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Introduction 
Preterm Premature Rupture of the fetal Membranes (PPROM) is a 

reproductive system disorder, which is the major cause of prematurity 
[1]. Several major etiologic factors have been linked to PPROM, one 
of which is the weakness of the amniochorion Extra Cellular Matrix 
(ECM) caused by collagen degradation. The omnipresent ubiquitin 
proteasome system (UPS) is an ATP-dependent enzymatic system 
that targets substrate proteins, which were tagged with an isopeptide 
chain composed of covalently linked molecules of ubiquitin, for 
degradation by the 26S proteasome [2]. This system is deeply involved 
in the regulation of most basic cellular processes, and deregulation of 
UPS can results in certain kinds of human diseases. Moreover, UPS has 
been demonstrated to exist extracellularly and regulate the degradation 
of extracellular proteins [3]. However, there has been no previous 
effort made to explore the possible pathogenic role of UPS in PPROM. 
Here, we reviewed the current studies on UPS and PPROM, especially 
the possible mechanism of UPS regulating collagens of the ECM in 
PPROM.

Ubiquitin proteasome system
Components of UPS: The UPS is the principal pathway for 

clearing short-lived, damaged, and misfolded proteins in the nucleus 
and cytoplasm [4]. This system contained two separate and consecutive 
steps: ubiquitylation, which involved the process ubiquitins were 
covalently attached to substrate protein, and proteasomal degradation, 
in which the ubiquitin-labeled proteins were degraded by proteasome 
[2]. Ubiquitin is a highly conserved protein with 76 amino acids, which 
was discovered as a macromolecular tag [5]. In mammals, ubiquitin is 
encoded by four different genes (UBB, UBC, UBA52, and UBA80) that 
are tightly regulated by various transcriptional and posttranslational 
mechanisms to maintain adequate free ubiquitin concentrations in cells 
[6]. In the ubiquitylation process, ubiquitins are attached to protein, 
which needs three steps: the ATP-dependent activation of ubiquitin 
by a ubiquitin-activating enzyme (E1), transfer of activated ubiquitin 
to a ubiquitin-conjugating enzyme (E2) and then formation of an 
isopeptide bond between ubiquitin and the substrate protein catalysed 

by a ubiquitin-ligase (E3) [7]. The process is repeated several times with 
the aim to build up a poly-ubiquitin chain by interubiquitin linkages. 
E1 ubiquitin-activating enzymes can form a high-energy thioester 
bond between the C-terminus of ubiquitin and cysteine residues in 
E1. Two E1 enzymes (UBA1 and UBA6) have been found to initiate 
ubiquitin conjugation in the system [8]. E2 enzymes are responsible for 
transferring the activated ubiquitin to the E3-substrate complex. In the 
human genome, E2 enzymes were encoded by about 40 genes, which 
are the main determinants of poly ubiquitin chain linkage specificity 
and the chain length on target substrates [9]. There are 600 E3 
ubiquitin-ligases encoded in the human genome [10]. The abundance 
and specificity of the currently identified E3 ligases suggest that E3 
enzymes determine the substrate selectivity of the UPS through specific 
mechanisms recognizing their target substrates [11,12]. Ubiquitylation 
can also be reversed by de-ubiquitylating enzymes (DUBs) that remove 
ubiquitin from proteins and disassemble multiubiquitin chains. The 
activity of DUBs provides an additional level of regulatory control and 
maintains a sufficient pool of free ubiquitin molecules in the cell by 
removing the ubiquitin tag from degraded proteins [13].

In the proteasomal degradation process, proteins modified by 
polyubiquitin chains are bound and cleaved into short peptides by 
the 26S proteasome. The 26S proteasome is a 2-MDa ATP-dependent 
proteolytic complex that degrades ubiquitin conjugates [14,15]. It 
contains 31 principal subunits arranged into two subcomplexes, the 
core catalytic 20S proteasome (CP) and the 19S regulatory particle (RP) 
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[16,17]. CP is a broad spectrum of ATP- and ubiquitin-independent 
protease formed by 28 subunits arranged in four heptameric stacked 
rings, with peptidase activity localized to the inner β rings [18]. RP is 
important for regulating the activity of the 26S proteasome complex 
[19]. It associates with one or both ends of the CP and confers both 
ATP dependence and specificity for Lys48-linked polyubiquitin chains 
to the particle [14,15]. The RP is composed of 17 core subunits that can 
be further divided into the Lid and Base subcomplexes [20]. The Lid 
contains the remaining non-ATPase subunits (RPN3, 5-9, and 11-12) 
resembling the COP9 signalosome [21]. The Base contains six AAA-
type ATPases (RPT1-6) and three non-ATPase subunits (RPN1, 2 and 
10), functioning as a molecular motor unfolding and translocating the 
protein substrate [22]. When a protein is modified by a polyubiquitin 
chain of at least four Lys48-linked ubiquitins, it can bind either directly 
to intrinsic ubiquitin receptors in the 19S complex or to adaptor 
proteins that link it to the 19S complex [23]. Following binding to the 
proteasome, the protein is unfolded by ATPase and removed from 
the polyubiquitin chain by proteasome-associated DUBs. Then the 
unfolded protein is translocated into the central proteolytic chamber 
of the 20S subunit, where it is cleaved into short peptides [23]. Through 
the degradation mechanism above, UPS could be involved in various 
cellular processes, such as regulation of gene expression [24], protein 
cell cycle control [25], regulation of signal transduction [26,27], 
and mitochondrial intermembrane function [28]. Furthermore, 
dysfunction of UPS have been associated with many human complex 
diseases, such as different cancers [29,30], cardiovascular disease [31], 
neurodegenerative disease [32-34], and kidney disease [35]. The more 
recent studies even found that UPS were implicated in aging [36,37].

Extracellular UPS: It is known that the major part of UPS is 
located within the cytoplasmic and nuclear compartments. Therefore, 
the UPS is generally considered as the major pathway for intracellular 
protein degradation. However, increasing evidence has supported that 
elements of UPS could exist extracellularly, which may suggest the novel 
extracellular function of UPS (in organisms) [3]. The core catalytic 20S 
proteasome has been found to be attached to the cell plasma membrane 
[38], and certain investigations suggest that they may be released 
into the extracellular medium, such as the alveolar lining fluid [39], 
epididymal fluid [40], cerebrospinal fluid [41], and possibly during 
the acrosome reaction [42]. Proteasomes have also been detected 
in the alveolar lining fluid as well as human blood plasma and have 
been designated as circulating proteasomes [39,43]. The concentration 
of circulating proteasomes has been found to be elevated in patients 
suffering from autoimmune diseases, malignant myeloproliferative 
syndromes, multiple myeloma, acute and chronic lymphatic leukaemia, 
solid tumour, sepsis or trauma [43-46]. Moreover, it was demonstrated 
that enzymatic activity of the 20S subunit of proteasomes was positive 
in cerebrospinal fluid of healthy individuals by the fluorescent 
substrate cleavage [41]. Except for proteasomes, ubiquitin has also 
been discovered as a normal component in human blood, seminal 
plasma and even ovarian follicular fluid [3]. Increased systemic 
levels of extracellular ubiquitin have also been observed in several 
very different diseases like alcohol-induced liver cirrhosis and brain 
atrophy, type 2 diabetes, chronic hemodialysis, hairy cell leukaemia, 
sepsis and severe trauma [47-52]. The available evidence has indicated 
that these extracellular components could compose the extracellular 
UPS that could be involved in the regulation of extracellular proteins. 
For example, several researchers have found that the extracellular UPS 
could control fertilization through ubiquitination and degradation of 
the vitelline coat during human and animal fertilization [53,54]. 

PPROM 
Histological structure of fetal membrane

Human fetal membrane, lining the intrauterine cavity, consists of 
amnion and chorion connected by an ECM [55]. This membranous 
layer provides the sac in which fetal growth takes place, and grows as 
gestation progresses to accommodate the increasing volume of the 
fetus and amniotic fluid [56]. The amniotic epithelium is the innermost 
layer, which directly contacts the amniotic fluid. The amnion consists 
of both epithelial and mesenchymal components [56]. The columnar 
or cuboidal epithelial-cell layer lines the amniotic cavity. The chorion 
is formed from the implanted blastocyst at the pole towards the 
endometrial cavity that is covered by chorion frondosum and decidua 
capularis. The blood supply to this area becomes restricted and villi 
degenerate, forming an avascular chorion. Amnion fuses with the 
mesoderm of the chorion to form the chorioamnion. The remnants of 
the capsular decidua adhering to the chorion become opposed to the 
maternal parietal decidua [57]. 

The ECM is composed of a large collection of biochemically 
distinct components including proteins, glycoproteins, proteoglycans, 
and polysaccharides with different physical and biochemical properties 
[58-60]. Structurally, these components make up both basement 
membrane, which is produced jointly by epithelial, endothelial, and 
stromal cells to separate epithelium or endothelium from stroma, 
and interstitial matrix, which is primarily made by stromal cells. The 
basement membrane is a specialized ECM, which is more compact and 
less porous than interstitial matrix. It has a distinctive composition 
containing type IV collagen, laminins, fibronectin, and linker proteins 
such as nidogen and entactin, which connect collagens with other 
protein components. In contrast, interstitial matrix is rich in fibrillar 
collagens, proteoglycans, and various glycoproteins such as tenascin C 
and fibronectin and is thus highly charged, hydrated, and contributes 
greatly to the tensile strength of tissues [60]. In fetal membrane, ECM is 
composed of fibrous proteins embedded in a polysaccharide gel, which 
forms the architectural framework of the amniochorion [61]. Collagens 
are important structural elements of ECM which determine the tensile 
strength of the membrane. They form the major structural framework 
of the fetal membrane ECM [57,62,63]. The types of collagen in fetal 
membrane include I, III, IV, V, VI and VII. The major tensile strength 
is provided by interstitial collagens types I and III together with small 
amounts of types V, VI and VII. The type IV collagen located in the 
basement membrane connects the amnion and chorion to the ECM, 
which provides the scaffold for the assembly of other non-collagen 
structural proteins and plays a major role in the development and 
maintenance of the ECM [63]. Types V and VII are minor fibrillar 
collagen which provide an additional anchoring function for the 
basement membrane along with type IV collagen. Types VI and VII 
are present in smaller quantities in the fetal membrane ECM; however, 
along with types I and III, they form an anchoring fibrillar structure. 
In addition, except for different types of collagen, other components 
of the ECM also include laminin, elastin, proteoglycan, microfibrils, 
fibronectin, decorin, plasminogen and integrins [57,63,64]. The ECM 
collagens undergo constant turnover and remodeling throughout 
pregnancy to accommodate the increasing volume and tension 
as gestation progresses [65]. This remodeling process results in a 
decreased collagen content of the amnion in the last eight weeks of 
pregnancy [65].

PPROM and collagen degradation

PPROM, defined as a rupture of the membranes occurring before 
37 weeks of gestation, is one of the major causes of prematurity, 
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accounting for 30-40% of all preterm births [1]. Several major etiologic 
factors have been linked to PPROM, such as maternal reproductive 
tract infection (bacterial vaginosis, trichomoniasis, gonorrhea, 
chlamydia, and subclinical chorioamnionitis), behavioral factors 
(smoking, substance abuse, nutritional status, and coitus), obstetric 
complications (multiple gestation, polyhydramnios, insufficient cervix, 
cervical operations, gestational bleeding, and antenatal trauma), and 
possibly environmental changes (barometric pressure) [56]. These 
factors can result in weakness of the amniochorion ECM by collagen 
degradation, which is one of the key events predisposing to membrane 
rupture [65]. Among these, infection is one of the most common 
etiological factors causing spontaneous preterm birth and PPROM, 
and usually involves cytokine/chemokine pathways and degradation of 
ECM [66-71], causing an increased matrix MMPs and decreased tissue 
inhibitors of MMP (TIMP) [72]. The changes of MMPs and TIMP can 
result in collagenolysis and reduction of the collagen content of fetal 
membrane, as seen in spontaneous preterm birth and PPROM [72]. 
Indeed, a decrease in total collagen content and an increase in collagen 
solubility, and an increase in collagenolytic activity that results in the 
remodeling of the extracellular matrix have been the characteristics of 
the cervical softening and decidual and fetal membrane activation [73].

Collagen degradation can be activated by exogenous and 
endogenous factors. The exogenous factors include the effects of 
bacterial metabolism and maternal or fetal host inflammatory response. 
Although bacterial collagenases have been found in the amniotic fluid 
during PPROM, they are neither specific nor produced in sufficient 
quantities to effectively degrade human collagens. Bacterial infection 
is more like an initiator while the host inflammatory response is the 
true causative agent in PPROM. The host inflammatory response 
initiated by bacteria or bacterial components (LPS) activates ECM 
collagen-specific matrix metalloproteinases (MMPs) that lead to ECM 
degradation through degrading collagens in ECM, predisposing the 
fetal membrane to rupture [56]. It was reported that MMP1 and MMP8 
are collagenases that act to degrade collagen types I, II, which are up-
regulated in the amnion and chorion in PPROM [74]. The MMPs may 
be stimulated by intrauterine inflammatory infection, and bacteria or 
bacterial product may directly stimulate MMP productions [72,75]. 
Moreover, the major proinflammatory cytokines (IL-1β, IL-6 and 
TNF-α) produced in host inflammatory response can promote PPROM 
by inducing apoptosis [56]. The endogenous factors include a local 
variation in membrane thickness and a reduction in collagen content, 
which may be influenced by genetic predispositions. Since PPROM is 
a complex disease and involves multiple pathophysiologic pathways, 
gene-gene interactions and gene-environmental interactions may play 
important roles in PPROM. Single-nucleotide polymorphisms (SNPs) 
of several candidate genes (MMP-8, MMP 9, TNF-α, Fas, and HSP70) 
involved in the already identified PPROM pathways are assumed to 
associate with PPROM [76-80]. In addition, several studies have found 
that variants in genes encoding collagens are involved in human 
disease. For example, polymorphism of 1997G → T in the promoter of 
the collagen type I gene was associated with bone mineral density for 
the lumbar spine in postmenopausal Spanish women [81]. A variant 
within COL5A1 encoding a subunit of type V collagen was correlated 
with injury and performance phenotypes [82]. The rs2621215 SNP in 
intron 46 of the COL1A2 gene was found to be marginally associated 
with an increased risk of developing intracranial aneurysms in the 
Korean population [83]. Sequence variants within the 3’-UTR of the 
COL5A1 gene could alter mRNA stability which was implicated in 
musculoskeletal soft tissue injuries [84]. Furthermore, in the molecular 
basis study of musculoskeletal soft tissue injuries and other exercise-
related phenotypes, a functional miRNA site for Hsa-miR-608 within 

the COL5A1 3’-UTR was identified and additional elements regulating 
COL5A1 mRNA stability were also identified using deletion constructs 
[84]. Considering that collagen degradation is one of the key events 
predisposing to membrane rupture in PPROM, genetic heterogeneity 
of collagen genes may affect the occurrence of PPROM in different 
individuals though rarely research has reported genetic variants in 
genes encoding different collagens was involved in PPROM up to now. 
These exogenous and endogenous factors affecting collagen degradation 
may suggest environmental and genetic factors were interacting in 
PPROM. Although the molecular mechanism of this interaction is not 
yet clear, it is hypothesized that the epigenetic regulatory mechanism 
may play important roles in PPROM and therefore deserves further 
investigation. 

Epigenetic regulation of noncoding RNA with UPS as 
well as with PPROM 
Noncoding

RNAs: Current high-throughput transcriptomic research has 
found that eukaryotic genomes transcribe up to 90% of the genomic 
DNA to RNAs [85]. Among these genomic transcripts, only 1-2% 
are translated to proteins while the vast majority are identified as 
non-coding RNAs (ncRNAs) that are defined by lack of protein-
coding sequences [85,86]. NcRNAs play important roles in a variety 
of biological processes [87-89], and can been divided into two major 
groups according to the length, the short noncoding RNAs, which 
include microRNAs (miRNA), PIWI-interacting RNA (piRNA), small 
nucleolar RNAs (snoRNAs) as well as other non-coding transcripts of 
less than 200 nucleotides (nt), and the more recently described long 
noncoding RNAs (lncRNA) that are longer than 200nt [90,91]. 

MiRNAs are the most widely studied class of short noncoding 
RNAs, which mediate post-transcriptional gene silencing by controlling 
the translation of mRNA into protein [92,93]. Research has found that 
miRNAs can be involved in regulation of many biological processes, 
such as proliferation, differentiation, apoptosis and development 
[94]. The disruption expression of miRNAs has been found in many 
human diseases including different cancers, neurological disorders, 
cardiovascular disorders and others [94]. For example, miR-15 and 
miR-16 were dysregulated in most B cell chronic lymphocytic leukemia 
[95]; miR-206 deficiency accelerates amyotrophic lateral sclerosis [96]; 
miR-1, which is involved in heart development, has been linked with 
arrhythmias through down-regulating expression of the ion channel 
genes [97,98]. Except miRNAs, the disruption of other classes of 
short noncoding RNAs, such as snoRNAs and piRNAs, can also lead 
to human diseases [94]. For example, the germline homozygous 2 bp 
(TT) deletion of the snoRNA U50 is associated with prostate cancer 
development [99], and the overexpression of piRNAs, PIWIL1 and 
PIWIL2, is involved in kinds of somatic tumours [100-102].

LncRNAs may function as regulators of protein-coding gene 
expression and exert a variety of intrinsic functions in eukaryocytes 
[103]. In genomic contexts, lncRNAs can be transcribed from enhancers, 
promoters, introns of genes, pseudogenes and antisense to genes [104]. 
They can influence almost every step in the life cycle of genes, and 
carry out their biological roles through several different mechanisms, 
including regulating chromatin states and nuclear compartments [105-
107], affecting the process of transcription [108-110], and mediating 
mRNA stability, splicing and translation in post-transcriptional 
level [111-113]. The disruption of lncRNAs is also found to associate 
with different human diseases as short noncoding RNAs [114]. For 
example, ANRIL is the antisense lncRNA of the INK4 locus, and its 
altered activity could result in dysregulated silencing of the INK4 locus, 
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which contributed to the initiation of several cancers [115-119]. The 
lncRNA MALAT-1 was associated with early-stage non-small-cell lung 
cancer [120], which depended on its ability in regulating the alternative 
splicing through interaction with nuclear phosphoproteins [121,122]. 
In addition, the antisense lncRNA BACE1-AS, the opposite strand to 
BACE1, could increase BACE1 mRNA stability and protein abundance 
on a post-transcriptional level, which was identified as up-regulation 
in Alzheimer’s disease [123]. Moreover, based on screening and 
expression analyses, multiple lines of evidence increasingly support 
the linkage of dysfunctions of lncRNAs to other human diseases, such 
as neurodegenerative and psychiatric diseases [124], cardiovascular 
disease [125], reproductive disease [126], immune dysfunction and 
auto-immunity [127]. Recently, more and more studies have identified 
lncRNAs as novel biomarkers and potential therapeutic targetes 
for human diseases [128]. For example, LncRNA H19 was reported 
as a novel therapeutic target for pancreatic cancer [129]. Another 
lncRNA PCAT18 was Identified as a novel biomarker and potential 
therapeutic target for metastatic prostate cancer[130]. In the study 
of neuropsychiatric disorders, one lncRNA named UBE3A-ATS was 
identified as a protential therapy target for Angelman syndrome [131].

Epigenetic regulation of noncoding RNAs with UPS

NcRNAs are not only best known for modulating transcription, 
but also post-transcriptional influence on mRNA splicing, stability 
and translation. Recent studies in neurodevepmental disorders suggest 
that miRNA can regulate UPS. For example, studies in spinocerebellar 
ataxia type 1 found that the primary target genes of miRNAs involved 
in this disease were members of the ubiquitin proteasome system 
[132]. Another study in neurodevepmental disorders presented that 
miR-137 could target the Mind bomb one protein (Mib1), a ubiquitin 
ligase known to be important for neurodevelopment, through the 
conserved target site located in the 3’ untranslated region of Mib1 
mRNA, which has a significant role in regulating neuronal maturation 
[133]. In addition, in human end-stage dilated cardiomyopathy, miR-
199/21 4 was found to play a significant role in regulatory activity 
of the UPS by regulating the ubiquitin E2 ligases Ube2i and Ube2g1 
[134]. Except for short ncRNAs, evidence for lncRNA regulating UPS 
was also found. LncRNA HOTAIR was found to act as an inducer of 
ubiquitin-mediated proteolysis through associating with E3 ubiquitin 
ligases bearing RNA-binding domains and their ubiquitination 
substrates [135]. Another nuclear-enriched lncRNA antisense to 
ubiquitin carboxy-terminal hydrolase L1 (Uchl1) that was one kind of 
de-ubiquitylating enzymes was identified to increase UCHL1 protein 
synthesis at a post-transcriptional level in mouse [136]. These findings 
reveal an undescribed post-transcriptional regulatory pathway of 
ncRNA to control UPS though more researches are needed to uncover 
the detailed mechanism.

Epigenetic regulation of noncoding RNAs in PPROM

Recent studies suggested that ncRNAs were possibly associated 
with preterm birth (PTB) and PPROM in pregnant women. Two 
previous microarray studies have implied that multiple miRNAs 
possibly participated in epigenetic regulation of PTB and PPROM. One 
microarray study found that the relative expression of 20 miRNA was 
differentially expressed in placentas from patients with preeclampsia 
and preterm birth as compared to normal term, which were involved in 
miR-15b, miR-181a, miR 200C, miR-210, miR-296-3p, miR-377, miR-
483-5p, and miR-493 [137]. Another study using Affymetrix GeneChip 
miRNA array also identified 99 miRNAs with differential expression 
in cervical cells between PTB and term birth [138]. Recently, our 
group firstly reported that lncRNAs were correlated with PPROM 

and PTB [139]. Thousands of lncRNAs were differentially expressed 
in the human placentas of PPROM, PTB, and premature rupture of 
membrane (PROM) compared with full-term birth (FTB), which 
illustrated that lncRNAs could be participating in the physiological and 
pathogenic processes of human pregnancies [139]. Moreover, in our 
study, 22 lncRNA pathways were characterized as up-regulated and 7 
were down-regulated in PPROM vs. PTB, 18 were up-regulated and 15 
were down-regulated in PPROM vs. PROM, and 33 were up-regulated 
and 7 were down-regulated in PPROM vs. FTB. Functional analysis 
of altered lncRNAs showed infection and inflammatory response to 
be one major pathogenic mechanism involved in the development of 
PPROM [139]. Another investigation about lncRNAs have identified 
co-differential expression and correlation at two genomic loci that 
contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-
NR024065 in human myometrium in women with pontaneous labor at 
term [140]. However, the two pairs of mRNA-lncRNA were not found 
differential expression in our data from the human placentas, which 
might be explained by the tissue-specific expression of mRNA s and 
lncRNAs. Although detailed functional mechanism and pathogenesis 
of how individual miRNAs or lncRNAs play their role(s) in PPROM 
and PTB are still unknown, these above findings opened a new avenue 
for exploring epigenetic regulation in PPROM and PTB. 

The Possible Connection between UPS and PPROM
In our previous study, besides lncRNAs, mRNA differential 

expression was also investigated in human placentas of PPROM, PTB, 
PROM and FTB [111]. When the combination of PPROM and PROM 
was compared to that of PTB and FTB, the focus was membrane 
rupture since both PPROM and PROM share the common feature 
of premature membrane rupture while PTB and FTB are without 
membrane rupture. Among the differentially expressed mRNAs we 
identified, nine UPS-related genes were up-regulated and another 
ten UPS-related genes were down-regulated when compared to both 
PPROM and PROM vs. PTB and FTB [111], which suggested that 
UPS was probably involved in the regulation of membrane rupture in 
PPROM. Moreover, two collagen-related genes were down-regulated 
accompanied the changes of UPS-related genes [111]. The weakness 
of the amniochorion ECM by collagen degradation is one of the key 
events predisposing to membrane rupture [51]. The UPS is likely 
to regulate PPROM through control of the collagen content in the 
amniochorion ECM. Based on the current knowledge reviewed above, 
UPS may theoretically regulate PPROM through two pathways. First, 
intracellular UPS may control the production of collagen proteins, 
which results in concentration changes of collagen in the ECM thus 
predisposing to membrane rupture. Second, extracellular UPS may 
directly degrade the collagen of the ECM through the proteasome 
as MMPs do; the function of extracellular UPS needs to be further 
confirmed. 

Among the multiple epidemiological and clinical findings, maternal 
reproductive tract infection was considered to be the important 
promoter of PPROM [56]. The inflammation initiated by infection 
play primary or secondary roles in the pathogenesis of PPROM. On the 
one hand, lncRNAs were involved in the regulation of inflammation 
and immune reaction because the lncRNAs belonging to the relevant 
pathways were found differentially expressed in PPROM [139]. On the 
other hand, novel mechanisms in the pathogenesis of PPROM suggest 
the initiation of additional new research. Furthermore, our data has 
shown that lncRNAs associated with collagen, MMP, proteasome 
26S, and ubiquitin specific peptidase were differentially expressed in 
placentas and amniochorionic membranes of HMV68 viral infected 
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mice, compared to non-infected, which further indicated that there is 
a closed link to infection, UPS, collagen and membrane rupture [141]. 
Therefore, combined with the reviewed data above, a novel molecular 
pathogenesis of PPROM may be concluded that UPS-related lncRNAs 
are triggered by infection and inflammation in PPROM, which regulate 
intracellular and/or extracellular UPS systems to control the content of 
collagens in ECM, and finally result in occurrence of PPROM for the 
ECM degradation in fetal membrane. 

Conclusion and Perspective
Growing evidence has suggested that abnormally expressed 

ncRNAs were involved with multiple diseases. Among various ncRNAs, 
lncRNAs attracted more attention and were found in correlation with 
various inflammation-related states or diseases, which might provide 
new avenues for explaining molecular regulation mechanisms of the 
complicated diseases on the epigenetic level. Here, we reviewed the 
UPS system; the collagen in ECM, the PPROM as well as ncRN As, and 
hypothesized a novel pathogenic pathway of “infection/inflammation 
⇒ lncRNA ⇒ UPS ⇒ collagen ⇒ membrane rupture” for further 
exploration on the molecular pathogenesis of PPROM. 
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