

# Lipid-rich Glomerular Capillary Thrombi, of a Patient with Waldenstrom's Macroglobulinemia

Masanobu Gunji<sup>1</sup>, Itaru Ebihara<sup>1</sup>\*, Megumi Koda<sup>1</sup>, Yuki Okubo<sup>1</sup>, Chihiro Sato<sup>1</sup>, Joichi Usui<sup>2</sup>, Kunihiro Yamagata<sup>2</sup>, Masaki Kobayashi<sup>3</sup> and Takao Saito<sup>4</sup>

<sup>1</sup>Department of Nephrology, Mito Saiseikai General Hospital, Mito, Japan

<sup>2</sup>Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

<sup>3</sup>Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami, Japan

<sup>4</sup>General Medical Research Center, Faculty of Medicine, University of Fukuoka, Fukuoka, Japan

\*Correspondence author: Dr Ebihara Itaru, Department of Nephrology, Mito Saiseikai General Hospital,

Futabadai, Mito, Ibaraki, Japan, Tel: +81-29-254-5151; Fax: +81-29-254-0502; E-mail: itaruebi@yahoo.co.jp

Received date: February 24, 2017; Accepted date: March 03, 2017; Published date: March 08, 2017

**Copyright:** © 2017 Gunji M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

#### Abstract

A 77-year-old woman was diagnosed nephrotic syndrome with Waldenström's macroglobulinemia (WM). Renal biopsy revealed MPGN-like lesions with extensive glomerular capillary thrombi which were positive for anti-IgM and anti-lambda-light chain immunofluorescence. The electron microscopy showed characteristic thrombi intra glomerular capillary walls which were occupied with a lot of vacuoles. These structures were similar with them of lipoprotein glomerulopathy. The patient was started to treat with R-CHOP, and then nephrotic syndrome and her renal insufficiency were completely recovered. There were no previous reports of nephrotic syndrome and acute renal failure caused by oil-rich intracapillary thrombi in WM in the literature.

**Keywords** Glomerular capillary thrombi; Waldenstrom's macroglobulinemia; Acute renal failure; Rituximab

microhematuria. Additionally, she had hematological abnormalities, such as positive M-peak for IgM lambda-light chain in electrophoresis (but sIgM 192 mg/dl was normal-range), and a monoclonality of IgM positive plasma cells in bone marrow and lymph node (Table 1).

# **Case Report**

A 77-year-old woman was admitted our nephrology unit because of systemic edema and hypertension. She showed proteinuria and

| Laboratory Data |                   |                            |                               |  |  |
|-----------------|-------------------|----------------------------|-------------------------------|--|--|
|                 |                   |                            | Normal range                  |  |  |
| Hematology      | White blood cells | 4300/µl                    | 4300-8400                     |  |  |
|                 | neutrophils       | 75.1%                      | 43.0-75.0                     |  |  |
|                 | lymphoid cells    | 13.1%                      | 21.0-53.0                     |  |  |
|                 | monocytes         | 6.6%                       | 2.8-9.0                       |  |  |
|                 | eosinophils       | 4.8%                       | 0-10.0                        |  |  |
|                 | basophils         | 0.4%                       | 0-3.0                         |  |  |
|                 | Red blood cells   | 315 × 10 <sup>4</sup> /µl  | 427-555 × 10 <sup>4</sup> /µl |  |  |
|                 | Hemoglobin        | 9.7 g/dl                   | 12.5-16.7                     |  |  |
|                 | Hematocrit        | 29.3%                      | 38.4-49.5                     |  |  |
|                 | Platelets         | 11.2 × 10 <sup>4</sup> /µl | 140-322 × 10 <sup>4</sup> /µl |  |  |
| Blood chemistry |                   |                            |                               |  |  |
|                 | Total protein     | 5.5 g/dl                   | 6.5-8.2                       |  |  |
|                 | Serum albumin     | 3.5 g/dl                   | 3.8-5.3                       |  |  |

Citation: Gunji M, Ebihara I, Koda M, Okubo Y, Sato C, et al. (2017) Lipid-rich Glomerular Capillary Thrombi, of a Patient with Waldenstrom's Macroglobulinemia. J Hematol Thrombo Dis 5: 263. doi:10.4172/2329-8790.1000263

Page 2 of 5

|               | Blood urea nitrogen                | 25.6 mg/dl  | 8.0-20.0     |
|---------------|------------------------------------|-------------|--------------|
|               | Creatinine (Cre)                   | 0.85 mg/dl  | 0.4-1.1      |
|               | Uric acid                          | 8.9 mg/dl   | 2.0-7.6      |
|               | Sodium                             | 138.3 mEq/L | 134-147      |
|               | Potassium                          | 4.3 mEq/L   | 3.5-5.0      |
|               | Chloride                           | 107.5 mEq/L | 98-108       |
|               | Calcium                            | 8.4 mg/dl   | 8.4-10.8     |
|               | Phosphate                          | 4.4 mEq/L   | 2.7-4.5      |
|               | Aspartate aminotransferase         | 25 IU/L     | 8-40         |
|               | Alanine aminotransferase           | 23 IU/L     | 4-44         |
|               | Lactate dehydrogenase              | 176 IU/L    | 119-229      |
|               | Alkali phosphatase                 | 210 IU/L    | 104-338      |
|               | Total bilirubin                    | 0.54 mg/dl  | 0.20-1.00    |
|               | Creatine kinase                    | 28 IU/L     | 28-180       |
|               | Blood glucose                      | 117 mg/dl   | 70-110       |
|               | Total cholesterol                  | 141 mg/dl   | 130-220      |
| Lipid subfrac | tion                               |             |              |
|               | HDL cholesrerol                    | 30%         | 23-48        |
|               | LDL cholesterol                    | 63%         | 47-69        |
|               | VLDL cholesterol                   | 7%          | 2.0-15       |
|               | Аро-Е                              | 4.4 mg/dl   | 2.8-4.6      |
| Coagulation   | 1                                  |             |              |
|               | %Prothrombin time                  | 106%        | 80%          |
|               | Active partial thromboplasmin time | 25.7 sec    | 33 ± 3       |
|               | Fibrinogen                         | 417 mg/dl   | 250 ± 50     |
| Urinalysis    |                                    |             |              |
|               | Specific gravity                   | 1.014       | 1.005 -1.035 |
|               | рН                                 | 5.5         | 5.0-7.5      |
|               | Protein                            | (3+)        | (-)          |
|               |                                    | 0.8 g/day   |              |
|               | Creatinine clearance rate (Ccr)    | 58.4 ml/min |              |
|               |                                    |             |              |
|               | Suger                              | (-)         | (-)          |
|               |                                    | (-)         |              |
|               | Suger                              |             | (-)          |
|               | Suger Occult blood                 |             |              |

Page 3 of 5

|          | Granular casts (+) per high-power field.   |                                                  |             |
|----------|--------------------------------------------|--------------------------------------------------|-------------|
|          | Fatty cast (+) per high-power field.       |                                                  |             |
|          | $\beta_2$ -microglobulin (U- $\beta$ -2MG) | 562 μg/L                                         | <230        |
|          | N-acetyl-β-D-glucosaminidase               | 14.7 U/L                                         | <7.0        |
| Serology |                                            |                                                  |             |
|          | C-reactive protein (CRP)                   | 0.4 mg/dl                                        | <0.3        |
|          | IgG                                        | 512 mg/dl                                        | 870-1740    |
|          | IgA                                        | 109 mg/dl                                        | 110-410     |
|          | IgM                                        | 192 mg/dl                                        | 46-260      |
|          | IgE                                        | <5.0 IU/ml                                       | <173        |
|          | C <sub>3</sub>                             | 62 mg/dl                                         | 79-140      |
|          | C <sub>4</sub>                             | 1 mg/dl                                          | 13-35       |
|          | CH <sub>50</sub>                           | <12.0/ml                                         | 25.0 - 48.0 |
|          | IgG-rheumatoid factor                      | negative                                         | negative    |
|          | Antinuclear antibody                       | negative                                         | negative    |
|          | PR3-ANCA                                   | <10 EU                                           | <10         |
|          | MPO-ANCA                                   | <10 EU                                           | <20         |
|          | Antistreptolysin-O                         | <50 U/ml                                         | <156        |
|          | Ferritin                                   | 209.0 ng/ml                                      | 12-119      |
|          | Direct Coombs test                         | negative                                         | negative    |
|          | Indirect Coombs test                       | negative                                         | negative    |
|          | Haptoglobin                                | 69 mg/dl                                         | 25-176      |
|          | Rapid plasma regain                        | (-)                                              | (-)         |
|          | Hepatitis B surface antigen                | (-)                                              | (-)         |
|          | Anti-hepatitis C virus antibody            | (-)                                              | (-)         |
|          | Cryoglobulin                               | (±)                                              | (-)         |
|          | Serum immunoelectrophoresis                | Positive M-peak for IgM lambda-light chain       |             |
|          | Urine immunoelectrophoresis                | Nonspecific pattern                              |             |
|          | Bone marrow and Lymph node biopsy          | CD20 positive/lambda positive cells infiltration |             |
|          |                                            | compatible for Waldenstrom's macroglobulinemia   |             |

Table 1: Monoclonality of IgM positive plasma cells in bone marrow and lymph node Laboratory test.

Also, she was diagnosed nephrotic syndrome and acute renal failure with Waldenstrom's macroglobulinemia. To confirm her renal involvement, a renal biopsy was examined.

Renal biopsy revealed membrane proliferative glomerulonephritis (MPGN)-like lesions with extensive glomerular capillary thrombi

which were positive for anti-IgM and anti-lambda-light chain immunofluorescence.

The electron microscopy showed characteristic thrombi intra glomerular capillary walls which were occupied with a lot of vacuoles.

Page 4 of 5

These structures were similar with them of lipoprotein glomerulopathy. We therefore confirmed that the glomerular thrombi included with rich lipids including apoE by lipid-staining (oil-red and anti-apoE) (Figures 1 and 2).

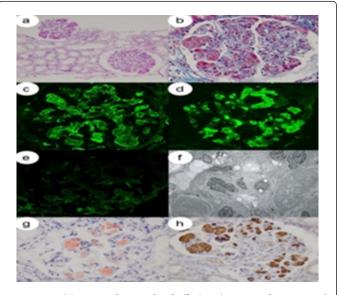
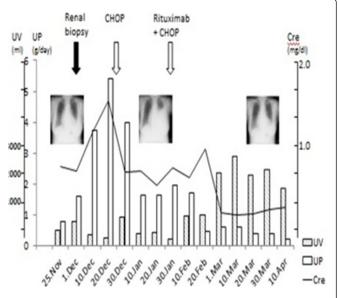




Figure 1: (a): Periodic acid-Schiff (PAS) stain, b: Masson's Trichrome (MT) Stain, c: IgM stain, d: Lambda stain, e: Kappa stain, f: Electron Microscope (X1000), g: oil-red stain, h: anti-apoE stain; Light microscopy: Two cortical tissues were submitted. Twenty-six glomeruli including 3 globally sclerosed ones were observed. Most glomerli showed MPGN-like features with focal or global thrombi. Tubulo-interstitial damage was 10% of tissue. Moderate lympho-plasmocytic infiltration was focally seen (a, b). Immunofluorescence: IgM periphery and mesangium positive, other immunoglobulins and complements negative. Thrombi: IgM weak positive (c), lambda light chain positive (d), kappa negative (e). Electron microscopy: Electron dense deposit was unremarkable in glomerulus. Thrombi were filled with abundant lipid particles, which were similar with lipoprotein glomerulopathy (f). Special stain of thrombi: Oil-red stain positive (g); Anti-apoE stain positive (h) DNA sequence of apoE gene showed no mutation. The patient was started to treat with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone), we could see of the therapy effectively at first, but recurred. After that, we try to treat with R-CHOP (including rituximab), and then nephrotic syndrome and renal failure were completely recovered (Figure 2).

## Discussion

Renal complications occur rather infrequency in WM, compared to multiple myeloma, and about 15% of WM patients are reported to show mild to moderate impaired renal function [1]. Although kidney involvement in WM is well documented, only approximately 80 biopsy-confirmed cases of have been published. AL amyloidosis is commonly considered as the main cause of nephrotic syndrome [2]. One report from single academic institution performed a retrospective 44 cases study of WM-related nephropathy [3]. The report showed the most common histiologic findings were AL amyloidosis (n=11, 25%), and there were no histiologic findings included intracapillary thrombi. Another previous 32 cases report of WM with histologically proven

renal involvement report showed that most common histiologic findings were intracapillary thrombi (n=5, 16%) and membrane proliferative glomerulonephritis (n=5, 16%) and cryoglobulinemic glomerulonephritis (n=5, 16%) followed by AL amyloidosis (n=4, 14%), and cast nephropathy (n=4, 14%) [4].



**Figure 2:** Clinical course after hospitalization, the patient showed nephrotic syndrome and acute renal failure. Treatment with R-CHOP was started, and then nephrotic syndrome and her renal insufficiency were completely recovered.

The intracapillary thrombi which caused nephrotic syndrome and acute renal failure were constructed mainly from protein of IgM paraprotein [5]. But, to our knowledge, there were no previous reports of nephrotic syndrome and acute renal failure caused by oil-rich intracapillary thrombi in WM in the literature. Therapy of WM is indicated in patients with clinically relevant symptoms. Therapeutic plasmapheresis should be performed in cases with hyperviscosity [5]. Rituximab, a monoclonal antibody against CD20, is being widely used for WM. In the prospective, randomized trial involving 64 WM patients, a significantly higher response rate (91 vs. 60%) was obtained among patients receiving R-CHOP (rituximab, cyclophosphamide, vincristine, and prednisone) vs. CHOP [6]. We used CHOP therapy, at first, because we were not able to have a diagnosis of the WM at that point. After diagnosis and recurrence, we used R-CHOP therapy. In our case, R-CHOP therapy was effective, but the efficacy of rituximabbased therapy on WM-related nephropathy is not well known [7].

## References

- 1. Argani I, Kipkie GF (1964) Macrogloburinemic nephropathy. Acute renal failure in macroglobulinemia of Waldenstroem. Am J Med 36: 151-157.
- 2. Haraguchi S, Tomiyoshi Y, Aoki S, Sakemi T (2002) Nephrotic syndrome due to immunologically mediated hypocomplementic glomerulonephritis in a patient of Waldenström's macroglobulinemia. Nephron 92: 452-455.
- Vos JM, Gustine J, Rennke HG, Hunter Z, Manning RJ, et al. (2016) Renal disease related to Waldenström macroglobulinaemia: Incidence, pathology and clinical outcomes. Br J Haematol 175: 623-630.
- 4. Salviani C, Guido G, Serriello I, Giannakakis K, Rocca AR (2014) Renal involvement in Waldenström's macroglobulinemia: Case report and review of literature. Ren Fail 36: 114-118.

Page 5 of 5

- Harada Y, Ido N, Okada T, Otani M, Shirota T et al. (2000) Nephrotic syndrome caused by protein thrombi in glomerulocapillary lumen in Waldenström's macroglobulinaemia. Br J Haematol 110: 880-883.
- 6. Buske C, Hoster E, Dreyling M, Eimermacher H, Wandt H, et al. (2009) German Low-Grade Lymphoma Study Group. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the

German Low-Grade Lymphoma Study Group (GLSG). Leukemia 23: 153-161.

 Miwa M, Sakao Y, Ishigaki S, Ono M, Fujikura T, et al. (2012) Recovery of kidney function by rituximab-based therapy in a patient with Waldenström's macroglobulinemia-related nephropathy presenting cast nephropathy and interstitial lymphocytic infiltration. Intern Med 51: 1725-1730.