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Introduction
Many local anesthetics are commonly used for regional anesthesia, 

postoperative pain relief, and anti-arithmetic and are often used in 
examinations such as biopsies. It is well known that these local anesthetics 
are cytotoxic [1-4]. Clinical profiles of the toxicities of local anesthetics, 
especially lidocaine-induced neurotoxicity, have been based on the 
reported incidence of cauda equina syndrome or transient neurologic 
syndrome (TNS) after spinal anesthesia [5-8]. Clinically, lidocaine is 
most often linked to local anesthetic-induced neurotoxicity, although 
experimental evidence has demonstrated that local anesthetics with 
high lipophilicity are more toxic than lidocaine [9,10]. Werdehausen 
et al. [12] compared the toxicity of local anesthetics by double-staining 
assay with 7-amino-actinomycin D (7-AAD) and annexin-V and were 
measured by flow cytometry and reported that comparison of LD50 
values of the different local anesthetics and resulted in that the toxicity 
correlated with octanol/buffer coefficients represent as lipophilicity [9].

On the other hand, there some results has been reported that 
that not only the lipophilicity but also another factors correlated 
with the toxicity of local anesthetics. Kasaba et al. [11] compared the 
neurotoxicity of procaine, mepivacaine, ropivacaine, bupivacaine, 
lidocaine, tetracaine, and dibucaine by using cultured neurons from the 
freshwater snail and reported that dibucaine tetracaine, and lidocaine 
were more toxic than other local anesthetics [11]. 

However, the differences in and mechanisms of the toxicities of 
lidocaine and other local anesthetics remain uncertain. It has recently 
been demonstrated that one of the mechanisms of the cytotoxicity 
induced by local anesthetics is apoptosis induced by mitochondrial 
damage [12], caspase activation [13], inhibition of thyrosine kinase 
[14], activation of p38 mitogen-activated protein kinase (MAPK) 

[15], calcium metabolism [16] and blockage of sodium channels [17-
19]. On the other hand, local anesthetic-induced necrosis has been 
reported in clinical practice [20-22]. According to one hypothesis, the 
mechanism of local anesthetic-induced necrosis is calcium metabolism 
by free radicals [23-25]. It is uncertain which local anesthetic is more 
toxic and which induces apoptosis or necrosis. Therefore, in the present 
study, fatality rates, apoptosis and necrosis induction rates, DNA 
fragmentation, and caspase activity were investigated. We compared 
the concentration-dependent apoptotic and necrotic potencies of 
lidocaine, mepivacaine, bupivacaine, ropivacaine, procaine, dibucaine, 
tetracaine, and QX-314 in HL-60 human T-cell leukemia cell lines not 
expressing sodium channels [26].

Materials and Methods
Cell culture

Acute myeloblastic leukemia of human (HL-60) cell lines routinely 
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Abstract
Many studies have indicated that local anesthetics are cytotoxic and can induce apoptosis; however, the types 

of local anesthetics and the induction rates of apoptosis remain unclear. The aim of this study was to clarify the local 
anesthetics that induce apoptosis or necrosis and their induction-related factors. 

Methods: Lidocaine, mepivacaine, bupivacaine, ropivacaine, tetracaine, dibucaine, procaine, and QX-314 were 
evaluated for apoptosis and necrosis in HL-60 human leukemia cell lines. Apoptosis and necrosis were analyzed by 
double-staining assay with propidium iodide (PI) and annexin-V and were measured by flow cytometry (FACS). DNA 
fragmentation was used for the analysis of apoptosis.

Results: In the double-staining assay by flow cytometry, drugs with high lipophilicity were most cytotoxic. The 
comparative LD50 values were dibucaine > tetracaine > bupivacaine > ropivacaine > mepivacaine > lidocaine > procaine 
> QX-314. The LD50 were correlated with lipophilicity (logP). The comparative maximum rates of annexin-positive and PI-
negative apoptotic cells were lidocaine > mepivacaine > ropivacaine > bupivacaine > procaine > tetracaine > dibucaine 
> QX314 and were correlated with pKa. Lidocaine and mepivacaine significantly induced DNA fragmentation. DNA 
fragmentation was also correlated with pKa. 

Conclusion: The results indicate that local anesthetics with high lipophilicity are highly toxic and induce mainly 
necrosis, while local anesthetics with low pKa induce more apoptosis. 
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maintained in our laboratory were used. Cells were maintained in 
RPMI 1640 supplemented with 15% heat-inactivated FBS, penicillin 
(100 units/ml), and streptomycin (10 lg/ml). Cells were grown at 37°C 
in a humidified atmosphere of 5% CO2/95% air.

Double-labeling assay with annexin-V and PI

To differentiate apoptotic cells from necrotic cells, the surface 
exposure of phosphatidylserine in apoptotic cells was measured with 
the ApoAlert® Annexin V-FITC apoptosis detection kit (Beckton 
Dickinson, CA, USA) [27]. Additional exposure to PI facilitated the 
differentiation of apoptotic (annexin-positive and PI-negative) cells 
from necrotic (annexin- and PI-positive) cells [28, 29]. 

Flow cytometric analysis

Treated cells were analyzed using a flow cytometer [30]. After 
treatment with different concentrations of local anesthetics for 24 h, 
cells were harvested by centrifugation and suspended with PBS. The 
cell suspension was then double stained with annexin-V (50µg/ml) 
and PI (50µg/ml) and kept in the dark for 15 min. The fluorescence 
of each cell was analyzed by a flow cytometer (FACScan, Beckton 
Dickinson, CA, USA) using a nitrogen argon laser operating at 488/535 

nm excitation/emission for annexin-V, with the fluorescence captured 
on the FL-1H channel, and at 488/620 nm excitation/emission for PI, 
with the fluorescence captured on FL-2H channel with logarithmic 
amplification. For each determination, 10,000 cells were counted. 
Apoptotic cells were defined as annexin positive and PI negative, while 
necrotic cells were defined as either annexin negative and PI positive or 
annexin positive and PI positive.

Assessment of apoptosis by DNA fragmentation

Apoptosis was determined by genomic DNA fragmentation 
assessed by agarose gel electrophoresis [31]. After treatment with 
different concentrations of local anesthetics for 24 h, the sample cells 
were incubated at 37°C for 1 h in 10 mM Tris-HCL buffer (pH 7.4) 
containing 10 mM EDTA and 0.5% Triton-X 100 with 400µg/mL of 
RNase-A and then were incubated again with 400µg/mL of proteinase 
K. The DNA was extracted with an equal volume of phenol/chloroform 
and precipitated with an equal volume of 2-propanol. The DNA samples 
were electrophoresed on 2% agarose gel containing 10 mg/ml ethidium 
bromide and then visualized and analyzed with a digital image analyzer 
(LAS-3000, Fuji Film, Tokyo, Japan) under UV light.

Statistical analysis

The results are expressed as the mean ± standard deviation (SD). 
The results of repeated measurements of each dose for each group of 
trials were analyzed by repeated measurement of one-way analysis of 
variance (ANOVA), followed by Scheffe’s test. The LD50 was obtained 
from probit analysis and compared by means of analysis of variance 
(ANOVA) with Tukey’s post hoc test. Correlations between LD50 
values, percentage of necrotic cells, and apoptotic cells with clinical 
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Figure 1A: Flow cytometric analysis by double staining with annexin-V and PI.

Figure 1B: Concentration-dependent cytotoxicity of local anesthetics.
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Figure 1C: Half-maximal cytotoxic concentrations (LD50) of each local 
anesthetic. LD50 values were calculated from probit analysis. The LD50 
values of two local anesthetics adjacent to significance signs were different, 
as were LD50 values of all different sides of a significance sign. *: p < 0.05. 
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Figure 1D: Concentration-dependent annexin-negative and PI-positive cells 
(necrotic cells or late-phase apoptotic cells). 
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blocking potency, lipid solubility (logP), pKa, protain binding, non-
ionized fraction, and molecular weight were made by means of 
Spearman’s rank correlation test. P,0.05 was considered significant. JMP 
(version 8, SAS, NC, USA) was used for these analyses. Values of P < 
0.05 were considered statistically significant. 

Results 

Local anesthetics induce apoptosis and necrosis

To examine the effect of local anesthetics on HL-60 cells, cells were 
exposed to each local anesthetic. Thereafter, cells were double labeled 
with annexin-V and PI, and each fluorescent value was analyzed by 
flow cytometer (Figure 1). The fraction of cells positive for annexin-V 
only indicated apoptotic cells, and cells positive for both annexin-V 
and PI indicated necrotic cells. All of the local anesthetics that were 
investigated induced cell death in a concentration-dependent manner 
(Figure 1A, B). Higher concentrations of many local anesthetics led to 
increased fractions of cells that stained positive for both annexin-V 
and PI, indicating that necrosis was induced (Figure 1A, D). The 
concentrations of local anesthetics that yielded 50% cell death (LD50) 
were significantly different for each local anesthetic, as shown in Figure 
1B, C and Table 1. The comparative rates of LD50 were dibucaine > 
tetracaine > bupivacaine > ropivacaine > mepivacaine > lidocaine > 
procaine > QX-314 (p < 0.05). Drugs with high lipophilicity, such as 
dibucaine, tetracaine, and bupivacaine, were more toxic than drugs 
with low lipophilicity, such as lidocaine, mepivacaine, procaine, and 
QX-314 as shown in Table 1 (p < 0.05). The comparative maximum 
rates of annexin-positive and PI-positive (necrotic) cells were dibucaine 
> tetracaine > bupivacaine > ropivacaine > mepivacaine > lidocaine 
> procaine > QX-314. Dibucaine, tetracaine, and bupivacaine were 
significantly decreased in live cells and were increased mainly in 
annexin-positive and PI-positive cells (Figure 1D). More than 50% of 
cell deaths were induced by necrosis; and less than 50% were induced 
by apoptosis. The comparative maximum rates of annexin-positive 
and PI-negative (apoptotic) cells were lidocaine > mepivacaine > 
ropivacaine > bupivacaine > procaine > tetracaine > dibucaine > QX314 
(Figure 1E, F). Lidocaine and mepivacaine significantly increased 
the number of apoptotic cells. In order to identify factors affecting 
necrosis and apoptosis, the LD50, maximum rates of annexin-positive 
and PI-positive cells, and maximum rates of annexin-positive and PI-
positive cells were correlated to a number of known physicochemical 
properties by Spearman’s rank test, as shown in Table 1. The octanol/
buffer coefficient (logP value) means that the lipophilicity of the drug 
and the clinical potency correlated well with fatality rates, the LD50 
value, and the rates of annexin-positive and PI-positive (necrotic) 
cells. On the other hand, the rates of annexin-positive and PI-negative 
(apototic) cells were correlated with pKa. A fraction of a non-ionized 
local anesthetic at pH 7.4 means that a local anesthetic with a low pKa 
close to pH 7.4 will more induce apoptosis (Table 1). In contrast, LD50 
values did not correlate with pKa values, fractions of non-ionized local 
anesthetics, or protein binding. 

Figure 1E: Concentration-dependent annexin-positive and PI-positive cells 
(apoptotic cells). 
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Figure 1F: Maximum rates of annexin-positive and PI-positive (apoptotic) 
cells of each local anesthetic. *: p < 0.05. 
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Figure 2A: Effect of each local anesthetic on DNA fragmentation. Dose-
dependent DNA fragmentation induced by each local anesthetic. HL-60 cells 
were incubated with local anesthetics for 24 h. 
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Figure 2B: Quantification data of DNA fragmentation in each local anesthetic 
by image analysis. The results are presented as the mean ± SD. n = 6,*: p < 
0.05 compared with baseline (control).
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Local anesthetics induce DNA fragmentation and laddering

Local anesthetics, especially lidocaine and mepivacaine at 5 mM, 
induced DNA fragmentation in HL-60 cells (Figure 2). Lidocaine and 
mepivacaine significantly increased the fluorescence intensity level of 
ethidium bromide, which indicated the degree of DNA fragmentation 
in a dose-dependent manner (Figure 2B). The fluorescence intensity 
level of ethidium bromide (degree of DNA fragmentation) correlated 
with the pKa of local anesthetics (P = 0.02).

Discussion
The results of the present study demonstrate that local anesthetics 

with high lipophilicity are more toxic and induce mainly necrosis. On 
the other hand, local anesthetics in which pKa has a pH value close 
to pH 7.4 induce more apoptosis in HL-60 human leukemia cells. 
Over half of the cell deaths were induced by necrosis, and less than 
half were induced by apoptosis within the clinical dose of each local 
anesthetic. These results are very similar to those reported previously. 
Werdehausen et al. compared the toxicity of local anesthetics by double-
staining assay with 7-amino-actinomycin D (7-AAD) and annexin-V 
and were measured by flow cytometry in human neuroblastoma cell 
line SK-N-SH and reported that comparison of LD50 values of the 
different local anaesthetics and resulted in that tetracaine>bupivacain
e>prilocaine=mepivacaine=ropivacaine=lidocaine>procaine=articaine 
and the toxicity correlated with octanol/buffer coefficients represent as 
lipophilicity and and their relative clinical potency [9]. Kamiya et al. 
[35] reported that below 12 mM, lidocaine exposure for 24 h induced 
about 50% apoptosis in U937 human leukemia cells [32]. Friederich 
et al. [33] reported that 24-h exposure to 3 mM lidocaine induced 
about 40% apoptosis in human neuronal SH-SY5Y cells [33]. Lidocaine 
and mepivacaine exposure increased the number of apoptotic cells 
significantly more than other anesthetics. At a high concentration (over 
5 mM), the number of necrotic cells increased. The toxicity of each 
local anesthetic was correlated with its lipophilicity, which was present 
as the octanol/buffer partition coefficient (logP) value, and thus its 
clinical potency. On the other hand, the induction rate of apoptosis was 
correlated with pKa and the % of freebase at pH 7.4. Many studies have 
indicated that local anesthetics, especially lidocaine, induce apoptosis in 
neuronal cells; however, only a few drugs were compared. It is therefore 
the toxic potency of various local anesthetics is difficult to compare. 
In some of the studies, the clinical potency was adjusted, making it 
difficult to compare the toxicities of the local anesthetics. In the present 
study, the toxicities of local anesthetics correlated with their relative 
clinical potencies. When clinical potencies are adjusted, no differences 
in the toxicities of local anesthetics can be observed. Lirk et al. [34] 
compared the neurotoxic potentials of equipotent concentrations of 
lidocaine, bupivacaine, and ropivacaine set in cell cultures of rat dorsal 
root ganglion neurons for 24 h [34]. The percentages of cell death did 

not differ among the local anesthetics. Those results are reconfirmed 
and generalized to other local anesthetics in the present study. Myers 
et al. [35] compared the neurotoxic and blocking concentrations 
of lidocaine, etidocaine, 2-chloroprocaine, and procaine on the 
sciatic nerve of rats 2 days after a single injection, and they found a 
significant correlation between the nerve-blocking concentration 
and toxicity [35]. HL-60 cells containing few sodium channels were 
used in this examination [26]. It is therefore suggested that the effect 
of sodium-channel blocking by local anesthetics does not correlate 
with cell toxicity. Instead, the lipophilicity and permeability of local 
anesthetics, which also affect blocking potentials, are more important 
factors in the toxicities of local anesthetics. Although many theories 
have been reported, the mechanisms of local anesthetics that induce 
apoptosis and necrosis are still unclear. Lipophilicity was correlated 
with necrosis, supporting Tsuchiya et al. [36] theory that lidocaine 
induces inflammation through changes in membrane fluidity, thereby 
causing necrosis [36]. The present results also support Kitagawa et al. 
[37] theory that cytotoxic local anesthetics are amphiphilic molecules 
that will melt lipid bilayers as detergents [37]. On the other hand, in the 
present study, apoptosis was correlated with pKa in local anesthetics. 
The intracellular pH changes affect homeostasis. Mitochondria are 
especially affected and depolarized by intracellular pH changes [38]. 
In addition, many researchers have reported that local anesthetics, 
especially lidocaine, induce mitochondrial depolarization and apoptosis 
through mitochondrial pathways [12,39]. 

In the present investigation, HL-60 human T-cell leukemia cell lines 
were used in order to rule out the effects of sodium channels and also to 
obtain more accurate results in FACS analysis because these floating cell 
lines are uniform and do not require tearing by enzymes such as trypsin. 
However, these cancer cell lines may be more sensitive to apoptosis or 
necrosis induced by local anesthetics than are primary cultures of rat 
dorsal root ganglion neurons. Obviously, the cell culture model used 
for the present study presents several limitations to translating the data 
to in vivo situations. Nevertheless, the HL-60 cell lines seem accurate 
and sensitive in detecting minor differences among local anesthetics.

In conclusion, local anesthetics with high lipophilicity are highly 
toxic and induce mainly necrosis, while those with low pKa more 
induce apoptosis.
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