE is in days for the period of study, usually days 
per year. Because of its monotonicity and continuity, the function can 
be inverted to obtain the proportion of this time interval. This inverse 
function can in turn be interpreted as the complementary cumulative 
density function (i.e., the distribution function) of the customer’s de-
mand (Figure 1).

The LOLP can be used to measure loss-of-load risk as illustrated 
in Figure 2 with a daily peak load curve. Oj is the magnitude of the 
jth outage in the system, Rj is the probability of a capacity outage of 
magnitude Oj, and tj is the number of days that an outage of magnitude 
Oj would cause a loss of load in the system. Note that capacity outages 
less than the reserve will not lead to a loss of load; a particular capacity 
outage greater than the reserve contributes to the overall risk by the 
amount (Pj tj). Then the system LOLP for the period is:

  . j j
j

PLO tLP =∑
Now how to estimate the outage duration, tj ?

Suppose the customer’s daily maximum demand on a power system 
over one year can be represented by a normal distribution with mean 
η and standard deviation σ. Then the proportion of time during which 
a capacity outage would cause a loss of load (i.e., D ≥ KA) is given by

Prob(D ≥ KA) = 1−Prob(D < KA) = 1−φ(z),

where z = (KA − )/σ,  and φ(z) is the area under the standard normal 
curve given by

( ) 1 2( 2 ) exp( / 2)
z

x dz xφ π −

−∞
= −∫ , 

Capacity state   Plant availability
 Unit 1 Unit 2 Unit 3

All up Up Up Up A1A2A3

2 up, 1 down Up Up Down A1A2R3 +
 Up Down Up A1R2A3 +
 Down Up Up R1A2A3 =

A1A2R3+A1R2A3+R1A2A3

1 Up, 2 Down Up Down Down A1R2R3 +
 Down Up Down R1A2R3 +
 Down Down Up R1R2A3 =

A1R2R3+R1A2R3+R1R2A3

All Down Down Down Down R1R2R3

Note: Rj = 1 – Aj  is the FOR and Aj  is the steady state availability of unit j.
Case 2: Case of a 3-unit Plant.

Figure 1: Load duration curve.

Figure 2: Estimation of LOLP.
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which can be read off a standard statistical table. KA here denotes 
the available capacity in a certain capacity state; thus we obtain the 
‘outage duration’ that is, the proportion of time during which a forced 
outage results in a loss of load (D ≥ KA) in each of the possible capac-
ity states. The relative contribution of this outage to the overall system 
loss of load is then obtained by multiplying the availability of a certain 
capacity state by the corresponding proportion of time that available 
capacity level is equaled or exceeded.  The total LOLP is the sum of 
all contributions due to the different capacity outages. Multiplying the 
LOLP by 365 then gives the expected cumulative number of days in a 
year when loss of load is experienced due to forced outage.

LOLP of the Kerala Hydro-Power System
Till the mid-1980s, Kerala (India) had a predominantly 

hydroelectric power system; with the increased dependency on energy 
import, the hydro-thermal mix has come down, and now hovers 
around 27:73. However, if we consider installed capacity, the system is 
still predominantly hydel. There are 44 power generating stations (both 
in the public and private sectors), including 34 hydel, seven thermal 
and three wind, with an installed capacity of 2880 MW; out of which 
the Kerala State Electricity Board (KSEB) owns one wind, two thermal, 
30 hydel stations (and shares a national thermal station), accounting 
for 90.45 percent of the total installed capacity. The present study 
considers only the 10 old hydropower stations of the State, in view 
of the availability of sufficiently large time series data. These power 
stations in the descending order of age (the last plant, Idamalayar, was 
commissioned in 1987) with their important characteristics are given 
in Table 1. These ten power stations, with an installed capacity (IC) of 
1476.5 megawatt (mw), accounts for about 74 percent of the total own 
hydel IC (2008.65 mw) and 66 percent of the total own IC (2245.28 mw) 
of the Kerala power system (Table 1).

Since the early 1980s, Kerala has been suffering from severe capacity 
shortage in the power sector. Even by 1984-85, the State had an installed 
capacity of only 1011.5 mw against an estimated demand of 1122 mw. 
During the two decades from 1976, Kerala’s installed capacity in the 
power sector was growing at an exponential rate of only 3 per cent per 
annum against 6 per cent of the maximum demand, which in effect was 
restricted in many ways by power shortage. Only since the late 1990s 
has there been some perceptible addition to the IC. 

That a hydropower system is at the mercy of the vagaries of the 
monsoon is a foregone conclusion, especially with an insufficient 
storage capacity. Once the monsoon goes dry, close on the heels follow 
severe power shortages as was the case in the 1980s and thereafter in 

 Unit Installed Average Designed Gene-   
Power plants Capacity Capacity ration Potential (ADGP) Storage capacity

 (No x mw) (mw) mu % to IC mu % to ADGP
Pallivasal 3x5+3x7.5 37.5 284.7 86.67 79.54 27.94
Sengulam 4 x 12 48 182.2 43.33 49.61 27.23

Neraiamangalam 3 x 15 45 237.4 60.22 67.58 28.47
Panniar 2 x 15 30 157.7 60.01 45.47 28.83

Poringalakuthu 4 x 8 32 171.7 61.25 63.43 36.94
Sholayar 3 x 18 54 233 49.26 99.47 42.69
Sabarigiri 6 x 50 300 1337.7 50.90 770.32 57.59
Kuttiyadi 3 x 25 75 268.1 40.81 41.46 15.46

Idukki 6 x 130 780 2397.6 35.09 2147.88 89.58
Idamalayar 2 x 37.5 75 380.2 57.87 254.45 66.93

Total  1476.5 5650.3 43.69 3619.21 64.05

Table 1: Characteristics of the 10 Hydropower Stations.

  Monthly   
Plant Units MDT (hours) FOR Availability

Pallivasal 1 39.97 0.0555 0.9445
 2 23.23 0.0323 0.9677
 3 72.53 0.1007 0.8993
 4 74.76 0.1038 0.8962
 5 40.43 0.0562 0.9438
 6 29.09 0.0404 0.9596

Sengulam 1 49.59 0.0689 0.9311
 2 8.07 0.0112 0.9888
 3 40.05 0.0556 0.9444
 4 207.72 0.2885 0.7115

Neraiamangalam 1 11.24 0.0156 0.9844
 2 15.48 0.0215 0.9785
 3 26.39 0.0367 0.9633

Panniar 1 153.43 0.2131 0.7869
 2 95.87 0.1332 0.8668

Poringalakuthu 1 55.69 0.0773 0.9227
 2 20.83 0.0289 0.9711
 3 14.18 0.0197 0.9803
 4 14.10 0.0196 0.9804

Sholayar 1 173.58 0.2411 0.7589
 2 127.19 0.1767 0.8233
 3 79.39 0.1103 0.8897

 Sabarigiri 1 7.58 0.0105 0.9895
 2 37.59 0.0522 0.9478
 3 33.96 0.0472 0.9528
 4 41.12 0.0571 0.9429
 5 48.27 0.0670 0.9330
 6 56.67 0.0787 0.9213

Kuttiyadi 1 1.52 0.0021 0.9979
 2 1.09 0.0015 0.9985
 3 0.58 0.0008 0.9992

Idukki 1 12.44 0.0173 0.9827
 2 45.02 0.0625 0.9375
 3 25.29 0.0351 0.9649
 4 9.82 0.0136 0.9864
 5 24.82 0.0345 0.9655
 6 14.83 0.0206 0.9794

Idamalayar 1 31.17 0.0433 0.9567
 2 38.96 0.0541 0.9459

Total  46.24 0.0642 0.9358

Table 2: Long run Availability and Forced Outage Rates.
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Kerala; power cut/load shedding has become the rule of the day since 
1982-83, even with very large import of thermal power, often more than 
60 percent of the total available power. 

Availability and forced outage rates
The relevant data for a period of 33 years from 1978-79 (to 2011-12) 

were collected from the Kerala State Electricity Board (KSEB); the data 
on plant unit capacity, hours of operation and forced outage are from 
the KSEB’s annual publication, viz., ‘System Operations’ and the data 
on daily maximum demand on each of the 10 power stations for three 
years from 2006-07 were collected from the (unpublished) records from 
the KSEB head office (Vydhyuthi Bhavan) in Trvandrum. In the case of 
Idukki II stage (3 units) and Idamalayar, commissioned during 1985-87 
period, the data are from this period onwards.

It should be noted here that a study of this dimension (theory-
informed methodology) is the first of its kind in the case of most of 
the State Electricity Boards in India, especially the KSEB; the technical 

appraisal of these power systems in general is confined to examining the 
plant load factor (PLF) as a measure of capacity utilization only. It goes 
without saying that PLF is by no means directly comparable with LOLP, 
as the two methodologies totally differ from each other; this precludes 
us from attempting at any comparison with the official measure.

The estimated mean-down-time (MDT; forced outage time), 
measured in hours per month, of each of the units of the 10 hydro power 
generating stations are given in Table 2; with a cycle time (MTBF) of 
720 hours in general, we derive the corresponding forced outage and 
availability rates. 

The long run availability is the highest, coming very close to unity, for 
(all the units of) Kuttiadi power plant. Neriamangalam, Poringalkuthu, 
Idukki, Sabarigiri and Idamalayar plants also have higher availability 
for all their units (above 90 percent). All but two (units III and IV) 
of the 6 units of Pallivasal also have higher availability; Sengulam also 
follows suit with one unit (IV) having the highest FOR of 0.29. The 
remaining two plants, Panniar and Sholayar, bear the whole brunt 
of higher FOR. Sholayar unit I has the second highest FOR of 0.24; 
Panniar unit I follows with only 79 percent of availability.

It is worth finding that an average outage of more than one month 
in one year occurred in the case of 8 out of the total 39 plant units; 
Sengulam unit IV has the fate of having the maximum mean outage of 
a cumulative period of more than 3 months a year and Sholayar unit I, 
nearly 3 months; the credit of having the minimum mean outage of less 
than one day in one year goes to the 3 units of Kuttiadi, with 7-18 hours 
a year only (Table 2).

In the case of Kuttiadi, instantaneous availability readily collapses 
on the steady-state one, owing to the least MDT (or FOR). For all other 
plant units, the long run evolves through time limit. For Sabarigiri unit 
I and Sengulam unit II, it takes a cumulative period of nearly one month 
to reach the steady state; other units take much more time. In the case 
of Sengulam unit IV and Sholayar unit I, with very high FOR, the long-
run is evolved across a cumulative period of more than 3 months.

Note that minimum mean outage time does not necessarily mean 
higher mean operating period, as the case of Kuttiadi clearly shows. 
Even though Kuttiadi has the highest availability (and the least FOR) 
as per definition, its service period, when accumulated, amounts on an 
average to only about 7 months a year; that is, all the three units of 
this plant remain shut down for a cumulative mean period of about 5 
months for scheduled maintenance and/or for want of sufficient water 
in the reservoir. Panniar and Sholayar with lower levels of service time 
(MTTF) are also shut down for about 3 – 4 months. The shutdown 
period of other plants in general accumulate up to 1 – 3 months a year.

Averaging all the data, we find that the whole system has an annual 
MDT of 46.24 hours per month per unit, with a FOR of 6.4 percent and 
availability of about 93.6 percent. We can also find that a cumulative 
time of about 1 month is required for translating the ‘instant’ into 
the long-run for the system. However, a 6 percent FOR in the face 
of capacity shortage imposes a heavy tax on the system. Assuming 
an annual average generation of 6100 million units (mu; average 
generation of the last 6 years from 2001-02), with sufficient hydraulic 
power capacity, this level of FOR implies a potential energy shortage to 
the tune of 6100 × 0.0642/0.9358 ≈ 420 mu a year. At average revenue 
of Rs. 3.25 per unit as at present, this represents a financial loss to the 
system of Rs. 1365 million a year. Moreover, the potential energy (lost) 
of 420 mu is equivalent to about 80 mw installed capacity at 60 per cent 
load factor. A zero FOR in this case then implies that it could dispense 
with the investment requirement of adding about 80 mw capacity to the 

  Transition Probabilities Propensity
Plant Units P00 P01 P11 P10 to down

Pallivasal 1 0.975 0.025 0.9985 0.0015 0.00274
 2 0.958 0.042 0.9986 0.0014 0.00272
 3 0.986 0.014 0.9985 0.0015 0.00276
 4 0.987 0.013 0.9985 0.0015 0.00276
 5 0.976 0.024 0.9985 0.0015 0.00274
 6 0.966 0.034 0.9986 0.0014 0.00273

Sengulam 1 0.980 0.020 0.9985 0.0015 0.00275
 2 0.884 0.116 0.9987 0.0013 0.00261
 3 0.975 0.025 0.9985 0.0015 0.00274
 4 0.995 0.005 0.9981 0.0019 0.00277

Neraiamangalam 1 0.915 0.085 0.9987 0.0013 0.00266
 2 0.937 0.063 0.9986 0.0014 0.00269
 3 0.963 0.037 0.9986 0.0014 0.00272

Panniar 1 0.994 0.006 0.9982 0.0018 0.00277
 2 0.990 0.010 0.9984 0.0016 0.00276

Poringalakuthu 1 0.982 0.018 0.9985 0.0015 0.00275
 2 0.953 0.047 0.9986 0.0014 0.00271
 3 0.932 0.068 0.9986 0.0014 0.00268
 4 0.932 0.068 0.9986 0.0014 0.00268

Sholayar 1 0.994 0.006 0.9982 0.0018 0.00277
 2 0.992 0.008 0.9983 0.0017 0.00276
 3 0.987 0.013 0.9984 0.0016 0.00276

 Sabarigiri 1 0.876 0.124 0.9987 0.0013 0.00260
 2 0.974 0.026 0.9986 0.0014 0.00274
 3 0.971 0.029 0.9986 0.0014 0.00274
 4 0.976 0.024 0.9985 0.0015 0.00274
 5 0.980 0.020 0.9985 0.0015 0.00275
 6 0.983 0.017 0.9985 0.0015 0.00275

Kuttiyadi 1 0.518 0.482 0.99898 0.0010 0.00203
 2 0.401 0.599 0.99909 0.0009 0.00182
 3 0.178 0.822 0.99934 0.0007 0.00132

Idukki 1 0.923 0.077 0.9986 0.0014 0.00267
 2 0.978 0.022 0.9985 0.0015 0.00275
 3 0.961 0.039 0.9986 0.0014 0.00272
 4 0.903 0.097 0.9987 0.0013 0.00264
 5 0.961 0.039 0.9986 0.0014 0.00272
 6 0.935 0.065 0.9986 0.0014 0.00268

Idamalayar 1 0.968 0.032 0.9986 0.0014 0.00273
 2 0.975 0.025 0.9986 0.0014 0.00274

Total  0.979 0.021 0.9985 0.0015 0.00275

Table 3: Transition Probabilities and Propensity to Down.
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system, saving immensely in capital costs and working expenses. Note 
that this saving is in addition to the gain in sales revenue.

Table 3 reports the state transition probabilities along with the 
measures of propensity to down. The initial instantaneous availability 

(P11, when t = 1) for all the plant units is much higher, close to unity, 
with very low measure of D, the propensity to down; so is the initial 
instantaneous forced outage rate, but less than P11: it takes some time 
for repair. The system average follows suit.

Plant Capacity state Nominal Availability Available Standard Outage LOLP of
  Capacity Capacity Normal duration Capacity

  mw mw A
jk Variate zi tj State

(1) (2) (3) (4) (5) = (3) x (4) (6) (7) (8) = (4) x (7)
Pallivasal All 6 units up 37.5 0.6671 25.02 2.32 0.010 0.007

 5 up, 1 down 32.5 0.1362 4.426 1.46 0.072 0.010
  30 0.1451 4.352 1.03 0.152 0.022
 4 up, 2 down 27.5 0.00819 0.225 0.60 0.274 0.002
  25 0.02962 0.7404 0.17 0.433 0.013
  22.5 0.00953 0.214 -0.26 0.603 0.006
 3 up, 3 down 22.5 0.000146 0.00329 -0.26 0.603 0.000
  20 0.00178 0.03562 -0.69 0.755 0.001
  17.5 0.00194 0.03403 -1.12 0.869 0.002
  15 0.000194 0.002905 -1.55 0.939 0.000
 2 up, 4 down 15 0.0000318 0.000478 -1.55 0.939 0.000
  12.5 0.000117 0.00146 -1.98 0.976 0.000
  10 3.953E-05 0.000395 -2.41 0.992 0.000
 1 up, 4 down 7.5 2.090E-06 0.0000157 -2.84 0.998 0.000
  5 2.377E-06 0.0000119 -3.27 0.999 0.000
 All 6  units down 0 4.250E-08 0 -4.12 1.000 0.000

Sengulam All 4 units up 48 0.6186 29.69 2.62 0.004 0.003
 3 up, 1 down 36 0.3401 12.24 0.57 0.284 0.097
 2 up, 2 down 24 0.0398 0.955 -1.49 0.932 0.037
 1 up, 3 down 12 0.00150 0.0180 -3.54 1.000 0.002
 All 4 units down 0 1.239E-05 0 -5.59 1.000 0.000

Neraiamangalam All 3 units up 45 0.9279 41.76 0.90 0.184 0.171
 2 up, 1 down 30 0.0704 2.11 -1.47 0.929 0.065
 1 up, 2 down 15 0.00166 0.0249 -3.84 1.000 0.002
 All 3 units down 0 1.230E-05 0 -6.21 1.000 0.000

Panniar All 2 units up 30 0.6821 20.46 0.96 0.169 0.115
 1 up, 1 down 15 0.2895 4.34 -1.01 0.844 0.244
 All 2 units down 0 0.0284 0 -2.97 0.999 0.028

Poringalakuthu All 4 units up 32 0.8611 27.56 0.87 0.192 0.165
 3 up, 1 down 24 0.1323 3.18 -0.66 0.745 0.099
 2 up, 2 down 16 0.00642 0.103 -2.19 0.986 0.006
 1 up, 3 down 8 0.00013 0.001003 -3.72 1.000 0.000
 All 4 units down 0 8.630E-07 0 -5.25 1.000 0.000

Sholayar All 3 units up 54 0.5560 30.02 3.15 0.001 0.000
 2 up, 1 down 36 0.3648 13.13 -0.14 0.556 0.203
 1 up, 2 down 18 0.0746 1.34 -3.43 1.000 0.075
 All 3 units down 0 0.00470 0 -6.71 1.000 0.005

 Sabarigiri All 6 units up 300 0.7242 217.26 1.77 0.038 0.028
 5 up, 1 down 250 0.2412 60.30 -0.01 0.504 0.122
 4 up, 2 down 200 0.0323 6.46 -1.79 0.963 0.031
 3 up, 3 down 150 0.00220 0.330 -3.57 1.000 0.002
 2 up, 4 down 100 7.916E-05 0.00792 -5.35 1.000 0.000
 1 up, 5 down 50 1.363E-06 0.0000681 -7.14 1.000 0.000
 All 6  units down 0 7.811E-09 0 -8.92 1.000 0.000

Kuttiyadi All 3 units up 75 0.9956 74.67 0.69 0.245 0.244
 2 up, 1 down 50 0.00442 0.221 -0.30 0.618 0.003
 1 up, 2 down 25 6.109E-06 0.000153 -1.30 0.903 0.000
 All 3 units down 0 2.573E-09 0 -2.29 0.989 0.000

Idukki All 6 units up 780 0.8291 646.72 2.54 0.006 0.005
 5 up, 1 down 650 0.1586 103.07 0.42 0.337 0.053
 4 up, 2 down 520 0.0118 6.162 -1.70 0.955 0.011
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 3 up, 3 down 390 0.000446 0.174 -3.81 1.000 0.000
 2 up, 4 down 260 8.934E-06 0.002323 -5.93 1.000 0.000
 1 up, 5 down 130 9.084E-08 0.000012 -8.05 1.000 0.000
 All 6  units down 0 3.674E-10 0 -10.17 1.000 0.000

Idamalayar All 2 units up 75 0.9049 67.87 1.71 0.044 0.039
 1 up, 1 down 37.5 0.0927 3.48 -1.55 0.939 0.087
 All 2 units down 0 0.00234 0 -4.82 1.000 0.002

Table 4: Estimation of LOLP by Capacity States.

Capacity-outage probability and LOLP

The first step in the estimation of LOLP is to find out the available 
capacity state probabilities. Table 4 reports the distributed levels of 
available capacity with the corresponding probability of occurrence 
in accordance with the different combinations of up and down (due 
to forced outages) units of each of the 10 power stations, estimated 
as per the section on ‘Capacity outage distribution’. Note that the 
available capacity probabilities of all the states add up to unity. Given 
the availability and the nominal capacity of each unit, we can find the 
available capacity ( A

jk ) corresponding to each state.

Pallivasal, as shown in Table 4, has different levels of available 
capacity and availability in each of the possible capacity states due to 
different unit capacities − it has 3 units of 5 mw each and another 3 
of 7.5 mw each. Thus in the ‘1-unit-down’ capacity state, we have two 
levels of available capacity, depending on the capacity of the unit that 
goes down; if a 5 mw unit fails, the available capacity will be 32.5 mw 
and in the other case, 30 mw. Also note that in two capacity states (‘3 
units up’, and ‘2 units up’), the same level of available capacity (15 mw) 
is obtained; in the ‘3-units-up’ state, it may so happen that all the 3 units 
of 5 mw each may be in operation (with the other 3 units of 7.5 mw each 
in outage) and in the next ‘2-units-up’ state, 2 of the 3 units of 7.5 mw 
each may be in service. All other plants have same-capacity units and 
hence each capacity state has a unique level of available capacity and 
probability.

As is already evident, Kuttiadi has the highest availability (almost 
nearing unity) of maximum capacity (when all units are up). Only 
3 plants have an all-units-up availability of more than 90 per cent 
(Neriamangalam, Kuttiadi and Idamalayar), and 5 plants, of more than 
80 per cent (including Poringalkuth and Idukki). Sholayar is the only 
plant with an all-up availability of less than 60 per cent (Table 4).

The second step in the estimation of LOLP is to bring in the 
load duration curve (LDC) and derive from it the complementary 
distribution function of customers’ demand. This we accomplish by 
assuming that the customers’ daily maximum demand on the Kerala 

power system follows a normal distribution. Thus data on the daily 
maximum demand on each of the 10 power stations for three years 
from 2001-02 were averaged to avoid variability; and then the respective 
mean and standard deviation were estimated (Table 5). The maximum 
demand on Kuttiadi powerhouse is the most variable (coefficient of 
variation: 43.6%; due to seasonal operation necessitated by insufficient 
storage) and that on Idukki, the least (coefficient of variation: 9.8%).

Now using these parameters (the mean daily maximum demand 
and standard deviation), the expected available capacity ( A

jk ) in each 
possible state is transformed into its corresponding standard normal 
variate, zj, and the associated area under the normal curve, φ(zj), is 
found from a standard statistical table. Then 1 – φ(zj) represents the 
(cumulative) proportion of the outage duration, i.e., the proportion of 
time during which the load equals or exceeds the available capacity, 
determined by forced outages in a certain capacity state (Table 4). Thus, 
in the case of Panniar, about 16.9 percent of the time the maximum 
demand is likely to equal or exceed the available capacity when all the 
units are in operation; or, in other words, in the ‘all-units-up’ capacity 
state of Panniar, about 17 percent of the time a forced outage is likely 
to result in a loss of load. It increases to 84 percent in case any one unit 
falls down.

The proportion of non-supply duration during which loss of 
load is caused by different capacity outages in the case of all the 10 
power plants are given in the penultimate column of Table 4. This 
outage duration, when all the units are in operation, is negligible for 
only 6 plants – Pallivasal, Sengulam, Sholayar, Idukki, Sabarigiri and 
Idamalayar. About 25 percent of the time a loss of load is experienced in 
the case of Kuttiadi even when all the units are in operating condition. 
For Poringalkuthu it is about 19 percent, and for Neriamangalam and 
Panniar, about 18 and 17 percent respectively. Obviously, the factors 
determining the extent of the non-supply duration are the capacity-
demand gap and the variability (standard deviation) of the demand 
distribution. The smaller the capacity-demand gap, the larger will be 
the non-supply duration. A surplus capacity coupled with low demand 
variability or a deficit capacity with high demand variability results in 

 Daily maximum   Expected available
 demand (mw) Loss of load capacity

Plant Mean SD Probability Days/Year mw % to IC
Pallivasal 24.01 5.82 0.063 22.95 25.02 66.71
Sengulam 32.69 5.85 0.138 50.38 29.69 61.86

Neraiamangalam 39.32 6.34 0.238 86.83 41.76 92.79
Panniar 25.66 7.62 0.388 141.46 20.46 68.21

Poringalakuthu 27.44 5.22 0.271 98.75 27.56 86.11
Sholayar 36.77 5.48 0.282 103.07 30.02 55.60
Sabarigiri 261.23 31.60 0.183 66.71 217.26 72.42
Kuttiyadi 57.61 25.12 0.247 90.06 74.67 99.56

Idukki 624.12 61.39 0.070 25.49 646.72 82.91
Idamalayar 55.33 11.49 0.129 47.06 67.87 90.49

System 1184.19  0.20 73.28 1181.03 79.99

Table 5: Loss of Load Probability and Expected Available Capacity.
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a short non-supply duration. For Kuttiadi the major influencing factor 
is obviously the higher demand variability, whereas in the case of 
Neriamangalam and Poringalkuthu, the smaller capacity-demand gap 
appears to be the main culprit for larger non-supply duration. Both the 
factors seem to act on Panniar.

If one unit is thrown out of service, demand is likely to exceed for 
more than 50 per cent of the time in the case of as many as 7 plants 
and for more than 80 per cent of the time in the case of 3 plants – 
Neriamangalam, Panniar and Idamalayar. If the available capacity is 
only one-half of the installed capacity, then demand tends to exceed it 
for more than 80 – 90 per cent of the time in general.

LOLP

The expected loss of load in each capacity state is calculated by 
multiplying the outage duration by the respective availability in that 
state, given in the last column of Table 4. Summing this over all the 
capacity states of a plant yields the measure of LOLP; the estimates of 
LOLP, both as a proportion of time and in terms of number of days a 
year, for all the 10 plants are given in Table 5. For example, a LOLP of 
0.39 for Panniar means that on the whole about 39 percent of the time a 
loss of load is expected due to forced outages in the case of Panniar. On 
an annual basis, the expected loss of load is 141.5 days in one year, the 
expected accumulated amount of time during which demand equals 
or exceeds the available capacity causing a loss of load due to forced 
outages; this is the maximum among the 10 plants, followed a little afar 
by Sholayar (103 days), and Poringalkuthu (99 days). Evidently, the 
major determinants of this measure are the distribution of availability 
and non-supply duration in the capacity states. Thus, for example, in the 
case of Panniar, larger non-supply durations, coupled with the associated, 
not so small, availability of the respective capacity states contributed to 
its higher LOLP; that is, the relative contribution to LOLP of larger non-
supply duration of lower capacity states is significantly high in this case. 
On the other hand, for Kuttiadi, the relative contribution to LOLP of 
larger non-supply durations is negligibly smaller. The minimum LOLP 
is enjoyed by Pallivasal (23 days a year) and Idukki (25 days a year). A 
simple average of the LOLPs of all the 10 plants gives the system LOLP 
of 0.20 or 73.3 days a year with a coefficient of variation of 51.3 percent.

Table 5 also reports the expected available capacity of the 10 plants 
(when all units are up; also see column (5) of Table 4); as many as 5 
plants have available capacity less than 80 percent of the installed 
capacity: Pallivasal, Sengulam, Panniar, Sholayar and Sabarigiri. Note 

that in these cases, the available capacity is barely sufficient to meet 
the peak load. For the system as a whole, only about 80 percent of the 
capacity is expected to be available, again not up to the system peak 
load.

Conclusion
The vital nature of electric power, both to our economic and 

personal well being, has prompted the developed countries to place 
higher reliability standards on the performance of electricity supply. 
For example, most of the U.S. electric power utilities are designed on 
the technical assumption that the total accumulated time of supply 
interruptions (forced outages) should be no more than 1 day in 10 years 
[8]. This evidently appears to be a very strict design criterion even for 
developed countries. Some studies have in fact shown this 1-day-in-
10-years reliability target as economically unjustified, and that it could
reasonably be reduced without adversely affecting the economy [9].
Though the reliability performance of an under-developed electricity
supply system such as Kerala’s is by no means comparable with that
of the developed countries, the estimates of LOLP reported here seem
on all counts to be stupendously higher. That the expected cumulative
outage time of the power generating system in Kerala amounts to 73
days a year is a shocking revelation of the kind of service rendered.
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