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Abstract

Purpose: Enteroaggregative Escherichia coli (EAEC) is an emerging foodborne pathogen as a significant
diarrheal pathogen in multiple population groups. However, the associated phenotypic changes by which EAEC
bacteria survive acid conditions, as it passes through the human digestive track, is not completely understood.

Materials and methods: EAEC (T8) was grown in vitro by mimicking the in vivo pH conditions found in human
stomach and intestine.

Results: The lowest pH where EAEC (T8) was able to grow was pH 4.0 in Luria Bertani (LB) media, albeit with a
lower growth rate and the bacteria reached log phase in approximately 7h. However, there was no significant
difference in the growth pattern at mild acidic pH 5.5. In addition, EAEC (T8) grown at pH 4.0, demonstrated an
absence of biofilm formation, clump or pellicle formation and umbrella shaped hemagglutination pattern and within
3h rod-shaped bacteria appeared as coccoid or spheroid forms with average dimensions approximately half the size
of bacteria grown at control pH conditions.

Conclusions: Taken together, our data suggest that the changes in the associated phenotypic characters might
relate to the adaptation and survival of EAEC under acid stress conditions.
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Abbreviations
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Fimbriae; AR: Acid Resistance; DMEM: Dulbecco’s Modified Eagle’s
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Clinical Isolate of EAEC; EDTA: Ethylene Diamine Tetraacetic Acid;
EHEC: Enterohemorrhagic Escherichia coli; HA: Hemagglutination;
FCS: Fetal Calf Serum; HEp-2: Human Epithelial Pharyngeal Cell Line;
LA: Luria Agar; LB: Luria Bertani; M9: Minimal media; MRHA:
Mannose Resistant Hemagglutination; OMP: Outer Membrane
Protein; PBS: Phosphate Buffered Saline; PI: Propidium Iodide

Introduction
Enteroaggregative E. coli (EAEC) is an important diarrheagenic E.

coli, which is increasingly recognized as an emerging pathotype
responsible for acute and persistent diarrhea in both developing and
developed countries [1-4]. An increasing number of studies have
implicated EAEC in endemic diarrhea of infants in both industrialized
and developing countries [1], in persistent diarrhea among human
immunodeficiency virus/acquired immunodeficiency syndrome
patients (HIV) [5]and in traveler’s diarrhea [6]. It has been
demonstrated that EAEC can induce growth impairment and
malnutrition among children even without diarrhea. The long-term

effects of this pathogen in developing countries may be more
threatening than the short-term self-limiting diarrhea.

A three-stage model has been proposed for its pathogenesis: [1]
characteristic stacked brick-like aggregative adherence (AA) to the
intestinal mucosa, HEp-2 cells mediated by 60 MDa plasmid (pAA),
also encoding aggregative adherence fimbriae (AAF) for AA
phenotype [7-9], hemagglutination (HA) of human erythrocytes,
clump and biofilm formation [10-12], [2] increased production and
deposition of mucus biofilm, which leads to mucoid stools,
malnutrition and persistent colonization [13] and [3] induction of
mucosal inflammation with cytokine release, mucosal toxicity and
intestinal fluid secretion by enterotoxins and cause destruction of
enterocytes [14-18].

Foodborne enteric bacteria including E. coli, E. faecalis, S.
typhimurium and H. pylori prefer to live and grow at neutral pH [19].
The pathogenic EAEC has the important property of association with
oral-fecal routes of transmission similar to other food-borne
pathogens. However, before colonizing the epithelial cells of the
intestine, these bacteria pass through the acidic environment of the
stomach where the luminal pH is in the range of 1.5-3.5 [20]. Once
ingested, these pathogens endure a variety of exposures (acids) in the
intestine by colonic microflora. The physiologically triggered pH-
homeostasis mechanisms include the use of H+ antiport system to
maintain internal pH (pHi) at a relatively constant level (pH ~7.6) over
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a wide range of external pH (pHo) conditions varying from pH 4.3-9.2.
Acid dependency of gastric juice is the primary bactericidal barrier
against enteric pathogens. The mechanism employed by EAEC to sense
and respond to acidic pH has not been elucidated so far. Therefore, an
attempt has been made in EAEC to study the effect of variable pH
conditions (acid stress), simulating natural route of infection (pH
1.5-5.5). This work will enable us to identify the associated phenotypic
changes responsible for its adaptation and survival under acid stress
conditions in order to correlate with EAEC-induced pathogenesis.

Materials and Methods

Bacterial strain and growth conditions
EAEC (T8) strain was procured from National Institute of Cholera

and Enteric Diseases (NICED), Kolkata. It was characterized both
biochemically and phenotypically (clump formation, hemagglutination
assay and HEp-2 adherence assay) for the study. EAEC (T8) was grown
on Luria Agar (LA; Sigma-Aldrich, USA) plates for 16h at 37°C.

Acid stress (Low pH): In order to study growth under acid stress
(inorganic) conditions [21], the pH of minimal media (M9) was
adjusted with 1 N HCl to variable pH (3.0-5.5). EAEC (T8) was grown
in shaker (Innova, 4230 Refrigerated Incubator shaker, New Brunswick
Scientific Edison, NJ USA) at 37°C with shaking (215 rpm).

Growth curve analysis: For growth curve analysis, an inoculation or
starter culture is used. Bacterial cultures should always be grown from
a single colony picked from a freshly streaked selective plate.
Subculturing directly from glycerol stocks, agar stabs and liquid
cultures and inoculation from plates that have been stored for a long
time is a poor microbiological practice. Briefly, a single colony of
EAEC (T8) was inoculated in 10 ml of LB broth (pH 7.4) and was
allowed to grow overnight at 37°C with shaking at 215 rpm. Using a
flask with a volume of at least four times greater than the volume of
medium, the starter culture (from 10 ml) was diluted 1:500 into the
pre-warmed media of M9 (variable pH) (400ml) and incubated under
similar conditions (37°C; 215 rpm). Every hour, 1 ml samples were
recorded and absorbance (OD 600 nm) was measured in a
spectrophotometer (Kontron 860 Spectrophotometer, Netherlands) till
OD 600 nm reaches approximately 2.0.

Cell line and cell culture: The HEp-2 cell line (source: human
pharynx) was obtained from national centre for cell sciences (NCCS),
Pune, India. The HEp-2 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (pH 7.4) and maintained at 37°C with
humidified 5% CO2 in 25 cm2 tissue culture flasks (Greiner, USA) with
antibiotics Penicillin G (100 U/ml) and Streptomycin (100 μg/ml). As a
routine cell passage, 10% fetal calf serum (FCS; Sigma-Aldrich) was
used.

HEp-2 adherence assay
HEp-2 adherence assay for EAEC (T8) characterization was done by

the method described by [22] with some modifications. The effect of
media pH on the adherence of EAEC (T8) infected HEp-2 cells (in
vitro) was also studied. Cells were grown to 50% to 70% confluency as
monolayers in a 6-well flat-bottom tissue culture plate. The HEp-2 cells
were washed three times with phosphate buffer saline (PBS) and 2 ml
of fresh DMEM media set with 1 N HCl with desired pH (filter
sterilized) was added along with 2% FCS and 0.5% D-mannose without
antibiotics to the 6-well plate. To this, EAEC (T8) grown overnight at
37°C (215 rpm) was inoculated (25 μl) in the plate and incubated at

37°C overnight with 5% CO2. Following incubation, the cells were
washed three times with PBS, fixed with 100% methanol and stained
with 2.5% Giemsa for 15 min. The adherence patterns were examined
under 40-X magnification and finally photographed at 100-X
magnification with digital camera (Carl Zeiss, Sony, Japan) with oil
immersion in a light microscope (Leica MPS32, USA).

Propidium iodide (PI) exclusion assay
The adherent cell survival at various pH was also determined (in

vitro) on HEp-2 cells. For this, FACS assay was carried out with slight
modifications[23]. After incubation of HEp-2 cells with EAEC (T8),
cells were trypsinized and removed with PBS and EDTA (0.02%). The
cells were harvested by centrifugation (4000 rpm for 20 min) and
washed twice with PBS (pH 7.4). Finally, the pellet was resuspended in
PBS containing PI and RNase A in dark for 2h at 4°C. For the detection
of cell survival, 1-X FACS sheath buffer was added for sample analysis
(Becton Dickinson, CA, USA, FACS Calibur equipped with 15 MW,
488 nm air cooled argon laser) using Cell Quest software. DNA of
HEp-2 cells cultured in DMEM media (pH 4.0 and 7.4) for 3h
incubation was extracted to examine any DNA fragmentation. The
cells with degraded DNA incorporate less PI than the cells with intact
DNA.

Clump formation test: The clump formation test, which is specific
for EAEC (T8) was performed as described by[24]. Briefly, EAEC (T8)
was subcultured on LA and then further inoculated (1:500) in 5 ml of
each of LB in duplicate tubes. One set of tubes was incubated in the
stationary position and the other set in an orbital shaker incubator at
37°C. The formation of a clump or a pellicle as a ring at the side of the
test tube at the end of incubation (20h) was regarded as a positive
result.

Hemagglutination assay
Hemagglutination (HA) was performed with human type A

erythrocytes as described by [25] with minor modifications. EAEC
(T8) grown overnight in tryptone soya broth under static conditions
was pelleted, washed and resuspended in PBS. Twenty five microliters
of the suspension was mixed briefly with an equal volume of 3% (v/v)
washed erythrocyte suspension in PBS containing 1% D-mannose and
was allowed to stand at 4°C to 8°C for 30 min. HA was scored either as
positive or negative for umbrella and button formation respectively.

Biofilm assay
(i) Quantitative method: To assess biofilm formation quantitatively

[26], an overnight culture of EAEC (T8) in LB was subcultured (1:500)
in prewarmed DMEM containing 0.45% glucose in 96-well flat-bottom
microtiter polystyrene plates (Costar 3595; Corning Inc., Corning,
NY). Plates were incubated at 37°C for 24h and the culture medium
was then decanted and the plates were washed twice with 200 μl of
sterile double distilled water (ddw) to remove the loosely and unbound
cells. The adherent bacteria were stained with 50 μl of 0.1% crystal
violet for 15 min and then rinsed twice with ddw (200 μl). The bound
dye was extracted from the stained cells by washing with 99% ethanol
(200 μl). The biofilm was quantified in duplicate for each sample and
absorbance (OD 570 nm) of the solution was measured in an enzyme-
linked immunosorbent assay reader (ELISA reader, Bio-Rad).

(ii) Microscopic method: Microtitre plate assays were performed
as described by [27]. To assess biofilm formation, an overnight culture
of EAEC (T8) in LB was subcultured (1:500) in prewarmed high
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glucose of DMEM containing 0.45% glucose in 6-well flat-bottom
microtiter polystyrene plates. Plates were incubated at 37°C for 24h
and culture medium was then decanted and the plates were washed
twice with 200 μl of sterile ddw to remove the loosely and unbound
cells. The adherent bacteria were stained with 50 μl of 0.1% crystal
violet for 15 min and were rinsed twice with 200 μl of water. The
biofilm formed on the plate was finally photographed at 100-X
magnification with digital camera (Carl Zeiss, Sony, Japan) with oil
immersion in a light microscope (Leica MPS32, USA).

Transmission electron microscopy
For electron microscopy, modified procedure of [28] was followed.

EAEC (T8)-infected HEp-2 cells after 3h of incubation at pH 4.0 and
control (7.4) were trypsinized and centrifuged at (4000 rpm for 20
min) and were washed in 3% buffered glutaraldehyde (made in
Sorenson’s buffer, pH 7.2). To the pellet, after low speed centrifugation,
1 ml of 3% glutaraldehyde was added and centrifuged (4000 rpm for 10
min). The supernatant was decanted and the cells were fixed by adding
3% buffered glutaraldehyde for 4h and the pellet was washed with the
same buffer. The pellet was post fixed in 1% osmium tetraoxide,
embedded in 1% agar. The embedded sample was dehydrated in
graded series of alcohol and finally embedded in Araldite resin. It was
then sectioned and post stained with uranyl acetate and lead. The
samples were viewed with a transmission electron microscope (Zeiss,
906, Germany) to determine the morphological changes, if any
associated with low pH.

Results

Acid stress suppresses growth of EAEC (T8)
The growth pattern of EAEC (T8) was studied in vitro by adjusting

M9 as well as LB media pH values (one or two points) on either side of
the mean gastric pH with concentrated HCl, ranging from pH 3.0-7.4.
At pH 4.0 in LB media EAEC (T8) demonstrated viable growth [29].
The minimum lowest pH in M9 media where EAEC (T8) was able to
grow linearly was pH 4.5. EAEC (T8) demonstrated similar growth
pattern at pH 4.5 as well as 5.5, which is the mild acidic pH
(mimicking intestinal pH) compared to pH 7.4 (control) in M9 media
(Figure 1A). The log phase at pH 4.5 and 5.5 was attained after 7 and
6h respectively. However, the log phase growth at control pH 7.4 was
achieved in approximately 4h (Figure 1A).

It is known that decarboxylases play an important role in enterics
during acid stress, however, their expression is induced only in the
presence of specific amino acids Therefore, the growth pattern of
EAEC (T8) was studied at various pH in M9 media with supplements
lysine and arginine (0.12%). We demonstrate that the arginine and
lysine supplements in M9 media did not significantly alter the growth
rate and EAEC (T8) was able to grow up to pH 4.5. However, at pH 3.0
and 4.0 in M9 media with either of the supplements, EAEC (T8) did
not grow (Figure 1B and 1C). The log phase in M9 media with lysine
and arginine supplements at pH 4.5 reached in 7h and 6h, respectively.
EAEC (T8) at pH 5.5 in minimal media reached log phase in 5h with
lysine (Figure 1B) and 4h with arginine supplements (Figure 1C).
However, at pH 7.4 (control) doubling time was same of EAEC (T8)
with the supplements (Figure 1B and 1C). However, the minimum
growth pH 4.0 was observed in LB media where EAEC (T8)
demonstrates viability was taken for the phenotypic characterization.

Aggregative adherence is a characteristic property of EAEC[30].
Adherence to host HEp-2 cells and percentage survival in vitro was
determined at pH 4.0 and 7.4 (control) by FACS analysis. The survival
rate of EAEC (T8)-infected with HEp-2 cells at pH 7.4 was
approximately 84% (Figure 1D; right panel), whereas at pH 4.0 the
survival rate 54% (Figure 1D; left panel). The possibility exists that the
reduction in cell survival number could be due to decreased
proliferation or increased cell death. Further, DNA was prepared from
EAEC (T8)-infected HEp-2 cells at both pH 4.0 and 7.4. At pH 4.0,
DNA demonstrated smear characteristics (data not shown).

Figure 1: Growth analysis of EAEC (T8) under acid stress. EAEC
(T8) grown overnight at pH 7.4 in LB was subcultured (1:500) in
minimal media (M9) with different pH as described in
experimental Procedures. After every 1h, cell count was measured
at 600 nm in spectrophotometer at different pH. (A) M9 media
only. (B) M9 media with supplement lysine (0.12%). (C) M9 media
with supplement arginine (0.12%). (D) FACS analysis for the
adherent cell survival at various pH (in vitro) on HEp-2 cells by
propidium iodide exclusion assay. Data represent the mean ± S.D.
of three experiments.

Loss of clump formation of EAEC (T8)
We demonstrate that clump formation appeared as a thin ring

varying in breadth from 0.4 cm to 0.8 cm at the top of the liquid
culture at pH 7.4 after 20h of incubation in LB and remained intact to
the test tube as a ring under both static as well as shaking conditions
(Figure 2A; right panel). However, EAEC (T8) grown at pH 4.0 did not
produce clumps at 37°C even under static conditions (Figure 2A; left
panel).

Loss of hemagglutination of EAEC (T8)
At pH 7.4 in EAEC (T8), the umbrella shaped hemagglutination was

observed and even at the highest dilution (10-4), hemagglutination
was intact (Figure 2B; bottom)]. In contrast, button-shaped
hemagglutination was observed in EAEC (T8) at pH 4.0 (Figure 2B;
top).

Loss of biofilm formation of EAEC (T8)
Biofilm formation at pH 4.0 was determined both quantitatively and

microscopically and was found to be significantly less than at pH 7.4
(Figure 2C, left panel). The quantitative biofilm score (OD 570 nm)
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was ≤0.1 at pH 4.0 in EAEC (T8). Therefore, even after 12h of
incubation, the score was only 0.112. However, at pH 7.4, the biofilm
formation was found to be at least four-fold more than the pH 4.0,
with a score of 0.449 (Table 1). Further, on microscopic image analysis,
the biofilm score was negligible at pH 4.0 (<+1) even after 12h of
incubation (Figure 2D; top) However, in control (pH 7.4), EAEC (T8)
demonstrated a linear increase in the rate of biofilm formation, with a
score of +1, +2 and +3 respectively after 3, 6 and 12h of growth (Figure
2D, bottom).

Figure 2 (A-D): Phenotypic characterization of EAEC (T8) under
acid stress. (A) Clump or a pellicle formation. (B)
Hemagglutination (HA) assay. (C) Biofilm formation quantitatively
in 96-well flat-bottom microtiter polystyrene plates at absorbance
(OD 570 nm). (D) Biofilm formation at 100-X magnification with
digital camera in a light microscope.

pH Biofilm score at respective time intervals*

0h 3h 6h 12h

4.0 0.010 0.011 0.023 0.112

7.4 0.014 0.116 0.229 0.449

*Quantitative biofilm assay at OD 570 nm at pH 4.0 and 7.4

Table 1: EAEC losses its ability to form biofilm at low pH.

Loss of typical aggregative adherence pattern of EAEC (T8)
During acid stress or under low pH of 4.0, the phenotypic properties

of EAEC (T8) bacteria were altered. Diffusely adherent pattern was
observed under acid stress pH 4.0 (Figure 2E; left panel) in contrast to
the typical "stacked brick" aggregative adherence in control pH 7.4
(Figure 2E; right panel).

Figure 2 (E-F): Phenotypic characterization of EAEC (T8) under
acid stress. (E) HEp-2 adherence assay performed at different pH
on the adherence of EAEC (T8) infected HEp-2 cells (in vitro). The
adherence patterns were photographed at 100-X magnification with
digital camera in a light microscope. (F) The morphological changes
associated with acid stress were analyzed by electron microscope.
Data are a representative experiment performed 3 times with
similar results with mean ± S.D.

Loss of characteristic rod-shape of EAEC (T8)
At pH 7.4 (control), EAEC (T8) bacteria exhibited characteristic rod

shapes with average dimensions of 4.5 mm × 0.8 mm and even after 3h
of incubation with HEp-2 cells, there was no alteration in the cell
morphology. However, within 3h of incubation at pH 4.0 in DMEM
media, rod-shaped cells appeared as coccoid or spheroid forms with
average dimensions of 2.5 mm × 1.4 mm (Figure 2F; left panel). These
acid stressed cells became morphologically shorter and reduced
approximately to half of the normal sized cells (Figure 2F; right panel).

Discussion
Enteroaggregative Escherichia coli (EAEC), a diarrheagenic E. coli

is implicated in persistent pediatric diarrhea in both developing and
industrialized countries (REF). The pathogenesis of EAEC infection is
not well understood due to the genetic and phenotypic heterogeneity.
Similar to any other enteric bacteria, EAEC is also exposed to low pH
conditions during their migration from stomach (pH 1.5) to intestine
(pH 5.5). Acid resistance (AR) could be an indicator of virulence as
only acid resistant strains are able to survive the human stomach
passage and causes infection (REF). Therefore, in this study we looked
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the effect of changing pH on EAEC and its ability to survive, adhere
and infect.

In order to monitor the AR in the clinical isolate EAEC (T8),
growth pattern was studied in various M9 as well as LB media. The
acid tolerance of EAEC (T8) was found to be media-dependent. In the
present study, EAEC (T8) demonstrated very similar growth pattern at
acidic pH 4.5 in both M9 and M9 with amino acid supplements
(Figure 1A-1C). However we have demonstrated that in LB broth, the
lowest pH at which EAEC (T8) demonstrated linear growth was pH
4.0 [29]. In contrast, at pH 3.0 even after 3 days in the shaker (215
rpm), there was no growth (data not shown). The growth at pH 4.0 in
LB was almost three fold slower than the control pH (7.4) [29]. EAEC
(T8) was sensitive to killing in acidified media at pH 3.0 in LB while in
minimal (M9) media at pH 4.0. It might be correlated to the earlier
findings where LB media reported to be a rich source for culturing of
enteric bacteria [31,32] while in other media, they failed to initiate
rapid growth. The capacity to invoke acid tolerance response (ATR) in
S. mutans on teeth ensures increased survival at pH 4.3 [33]. Similar
results demonstrated that in defined medium (Sauton), the growth of
M. tuberculosis was completely absent at pH 6.0 [34].

The disparity in results is not known, however the possibility might
exist that is due to various media used since the sensitivity to extreme
pH ranges can be masked in complex media. However, EAEC
encounters very low pH (1.5) in stomach during ingestion, which
might be correlated well with the previous reports that some strains of
E. coli are able to survive at pH values as low as 2.5, however, it does
not grow at pH values less than 4.4 [35,36]. Growth inhibition occurs
as a result of both lower pHi and the ability of anions to inhibit
metabolism. E. faecalis demonstrated growth within a range of pHo
4.5-9.5[37]. N. gonorrhoeae had survival peak at pH 4.6-4.7 [38] and Y.
enterocolitica demonstrate survival peak at pH 4.5[39].
Enterohemorrhagic E. coli (EHEC) can survive pH 2.0 for 5h [40]
whereas nontoxigenic strain can survive pH 3.0 only [41]. It has been
demonstrated that these bacteria cannot survive under extreme acidic
conditions and therefore, food could provide a protective effect to acid-
sensitive barrier by facilitating their survival under extreme acidic
conditions. During infection in stomach, the bacteria is already in
stationary phase (non-dividing) and it is well reported that the survival
potential of stationary phase or acid-adapted cells is greater than that
of exponentially growing cells over the initial period of acid challenge
[41]. So, once induced, the AR system will remain active until cells
reenter log phase [42]. Therefore, the growth in vivo at pH 2.4 might
compensate the survival of EAEC (T8) at pH 4.0 in vitro. Thus, the
bacteria might be adapted when it encounters low pH in stomach.

In our study, the phenotypic properties of EAEC including typical
aggregative adherence (AAt), hemagglutination (HA) and biofilm
formation were not observed at pH 4.0 (Figure 2B-2E). As it is well
known that EAEC characterized by “stacked-brick” adherence
phenotype, which is mediated by aggregative adherence fimbriae
(AAFs) encoded by 60 MDa megaplasmid [30]. The transfer of the
megaplasmid from EAEC to a laboratory E. coli strain transferred the
property of aggregative adherence [43]. One study reported that a
EHEC strain of serotype O103:H2 demonstrated loss of this
megaplasmid coincided with reduced adhesion to cultured epithelial
cells [44] while the other EHEC strain of serotype O5:H did not
demonstrate any effect on adhesion. The invasion plasmid antigens
(Ipa proteins) in Shigella, required for invasion of the colonic and
rectal epithelial cells [45] were downregulated at acidic pH, which
might explain that Shigella affects the lower gut where cellular invasion

occurs and the acidic environment of the stomach prevents expression
of such virulence genes [46]. CadA, a lysine decarboxylase modulates
expression of the intimin, an outer membrane adhesin involved in
pathogenesis; negatively regulate virulence in several enteric pathogens
and in EHEC strains. An inactivated cadA in EHEC did not possess
lysine decarboxylation activity and was hyperadherent to tissue-
cultured cells by nearly twofold [47]. Disruption of the intimin-
encoding EAE gene in the cadA mutant significantly reduced its
adherence to tissue-cultured cells [47]. Two putative adhesins, flagella
and F9 fimbria, were upregulated in the cadA mutant, suggestive of
their association with adherence in the absence of the Cad regulatory
mechanism [47]. In the present study, the loss of AAt phenotype of
EAEC (T8) at pH 4.0 might be also correlated with the downregulation
of genes encoded by megaplasmid. Our results demonstrated DNA
smearing of EAEC (T8) when infected with HEp-2 cells at pH 4.0 is
consistent with the earlier reports where acid stress induced DNA
damage [48].

The AAt pattern was observed of EAEC (T8) at control pH (7.4),
however, at pH 4.0, it demonstrates diffuse adherence (DA) (Figure
2E). The expression of 34 kDa OMP was high and 41 kDa and 48 kDa
OMP were newly synthesized at pH 4.0 in EAEC (T8), which might be
involved in DA adherence [29]. A 30 kDa to 43 kDa OMP have role in
aggregative adherence and hemagglutination [49]. The fimbrial
adhesin (18 kDa) from an Indian strain of EAEC demonstrated MRHA
and HEp-2 cell adherence [50]. Moreover, vaccines inducing anti-
adhesin immunity to inhibit bacterial adherence of K88 fimbrial ETEC
to porcine small intestinal enterocytes [51]. It is well reported that a
100 kDa OMP [52] and fibrillar adhesin [53] are associated with the
DA phenotype pattern in EPEC. These findings correlate well with the
altered OMP expression and some of the OMP might be
downregulated at acidic pH in EAEC (T8), might play role in EAEC
(T8) survival [29]. Therefore, acidic exposure in the stomach might
create a new phenotype overall, which causes infection only in the
intestine after adapting and surviving at low pH of stomach.

Besides, the aggregative adherence, the clump or scum formation
was also completely abolished in EAEC (T8) at pH 4.0 (Figure 2A).
These results were similar to the earlier findings where 100%
correlation between scum formation and the aggregative adherence
pattern has been reported in EAEC [10]. The most dominant AAt
patterns were mostly associated with the AAF-related gene sequences
or their regulator, the aggR gene. It is reported that aggR-positive
EAEC strains with the AAt pattern demonstrated significantly stronger
biofilm formation (OD570 0.72) than did those with the atypical AA
pattern (OD570 0.36) [26]. These results are consistent with our
findings that AAt pattern (pH 7.4) demonstrated high score (OD570
0.72) for biofilm formation than the DA pattern at pH 4.0 (OD570
0.36). Thus, EAEC (T8) exhibiting other types of adherence, might be
devoid of any of the AAF-related genes.

In the present study, the cell morphology by transmission electron
microscopy (TEM) demonstrated that the flagellum was intact in
EAEC (T8) cell, however, the cell size was reduced to almost half at low
pH (4.0) (Figure 2F). V. parahaemolyticus are normally rod shaped
cells but appeared as irregular shapes and finally became coccoid or
spheroid forms and reduced half in a week during starvation [54] for 1
week and were even without a flagellum. It has been proposed that cell
size reduction during starvation is a survival strategy for minimizing
cell maintenance requirements and enhancing substrate uptake due to
a high surface-volume ratio[55].
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The overall complexity of the stress response in enteric bacteria is
probably greatly underestimated, since intracellular growth produces
global patterns substantially various from those predicted by stress
experiments under defined conditions [56]. It appears that there are
indeed numerous acid survival mechanisms; some have long-term
dramatic effects while others have more subtle yet significant
consequences. We observed changes in the morphological features
might help EAEC (T8) to survive under acidic conditions in the
stomach. Our previous studies has demonstrated that stationary phase
gene regulator rpoS plays very important role in the regulation of acid
shock proteins induced at low pH 4.0 as the rpoS mutant didn’t grow at
pH 4.0 [29]. The apparent relevance of growth conditions to the
changes in the phenotypic characteristics of EAEC (T8) provided us
the information regarding the effect of environmental stresses on the
virulence of EAEC. Therefore, the altered phenotypic changes might
hold well in adaptation and protection of EAEC (T8) through low pH
in stomach. Further studies on the effect of bile salts and pancreatic
juices found in small intestine on EAEC (T8) virulence would shed
more light on EAEC survival.

Conclusions
EAEC (T8) demonstrated media-dependent growth rate. The

reduction in cell survival of EAEC (T8) grown in vitro with HEp-2
cells at pH 4.0 could be due to decreased proliferation or increased cell
death, which could be correlated well with the possibility of infection
in intestine (in vivo) and not in stomach (pH 1.5).

Figure 3: Schematic presentation of loss of phenotypic characters in
EAEC (T8) under acid stress. EAEC (T8) demonstrated media-
dependent growth rate. The reduction in cell survival of EAEC (T8)
grown in vitro with HEp-2 cells at pH 4.0 could be due to decreased
proliferation or increased cell death. EAEC (T8) demonstrated
changes in its phenotypic characters including lack of the clump
formation and hemagglutination during acid stress (pH 4.0). The
biofilm formation at pH 4.0 was negligible, which is a deviation
from the three-stage model proposed for EAEC pathogenesis. The
lack of typical aggregative adherence pattern at pH 4.0 of EAEC
(T8) might be related with the changes in cell morphology.

In addition, EAEC (T8) also demonstrated changes in its
phenotypic characters during acid stress (pH 4.0), which were evident
by lack of the clump formation and hemagglutination. The biofilm
formation at pH 4.0 was negligible, which is a deviation from the
three-stage model proposed for EAEC pathogenesis. The lack of typical

aggregative adherence pattern at pH 4.0 of EAEC (T8) might be related
with the changes in cell morphology (Figure 3).
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