
Volume 4 • Issue 1 • 1000e119
J Glycomics Lipidomics
ISSN: 2153-0637 JGL, an open access journal 

Editorial Open Access

 Khasawneh and Karim, J Glycomics Lipidomics 2014, 4:1 
DOI: 10.4172/2153-0637.1000e119

Lipid Raft and Platelet SNARE Machinery
Fadi T Khasawneh and Zubair A Karim* 
Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA

Lipid rafts are defined as insoluble areas in the cell membrane, 
resistant to non-ionic detergents. These areas, which are also called 
detergent-resistant membranes (DRMs), and are enriched in 
glycosphingolipids, saturated phospholipids and cholesterol, have 
been identified in several cell types including platelets. Initially, they 
were believed to be responsible for the intercellular transport of 
glycosyl phosphatidylinositol (GPI)-anchored proteins to the apical 
surface in polarized cells [1,2]. However, over the decades, rafts 
have increasingly been recognized as membrane microdomains, and 
found to play a critical role in the control of several cellular activation 
processes. Thus, very divergent proteins such as Src family kinases, 
caveolins, palmitoylated proteins such as G proteins, GPI-anchored 
proteins such as Thy-1 and alkaline phosphatases, tetraspannin 
proteolipids and various signaling molecules have all been shown to 
be associated with lipid rafts. Different types of rafts coexist at the 
plasma membrane with functionally distinct lipid composition [3]. 
Furthermore, lipid rafts are not only found at the plasma membrane, 
but also as part of the internal membrane of granules, Golgi complex 
and even phagosomes [4,5]. Evidence for a functional role of lipid rafts 
in platelets is very recent: Gousset et al. [6] have shown that during 
cold-induced platelet activation, rafts cluster into larger aggregates, 
a reversible process depending on platelet activation. These authors 
showed raft aggregation to be dependent on the presence of cholesterol 
in the membrane, and further identified the presence of CD36 in DRMs. 
Using fluorescence microscopy of platelets being activated with thrombin 
and collagen, large fluorescent clusters of lipid rafts were formed, leading 
these investigators to conclude that raft aggregation is triggered by platelet 
activation, suggestive of a role for microdomains in platelet signaling [6]. 

An important physiological consequence of human platelets 
signaling is exocytosis, a process that involves secretory granule fusion 
with the platelet plasma membrane. This membrane fusion reaction 
is mediated by membrane proteins called Soluble N-ethylmaleimide 
sensitive factor attachment protein receptors (SNAREs). In platelets, 
vesicle-associated membrane protein (VAMP)-8/endobrevin 
(a vesicle, or v-SNARE) is required for each granule type [7]. Two 
target membrane SNAREs (t-SNAREs) are present: the syntaxin 
class (syntaxin-11 being functionally relevant) [8] and the SNAP-
23/25 class (SNAP-23 being functionally relevant) [9-14]. Either 
immediately preceding or concurrent with membrane fusion, three 
cognate SNARE proteins on opposing membranes assemble, through 
hydrophobic interactions in their coiled-coil domains, into a parallel, 
four helical bundle [15-17]. This so-called trans complex, containing 
one copy each of SNAP-23/syntaxin/VAMP, is minimally required for 
membrane fusion [18] and on fusion, the SNAREs exist in the same 
membrane in a thermodynamically stable cis configuration [19]. This 
cis SNARE complex has to be disassembled by the adapter proteins 
N-ethylmaleimide-sensitive fusion protein and α-SNAP in a process
called SNARE priming [20,21], thereby allowing SNAREs to be reused
in another round of membrane fusion. However, what the function of
NSF and α-SNAP is in platelets is still unknown, and how the SNARE
recycling takes place in platelets is also unknown. The SNAREs form
a trans-bilayer complex, which facilitates fusion of the granule and
plasma membranes for cargo release. Although SNAREs are essential
for fusion, how, when, and where they assemble into fusogenic
complexes represent key secretion control points. Thus, SNARE
complex assembly is determined by numerous SNARE regulators (i.e.,

Munc18s and Munc13s) and post-translational modifications (i.e., 
acylation and phosphorylation) [15]. 

The SNARE proteins have also been reported to associate with lipid 
rafts in other secretory cells [22,23]. SNAP-23 and SNAP-25 associate 
with membranes by palmitoylation [24-28], and it is likely that this 
post-translational modification is responsible for the association of 
these proteins with lipid rafts. By contrast, members of the syntaxin and 
synaptobrevin/VAMP family are generally not palmitoylated, and their 
mechanism of association with rafts remains unknown. In addition, it 
is unclear to what extent individual SNARE subunits or binary/ternary 
SNARE complexes associate with lipid raft membranes or whether the 
nature of SNARE complexes associated with rafts is altered during the 
process of regulated exocytosis.

Karim et al. [8] have been examining the membrane distribution 
of individual SNARE proteins and SNARE complexes that regulate 
granule exocytosis from human platelets (unpublished). The role of lipid 
rafts in platelet exocytosis is still unclear. Nonetheless, it is interesting 
that SNAP-23 appears to localize to rafts yet for biophysical reasons, 
rafts appear to be an unlikely site for membrane fusion events given the 
rigidity of their structure. It seems possible that phosphorylation could 
be an exclusion signal that prevents a portion of the acylated SNAP-23 
from associating with the rafts. 

Finally, it is very important to notice that cholesterol is at the core 
of the platelet lipid-raft function. Could cholesterol-lowering drugs 
directly affect platelet function, and could their action be via an effect on 
the platelet rafts? Certainly statins have been shown to reduce platelet-
dependent thrombus formation [29], and such effects could explain the 
rapid therapeutic benefits of statin therapy [30]. Much further research 
lipid rafts is warranted and also it is important to understand how lipid 
rafts are involved in platelet exocytosis.
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