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Hemophilia
Hemophilia is a bleeding disorder resulting from the loss of 

functional coagulation factors VIII (Hemophilia A) and IX (Hemophilia 
B). The severity and frequency of bleeding episodes is related to residual 
coagulation factor activity, patients with less than 1% activity often 
suffer from spontaneous bleeds.  Bleeding episodes are treated in the 
clinic with intravascular (IV) administration of exogenous Factor VIII 
or IX from plasma concentrates or recombinant protein. Clinical data 
from treated patients show that maintaining coagulation factor levels 
above 1% has a significant impact on the frequency of spontaneous 
bleeding and above 5% results in the elimination of spontaneous 
bleeds. Unfortunately, a subset of patients (hemophilia A ~25-30%, 
hemophilia B ~2-4%) is at risk for developing neutralizing antibodies 
to the exogenously administered coagulation factors. These inhibitors 
abolish therapeutic benefit and require expensive long-term immune 
tolerance induction (ITI) protocols for the eradication of inhibitors. 
Prophylactic treatment of hemophilia patients requires frequent IV 
injections to maintain steady state levels of the respective coagulation 
factor, which presents a burden on the patient and is quite expensive. 
Novel factor products with longer half-life in circulation are currently 
being developed. Since the liver is the natural site of FVIII and F.IX 
synthesis, liver gene transfer of a functional copy of F.VIII or F.IX offers 
an alternative treatment approach with the potential to provide stable 
therapeutic FVIII or F.IX expression from a single injection. Adeno-
associated virus (AAV) vectors have shown a promising platform for 
long-term liver gene transfer.

Adeno-Associated Virus (AAV)
AAV is a non-pathogenic single stranded DNA parvovirus with 

a genome size of approximately 4.7kb. Serotypes with distinct tissue 
tropisms have been isolated from multiple vertebrate species, including 
humans [1]. Viral vectors derived from AAV are devoid of viral genes 
and instead contain an expression cassette for the gene of interest, 

which is limited to ~5kb in length. Several factors make AAV vectors 
ideally suited for liver gene transfer including the ability to infect non-
dividing cells such as hepatocytes, low immunogenicity [2-4], and the 
persistence of vector genomes as episomal concatamers [5,6].

The AAV2 serotype was the first serotype developed as a vector 
for gene transfer and has been tested extensively in both small and 
large animals and in two human clinical trials for muscle [7] and liver 
gene transfer of hF.IX [8]. Despite efficient infection of murine liver, 
AAV genomes detected in almost 100% of hepatocytes, only roughly 
5% of murine hepatocytes expressed transgene [9-11]. Several steps in 
AAV2 vector infection have been identified that restrict murine liver 
gene transfer. Since AAV vectors have a single stranded DNA (ssDNA) 
genome, expression of the gene of interest requires conversion to double 
stranded DNA (dsDNA), this step acts as a limiting step in transgene 
expression [12,13]. A cellular protein, FKBP52, was shown to interact 
with the AAV genome, when phosphorylated, and prevent conversion 
to dsDNA [14]. Two distinct approaches were taken to bypass this 
block. The first focused on preventing the phosphorylation of the 
FKBP52 protein by pharmacological inhibition of phosphorylation 
[15] and forced expression of phosphatases TCT-PTP [16] and PP5 
[17] both of which led to significant increases of in vivo transgene 
expression. Toxicity studies from over-expression of TCT-PTP or 
PP5 need to be evaluated in large animal models before consideration 
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Abstract
Hemophilia A and B are monogenic bleeding disorders resulting from loss of functional coagulation factors 

VIII or IX, respectively. Prophylactic treatment requires frequent intravenous injections of exogenous factor VIII 
(F.VIII) or factor IX (F.IX), due to the short half-life of both factors. Hemophilia patients are at risk of developing 
neutralizing antibodies to F.VIII (~25-30%) or F.IX (~2-4%), which require the use of expensive bypass agents and 
immune tolerance induction protocols. Viral vector mediated liver gene transfer of F.VIII or F.IX offers an alternative 
treatment for hemophilia with easily defined clinical endpoints and no need for strict regulation of coagulation factor 
expression, as both proteins circulate as inactive zymogens. Adeno-associated viral (AAV) vectors are derived from 
a non-pathogenic human virus that efficiently transduce non-dividing cells, such as hepatocytes, and provide stable 
transgene expression.  In vivo liver gene transfer of AAV-F.VIII and -F.IX vectors has restored hemostasis in murine 
and canine hemophilia models long-term, and has also been shown to induce immune tolerance. Consequently, 
two Phase I/II clinical trials have been conducted, based on hepatic AAV-FIX gene transfer to patients with severe 
hemophilia B. The first trial, utilizing serotype 2, demonstrated transient correction, which was limited by a cellular 
immune response against the viral capsid. However, sustained therapeutic expression has been achieved in a 
second trial, using AAV8 for expression of a codon-optimized F.IX transgene. Translation of F.VIII gene transfer 
studies into the clinic may require additional optimization of gene transfer and vector to effectively express the larger 
cDNA of F.VIII. 
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for human use. The second approach generated an AAV genome that 
was self-complementary, spontaneously forming into dsDNA ready 
for transgene expression, thus completely bypassing the need for 
second strand synthesis [18-20]. One drawback of scAAV vectors is 
that they reduce an already limited packaging capacity of AAV vectors 
in half thus excluding large transgenes, such as F.VIII. AAV2 viral 
particle intracellular trafficking and uncoating also impact efficient 
gene transfer [21,22]. For AAV2, a large fraction of viral particles are 
retained in the cytoplasm upon cell entry. The capsid is phosphorylated 
by EGFR-PTK, which signals for ubiquitination and targeting of the 
viral particle to the proteasome [23]. Mutation of surfaced exposed 
tyrosine residues to phenylalanine, in particular residues 444, 500, and 
730 resulted individually in improved gene transfer of murine liver 
[24] and when combined further enhanced gene expression [25]. Of 
the currently identified serotypes, AAV8, isolated from non-human 
primates [26], has the highest level of liver gene transfer in mice 
[27,28]. AAV8 serotype vectors have faster viral uncoating compared 
to AAV2 where it is believed to allow for the pairing of plus and minus 
strand vector genomes into stable biologically active double stranded 
genomes bypassing the block on second strand synthesis observed with 
AAV2 [26,29].  

Hepatic Gene Transfer in Animal Models of Hemophilia 
Since the coding for F.IX is ~1.4 kb in length, fitting well into an 

AAV vector genome, and since expression of F.IX is often more efficient 
than that of F.VIII, the majority of pre-clinical liver gene transfer studies 
(and all clinical trials thus far) with AAV vectors has been conducted 
for hemophilia B. F.IX protein undergoes extensive post-translational 
modifications before being secreted and since it is normally synthesized 
in the liver all the cellular machinery is in place for production of mature 
F.IX protein. As F.IX protein circulates as an inactive zymogen, there is 
little need for strict regulation allowing the use of strong liver specific 
promoters to drive gene expression. The generation of mice deficient 
for murine factor IX [30-32] and two spontaneous canine hemophilia B 
colonies [33,34] has allowed for extensive testing of safety and efficacy 
of AAV liver directed F.IX gene transfer.

Snyder et al. first reported the in vivo delivery of an AAV2 vector 
expressing hF.IX from a MuLV LTR promoter/enhancer (MFG) to 
the liver of wild type C57BL/6 mice via the portal vein. The vector 
injected mice had long-term hF.IX expression (up to nine months) 
with no indication of liver toxicity and infiltration of immune cells 
[9]. Stable hF.IX expression was also obtained by Nakai et al. following 
portal vein delivery in C57BL/6 mice of an AAV2 vector expressing 
hF.IX from the EF1α promoter for a duration of six months [35]. 
Based on these initial studies, Snyder et al. administered AAV2 MFG-
hF.IX vector to hemophilia B mice and a AAV2 MFG-cF.IX vector 
hemophilia B dogs via the portal vein resulting in long-term correction 
in both animal models [36]. In parallel, Wang et al. demonstrated 
long-term correction in hemophilia B mice [37] and dogs [38] using 
an AAV2 vector expressing canine F.IX(cF.IX) from a liver specific 
promoter construct. Mount et al. demonstrated sustained correction 
in hemophilia B dogs with a null mutation, which have a higher risk 
for developing inhibitors, following liver directed gene transfer of 
an AAV2 vector expressing cF.IX from an ApoE/hAAT liver specific 
promoter [39] which was shown at least 8 years following gene transfer 
[40].  

A major concern for AAV gene transfer of hF.IX to human patients 
is the risk of inducing an immune response against hF.IX protein that 
would render patients unresponsive to exogenous F.IX protein therapy. 

In immune competent mice, the immune responses to hF.IX expressed 
from an AAV2 vector is dependent on the route of delivery and the 
underlying F9 mutation [41,42]. All mice receiving an intramuscular 
(IM) injection of an AAV2 hF.IX vector generated inhibitory antibodies 
to hF.IX protein, while with intravascular (IV) and portal vein deliver 
the majority of animals remained free from inhibitors. Based on these 
observations and previous examples of the tolerizing nature of liver 
expressed proteins [43], Mingozzi et al. designed experiments showing 
induction of tolerance to hF.IX in four different strains of mice using 
an AAV2 vector with an ubiquitous EF1α promoter or a liver-specific 
ApoE enhancer/α1-antitrypsin (ApoE/hAAT) promoter [44]. The rate 
of tolerance induction was shown to be associated with the levels of 
expressed F.IX protein. CD4+ T cells from vector treated mice failed 
to proliferate in vitro following F.IX protein stimulation. Additionally, 
adoptive transfer of total splenocytes or CD4+ lymphocytes but not 
CD4-depleted splenocytes from vector treated mice into naïve mice 
suppressed F.IX specific antibody production upon subsequent 
immunization, demonstrating active suppression by CD4+ T cells as 
part of the tolerance mechanism. In addition, tolerance induction 
failed in Fas-deficient mice, suggesting a requirement for activation 
induced cell death [45]. A later study by Dobrzynski et al. found that 
hepatic-derived antigen expressed from an AAV vector induced several 
changes to the transgene product-specific CD4+ T cell population, 
which included deletion, and induction of an anergic phenotype and 
enrichment for CD4+CD25+ Treg in the remaining cells [46]. More 
recent studies dissected the immune regulatory aspect further and 
found that hepatic viral gene transfer results in TGF-β dependent 
induction of CD4+CD25+ Treg, which are required for tolerance to 
the transgene product and capable of suppressing antibody and T cell 
responses. A regulatory response in the liver and expression of the 
suppressive cytokine IL-10 is required to prevent CD8+ T cell responses 
against transduced hepatocytes [45,47-51]. These findings are further 
reviewed elsewhere [43,52-54].

AAV2 Hepatic Gene Transfer Clinical Trial
Based on correction of bleeding diathesis and absence of the 

induction of inhibitors in both small and large models for hemophilia 
B by an AAV2-ApoE/hAAT-hF.IX vector and safety and persistence of 
an intramuscular AAV2 hF.IX clinical trial [7,55], a phase I/II clinical 
trial was initiated [8]. Although AAV is non-pathogenic, natural 
infection in humans occur with a more immunogenic helper virus, 
such as adenovirus, which can activate immune responses against 
AAV, such as the generation of neutralizing antibodies (NAB) against 
the viral capsid protein [56-58]. These capsid NABs have been shown 
to effectively block in vivo gene transfer to murine, nonhuman primate, 
and human livers at low titers [8,59-61]. A wide range of NAB titers 
against AAV serotypes in humans have been reported all, showing that 
NAB against AAV2 are the most prevalent [62-64]. Therefore, patients 
enrolled in the clinical trial were screened for NAB titer against AAV2 
with those with a NAB titer > 1:20 being excluded from the trial.

Subjects were enrolled in three dose cohorts (8x1010, 4x1011, and 
2x1012 vg/kg) and injected in the hepatic artery with the AAV2 ApoE/
hAAT hF.IX vector. In the two lower dose cohorts, circulating F.IX 
levels remained less than 1%, with no sign of liver toxicity in the first 
four treated subjects (A-D). Subject E in the highest dose cohort had 
transient therapeutic expression of F.IX above 11% of normal that 
declined to baseline levels coinciding with a self-resolving rise in liver 
transaminase levels. Subject F (also in the high dose cohort, with a NAB 
titer of 1:17 against AAV2) had no long-term increase in circulating 
F.IX protein and showed no signs of liver damage, underscoring the 
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impact of low NAB titers on efficient liver gene transfer and suggesting 
that the observed liver toxicity requires viral entry into hepatocytes. 
An additional subject G was enrolled in the mid dose cohort of 4x1011 
vg/kg and had a mild transient rise in liver transaminases with F.IX 
levels remaining < 1%. Lymphocytes collected pre and post vector 
administration in subject G were used to assess T cell responses to 
vector capsid and F.IX protein. Surprisingly, an ELISPOT assay using 
peptide pools for AAV2 capsid and F.IX proteins showed expansion 
of AAV2 capsid-specific but not F.IX-specific CD8 T cells [8,65]. 
Studies conducted in control human subjects revealed the existence 
of capsid specific memory CD8 T cells that could be reactivated 
following exposure to AAV2 and other AAV serotypes, such as AAV8 
[65]. Human hepatocytes infected with a similar AAV2 vector used 
in the clinical trial were capable of processing and presenting the 
capsid epitope on MHCI molecules and were lysed by capsid specific 
CD8+ T cells [66]. Although the evidence suggested that a capsid T 
cell response resulted in destruction of F.IX expressing hepatocytes, 
no previous studies in animal models predicted this response [67]. 
Repeated attempts to mimic the response observed in the clinical 
trial in mice [68-74] and nonhuman primates (which, unlike mice, 
are naturally infected with AAV) have been unsuccessful [75]. In a 
recent study, Li et al. compared AAV capsid specific T cells found in 
naturally infected humans and rhesus macaques [76]. While rhesus 
macaques had detectable capsid specific CD4+ and CD8+ T cells, there 
were profound differences in the frequency and functionality of these 
capsid specific T cells compared to humans. These results may explain 
why the nonhuman primate model could not recapitulate the capsid 
immune response observed in the human clinical trial. Lack of animal 
studies that could reproduce the transaminitis observed in the human 
AAV2 F.IX trial has prompted alternative theories to explain the loss of 
F.IX expression. Two prominent theories are the carry over of rep/cap 
plasmid and the reading of an alternative reading in the F.IX cassette 
[77]. The former theory has been evaluated and seems unlikely to be a 
contributing factor [78], while the latter is also not supported by animal 
studies. 

Based on strong evidence of a capsid CD8+ T cell response being 
responsible for loss of F.IX expression the AAV2 F.IX clinical trial 
has been modified to include immune suppression (IS) prior to and 
following vector administration, until vector particles are degraded 
and cleared from hepatocytes, to prevent reactivation of CD8+ T cells. 
Studies performed in nonhuman primates showed that transient 
IS does not alter AAV transduction [79,80]. But, careful selection of 
suppression agents is warranted. Although MMF (Mycophenolate 
Mofetil) and sirolimus were well tolerated, addition of a third agent 
daclizumab, an anti IL-2 receptor antibody, resulted in the generation 
of inhibitors against F.IX, likely because of depletion of Treg [80]. 
Along this arm, a recent study investigated the use of a clinically 
approved proteasome inhibitor, bortezomib, to prevent AAV2 capsid 
peptide presentation on MHC I molecules. Finn et al. showed a dose 
dependent effect of bortezomib treated hepatocytes on capsid antigen 
presentation following AAV2 transduction [81]. Such a therapy in 
combination with IS may further reduce the risk of capsid antigen 
presentation.

Data from the initial AAV2 F.IX liver gene transfer clinical trial 
suggest that vector doses 4x1011 vg/kg and lower are well tolerated with 
only one subject G (with the lowest pre-treatment NAB titer within 
the dose cohort) with a mild liver toxicity that was asymptomatic 
and spontaneously resolved [8]. With this target in mind, enhancing 
F.IX expression at least 10 fold could potentially provide long-term 
therapeutic F.IX levels in the absence of liver toxicity. In vivo delivery 

of bortezomib has been show to increase F.IX transgene expression in 
mice [73,81,82] and may have a dual function in reducing the risk of 
activating capsid CD8+ T cells. In murine hemophilia B models the use 
of alternative AAV serotypes, such as AAV2 tyrosine mutant vectors 
[24,25] and AAV8 [83] resulted in F.IX expression levels in excess of 
10 fold over AAV2. Studies are ongoing to assess if the AAV2 tyrosine 
mutant vectors also enhance expression in a large animal canine 
hemophilia B model.  

AAV8 Hepatic Gene Transfer Clinical Trial
Nathwani et al. selected an AAV vector that contained three 

different elements known to individually enhance liver gene expression 
in mice namely, an AAV8 capsid serotype [28], a scAAV genome with 
an optimized liver specific promoter (LP-1), and a codon optimized 
hF.IX gene (scAAV8 LP-1 cohF.IX). Their scAAV8 LP-1 cohF.IX vector 
led to substantially higher F.IX levels compared to control vectors in 
hemophilia B mice and nonhuman primates [84] and importantly 
provided similar therapeutic expression levels from peripheral vein 
delivery [85]. Long-term follow-up (~5 years) of nonhuman primates 
treated with the scAAV8 LP-1 cohF.IX vector showed sustained 
therapeutic expression of F.IX, absence of capsid specific CD8+ T 
cells, and no indications of toxicity [86].  Therapeutic and safety data 
obtained from nonhuman primate studies prompted initiation of a 
second clinical trial of AAV liver gene transfer for hemophilia B using 
the scAAV8 LP-1 cohF.IX vector.

As with the AAV2 F.IX trial subjects with existing or previous F.IX 
inhibitors were excluded. Additionally, subjects with F.IX mutations, 
deletions, or inversions associated with increased risk of inhibitors 
were excluded, as well as any subjects testing positive for NABs to 
AAV8 based on a passive transfer assay in immune deficient mice. 
Subjects in the scAAV8 LP-1 cohF.IX trial were administered vector 
by the peripheral vein in three escalating dose cohorts (2x1011 vg/kg, 
6x1011 vg/kg, and 2x1012 vg/kg). As reported by Nathwani et al. six 
subjects have been treated and are stably expressing F.IX protein in 
the range of 2-11% normal [87]. Both subjects in the low dose cohort 
had detectable F.IX levels ~2% normal with no indication of an 
activated capsid specific T cell response. In the mid dose cohort one 
of two subjects (Subject 3) had pre-existing NAB to AAV8 resulting in 
lower F.IX expression immediately following gene transfer that later 
stabilized to 1-3% normal levels. The second subject had peak levels of 
4% that remained stable up to 3 months and then declined to 2-3% for 
unknown reasons. Capsid specific CD4 and CD8 T cells were detected, 
with no indication of liver damage or changes in F.IX expression levels. 
Both subjects in the high dose cohort had peak F.IX expression of 
8-12% normal, but Subject 5 suffered from a grade 3 transaminitis, with 
concomitant increase in capsid specific T cells, that were ablated with 
prednisolone treatment, resulting in a drop in F.IX levels to 3% normal. 
The second subject (Subject 6) in the high dose cohort had a rise in liver 
enzymes 62 days post gene transfer to the upper range of normal and a 
drop in F.IX levels to 5%. Treatment with prednisolone returned liver 
enzymes levels back to baseline and F.IX levels have returned to 8-12%. 
Both subjects in the high dose cohort had expansion of capsid specific T 
cells. To date there have been no indications of any immune responses 
against F.IX in vector treated subjects. Interestingly, similar expression 
levels of F.IX and transaminitis were also observed at the same dose of 
2x1012 vg/kg in the AAV2 hF.IX trial [8] which suggests that this dose is 
a threshold for capsid antigen presentation on hepatocytes. The similar 
expression of F.IX obtained with both vectors may reflect the fact that 
the ssAAV2 hF.IX vector was delivered by hepatic artery, while the 
scAAV8 hF.IX  vector was administered by peripheral vein (Table 1). 
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The benefits of increasing to a higher vector dose will need to weighed 
against the risks of exacerbating an already existing capsid specific T 
cell response through innate immune response induction [88] and 
potential impacts on immune responses against the F.IX protein.

Hepatic AAV Gene Therapy for Hemophilia A
Similar to hemophilia B, F.VIII knock-out mice were generated 

(by targeted deletion of exon 16 or 17) [89] and three spontaneous 
canine hemophilia A models are being maintained [90-94]. In two 
of the canine models, the underlying mutation was identified as an 
inversion of exons 1-22, similar to a common mutation in humans [95]. 
Although hemophilia A is more common than hemophilia B, progress 
on developing an AAV vector has been limited based on several factors 
including cDNA length exceeding AAV packaging capacity, poor 
expression and secretion of F.VIII protein, and low specific activity of 
human F.VIII in animal models. The F.VIII protein contains multiple 
domains including a large B domain that can be deleted with the 
resulting B domain deleted F.VIII (BDD-F.VIII) exhibiting no loss in 
activity as compared to full length F.VIII [96]. The BBD-F.VIII cDNA 
length of 4.4kb has allowed for successful packaging into AAV vectors 
[97,98]. Another adaption was to split the cDNA for F.VIII into two 
vectors expressing the heavy and light chain [99-102]. One disadvantage 
of this approach is that secretion of light chain (LC) is 1-2 logs higher 
than of heavy chain (HC). While it is possible to try and balance this 
by adjusting the relative LC and HC vector doses, Chen et al. described 
a modified HC with up to four fold improved secretion in mice [102]. 
Yan et al. also describe the splitting of a gene between two vectors in 
a processed dubbed trans-splicing that allows for expressing a cDNA 
larger than 5kb [103], which can also be exploited for expression of 
F.VIII [104]. While functional, dual vector strategies are generally less 
efficient as the chance for the same cell to be transduced by both vectors 
at an optimal ratio is low.  

Burton et al. first described AAV2 dual chain hF.VIII vectors 
delivered via the portal vein to wild type C57BL/6 mice reaching levels 
of 200-400 ng/ml of biologically active hF.VIII protein [100]. Using 

a similar approach in hemophilia A mice, AAV2 dual chain hF.VIII 
or cF.VIII vectors resulted in phenotypic correction [105]. Sarkar et 
al. using an AAV2 vector with a synthetic albumin promoter driving 
BDD-murine F.VIII (mF.VIII) expression, compared different routes 
of delivery in hemophilia A mice and observed partial correction up to 
9 months without inhibitor development [106]. Utilizing AAV8 and 
either a dual chain canine F.VIII or BDD canine F.VIII Sarkar et al. 
were able to restore 100% F.VIII activity in hemophilia A mice [101]. 
Mah et al. reported up to 31% of normal mF.VIII when using an AAV2 
dual chain mF.VIII vector with intravenous delivery [107]. Scallan et 
al. reported sustained 2-4% normal levels (> 14 month) in hemophilia 
A dogs using intra hepatic delivery of an AAV2 TTR BDD cF.VIII 
vector [108]. Jiang et al. compared AAV2, AAV6, and AAV8 serotypes 
expressing BDD-cF.VIII (from a transthyretin-derived, TTR, promoter) 
in murine and canine hemophilia A models [109]. Interestingly, a large 
fraction of hemophilia A mice receiving high dose AAV6 and AAV8 
vectors developed inhibitors to cF.VIII, while in contrast to mice, 
hemophilia A dogs had long-term stable expression with similar liver 
transduction efficiencies between the three different serotypes [109]. 
Sarkar et al. found a similar discordance between murine and canine 
gene transfer of AAV8 and AAV9 dual chain cF.VIII vectors with long-
term F.VIII levels 2-2.5% of normal, and a single AAV8 treated dog 
with >4.5% for more than two years [110]. Ishiwata et al. showed long-
term BDD cF.VIII expression in hemophilia A mice in the absence of 
inhibitors using an enhanced liver specific promoter [111]. Lu et al. 
reported complete correction in hemophilia A mice up to 8 weeks 
following intravenous delivery of an AAV8 CB-BDD hF.VIII vector 
[112]. Sabatino et al. performed a systematic study in hemophilia A 
dogs with peripheral vein delivery of an AAV8 BDD cF.VIII vector and 
portal vein delivery of AAV8 or AAV9 dual chain cF.VIII vectors [113]. 
Both delivery routes, serotypes, and single or dual chain F.VIII vectors 
led to long-term F.VIII expression, reduction in bleeding episodes, and 
treated dogs had no sign of long-term inhibitor formation [113].   

Significant progress has been made in AAV liver gene transfer of 
F.VIII for treating hemophilia A in small and large animal models. 
What is required to translate these studies into the clinic? The major 
limitation from most of these studies is the use of canine F.VIII, which 
has been shown to not only have a higher specific activity compared to 
human and murine F.VIII, but is also more stable [114]. As it stands, 
it will be difficult to obtain regulatory approval for the delivery of a 
non-human gene into patients. There are several alternatives that 
have been shown to enhance transgene expression in ssAAV vectors 
including the use of tyrosine mutant capsid variants [24], the clinically 
approved proteasome inhibitor bortezomib for cF.VIII [82], blocking 
phosphorylation of FKBP52 [16,17], and the use of codon optimization 
which has shown to improve F.VIII expression levels in a lentiviral 
vector [115]. Perhaps a combination of several of the above approaches 
could lead to an AAV vector with suitable hF.VIII expression levels to 
initiate a clinical trial.

Immunological Hurdles for AAV Liver Gene Transfer - 
F.VIII and F.IX Inhibitors

As most initial clinical studies will be conducted in adults with 
hemophilia, there is a probability that subjects will either have 
previously developed an inhibitor, be at risk for developing an inhibitor, 
or may currently have an inhibitor. Since scAAV8-cohF.IX liver gene 
transfer has been shown to provide long-term correction in hemophilia 
B subjects, what are the potential risks and benefits associated with 
liver gene transfer to patients with existing inhibitors? To address this, 
Finn et al. asked the question of whether hepatic AAV gene transfer 

ssAAV2 hF.IX

Subject Dose vg/kg NAB titer1 Peak F.IX 
(%)

Sustained 
F.IX (%) LFT2

Capsid 
specific T 
cells

A 8x1010 N/A < 1 < 1 WNL ND
B 8x1010 1:2 < 1 < 1 WNL ND
C 4x1011 1:2 < 1 < 1 WNL ND
D 4x1011 1:11 < 1 < 1 WNL ND
G 4x1011 < 1:2 < 1 < 1 < Grade 1 +
E 2x1012 1:2 11 < 1 Grade 3 ND
F 2x1012 1:17 3 < 1 WNL ND

scAAV8 hF.IX

Subject Dose vg/kg
NAB titer 
relative 
units3

Peak F.IX 
(%)

Sustained 
F.IX (%) LFT2

Capsid 
specific T 
cells

S1 2x1011 1 2 2 WNL -
S2 2x1011 12 2 2 WNL -
S3 6x1011 37 3 1-3 WNL +
S4 6x1011 1 4 2-3 WNL +
S5 2x1012 5 8 3 Grade 3 +
S6 2x1012 8 12 8-12 WNL +

1reciprocal dilution anti AAV2 capsid titer, 2Liver function tests (AST/ALT) 3 anti 
AAV8 capsid titer
WNL:  within normal limits ND:  not done 

Table 1: Comparison of ssAAV2 hFIX and scAAV8 hFIX clinical trials.
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of cF.VIII could reverse pre-existing inhibitors in canine hemophilia 
A [116]. Using AAV8 dual chain cF.VIII vectors, they were able to 
demonstrate reversal of starting 3-8 BU inhibitors which initially 
generated a peak 4.5-12 BU following gene transfer and resolved to 
undetectable levels 4-5 weeks post vector treatment with measureable 
levels of circulating F.VIII protein [116]. One dog with a higher starting 
inhibitor of 24 BU had a peak inhibitor of 216 BU three weeks post 
gene transfer that declined to 0.8 BU at 80 weeks post treatment [116]. 
All treated animals had a sharp decline in bleeding episodes following 
vector treatment. Although a limited number of animals were studied 
and starting inhibitor levels were mild, these data open the possibility 
for AAV liver gene transfer for hemophilia in patients with pre-existing 
inhibitors or with an inhibitor prone genotype.  Additionally, liver 
gene transfer has the potential to replace expensive long-term immune 
tolerance induction (ITI) protocols as a means of eradicating inhibitors 
in hemophilia patients.  

In recent years, a murine hemophilia B model was developed that 
not only shows high-titer inhibitor formation against F.IX protein but 
also IgE formation and anaphylactic reactions, similar to observation 
in humans with F9 gene deletions [25,117,118] Ongoing studies will 
determine whether hepatic AAV-F.IX gene transfer can reverse these 
potentially fatal responses. 

NAB against AAV
Ideally, to correct the bleeding disorder early in life, gene transfer 

for hemophilia would occur in children. A retrospective study of 
pediatric hemophilia patients that are less than two years showed 
antibodies against AAV2 and AAV8 at 12 and 3% respectively [63], 
which is much lower than that found in the adult population [62]. One 
disadvantage of AAV delivery to young children is the potential loss of 
gene expression with the growth of the child. Primary exposure to an 
AAV vector in humans with low titer NAB has been shown to strongly 
induce a NAB response [8], which can block re-administration of 
same serotype. Several transient immune suppression protocols have 
been developed to allow re-administration of AAV vectors in mice 
and nonhuman primates [119-121] that may be adapted for human 
use. Unfortunately, there has been minimal progress made on how 
to eliminate existing NAB against AAV serotypes. With estimates 
ranging from 30 to 60% of individuals having neutralizing antibodies 
against AAV serotypes, how can these patients be treated with AAV 
liver gene transfer?  Ironically, the impact of NAB against AAV may 
be of greater importance with the development of more efficient 
vectors to evade CD8+ T cell activation, in that lower vector doses may 
be effectively neutralized at lower antibody titers. Several approaches 
have been considered such as plasmapheresis or pharmacological 
treatments that either act to lower circulating IgG titers or to transient 
deplete antibody secreting B cells with an anti-CD20 antibody. 
The risks of such procedures need to be assessed, particularly in the 
hemophilia population. Another approach involves modifying capsids 
to avoid neutralization. This has been explored with both site-directed 
mutagenesis of known neutralizing epitopes of AAV2 [122,123] and 
a directed evolution approach to select neutralizing resistant capsids 
[124]. While simply switching capsid serotypes may work in some cases 
[26,85] there appears to be higher incidence of NAB to capsids isolated 
from nonhuman primates, such as AAV8, in humans than previously 
suspected [62,63], thus limiting the effectiveness of swapping capsid. 
Since different capsids have different tissue tropism and gene transfer 
efficiencies, some capsids may not be suitable for this purpose.  

Safety Concerns for AAV Liver Gene Transfer
A major concern for gene transfer studies in humans is vertical 

transmission to germline cells. Studies conducted in male animal 
models including mice, rat, dog, and rabbit were conducted to assess 
the risk of germline transmission from intramuscular and intravascular 
delivery of an AAV2-hF.IX vector. Vector shedding into semen that 
was rapidly cleared with no evidence of gene transfer to germline cells 
was observed independent of delivery route [125,126]. An additional 
study in rabbits assessed the risk of a different AAV serotype, AAV8, 
which is currently being used in a clinical trial for hemophilia B, and 
showed a similar low risk of germline transmission as found with AAV2 
[127]. Additionally, both human trials with AAV2 hF.IX vectors [7,8] 
have not shown any indication of germline transmission, validating the 
results obtained with the rabbit model.  

Viral vector integration has been linked to insertional mutagenesis 
in three clinical trials of gamma retroviral vector gene transfer to 
human hematopoietic stem cells [128-131]. Although AAV vectors are 
predominantly non-integrating and remain as episomes, it has been 
demonstrated that integration occurs in the liver at a low frequency [132] 
and may pose a risk for insertional mutagenesis. A study conducted 
by Donsante et al. observed an increased incidence of hepatocellular 
carcinoma (HCC) in newborn mice given AAV liver gene transfer [133]. 
A follow-up study identified AAV integration sites in chromosome 12 
from four liver tumors and suggested that disregulation of snoRNAs 
and miRNAs from vector integration resulted in the development of 
HCC [134]. In contrast to these findings, multiple long-term studies in 
mice [135,136], canines [40,113], and to date humans [8] injected with 
AAV vectors have no indication of increased risk of HCC from AAV 
insertional mutagenesis. Although animal models seem to indicate 
there is no risk for HCC, it would be warranted to perform long-term 
follow-up studies on all human trials conducted with AAV as prior 
experience has shown with gamma retroviral vectors and AAV lack of 
a response in an animal model does not necessitate lack of response in 
humans.

Summary and Conclusions
Ample pre-clinical successes have been reported with AAV-F.

VIII and -F.IX gene transfer vectors in murine and canine hemophilia 
models. AAV liver restricted gene transfer of F.VIII and F.IX results in 
tolerance mediated by induction of regulatory T cells. Studies in NHPs 
have helped to better understand potential immune responses against 
vector and transgene in the context of prior exposure to AAV from 
natural infection (both mice and dogs are not naturally infected with 
AAV) and have been instrumental in developing immune suppression 
protocols.  

An initial clinical trial with AAV2 F.IX resulted in transient 
correction of disease in a subject at a dose of 2x1012 vg/kg. Of note, none 
of the treated patients developed a F.IX specific immune response, but 
instead two patients had an activated a memory CD8+ T cell response 
(most likely from previous exposure to AAV from natural infection) that 
resulted in the elimination of transduced hepatocytes returning F.IX 
expression to baseline levels. First long-term correction of hemophilia 
B in patients has been accomplished using an scAAV8 LP-1 cohF.IX 
vector. Although there was indication of an activated capsid specific 
CD8+ T cells and a mild rise in liver transaminases, rapid treatment 
with prednisolone resolved the transaminitis without significant loss to 
F.IX expression levels. It is unclear if increasing vector doses may reach 
a threshold for activation of an innate response and CD8+ T cell capsid 
response and what, if any potential consequences this would entail for 
immune responses to vector and F.IX.
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The success of the scAAV8 LP-1 cohF.IX liver gene transfer trial 
will hopefully not only lead to a permanent cure for hemophilia B, but 
pave the way for the development of  AAV liver gene transfer-based 
therapies for hemophilia A, lysosomal storage disorders, and inherited 
metabolic diseases.
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