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Introduction
Thyroid cancer is the most common cancer in Korea, with papillary 

thyroid carcinoma being the most frequent histologic subtype [1,2]. 
Preoperative histopathologic diagnosis is based on the degree of atypia 
of biopsy samples. According to the National Cancer Institute Thyroid 
FNA State of the Science Conference, thyroid lesions are categorized 
as benign, atypia, follicular neoplasm, suspicious for malignancy, and 
malignant [3,4]. Suspicious for malignancy category includes papillary 
thyroid cancers displaying subtle and focal nuclear and architectural 
changes [5]. Nodules called suspicious for papillary carcinoma are 
usually resected, and most (60–75%) prove to be papillary carcinomas 
[4]. Given the difficulty in diagnosing papillary thyroid carcinoma 
using small tissue samples, therefore, more sensitive and specific 
diagnostic tools are urgently needed for this disease [6].

Histology-directed Tissue Matrix-Assisted Laser Desorption/
Ionization (MALDI) Mass Spectrometry (MS) is a sensitive proteomic 
technology that can distinguish cancerous epithelium from normal 
epithelium [7]. We and others have demonstrated that MALDI MS can 
also be used to obtain lipid profiles in clinical tissue samples [8-12]. We 
have previously reported that lipid profiles accurately differentiate lung 
cancers from normal tissue [8]. Recently, Ishikawa et al. [12] reported 
thyroid cancer-specific lipid MALDI MS profiles using relatively small 
number of thyroid cancer specimens, but they did not validate the 
clinical utility of this approach in sufficiently large number of patients. 
Using a larger set of clinical samples, here we demonstrate that lipid 
profiles that may possibly assist with the diagnosis of papillary thyroid 
carcinomas. 

Materials and Methods
Tissue preparation and MALDI MS data acquisition

Samples were obtained, with informed consent and institutional 
review board approval, from 22 papillary thyroid cancer patients 
undergoing surgery at National Cancer Center in Korea. Twenty 
of them (90.1%) were female. Samples were collected at the time of 
surgery, and stored at liquid nitrogen until analysis. Thin (10 µm) 
cryosection slides were obtained from frozen tissues. One glass slide 
cryosection was stained with Hematoxylin and Eosin (H&E), and the 
other sections were thaw-mounted onto an Indium Tin Oxide (ITO) 
slide (HST Inc., Newark, NJ), desiccated in vacuum for subsequent 
MALDI MS profiling. The H&E-stained cryosection slide was evaluated 
tumor-rich (>75%) area [8-10].

We prepared the MALDI MS matrix solution by dissolving 
7 mg each of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-
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hydroxycinnamic acid (CHCA) in 1 ml of 70% methanol plus 0.1% 
TFA and 1% piperidine [8] and deposited the matrix on tissue-loaded 
ITO slides using the CHIP-1000 instrument (Shimadzu, Kyoto, Japan). 
Mass spectra were acquired using UltrafleXtreme (Bruker Daltonics) at 
a laser frequency of 1,000 Hz. An external calibration was conducted 
using lipid-mixed calibration standards with m/z 674-834 (positive 
ion mode) and m/z 564-906 (negative ion mode). Guided by the H&E-
stained cryosection slide, deposited matrix spots representing tumor-
rich area were selected using FlexImaging software (version 2.1, Bruker 
Daltonics) for each tumor sample (Figure 1). Mass spectra data from 
selected spots was then exported to ClinProTools (version 2.2, Bruker 
Daltonics) for further data processing.

Data processing and statistical analysis

Baseline subtraction, spectral recalibration, and spectral area 
calculation were performed using ClinProTools (version 2.2, Bruker 
Daltonics). A resolution of 300 was applied to the peak detection 
method, and the Top Hat baseline with 10% minimal baseline width 
was used for baseline subtraction. Data reduction was performed at a 
factor of four, and spectra were recalibrated with a maximal peak shift 
of 2,000 ppm between reference and peak masses. All data with signal-
to-noise ratios >5 were acquired. An average peak list was set up for 
each tissue sample by choosing peaks on the calculated total average 
spectrum for each tissue sample to create one average spectrum per 
patient. After excluding peak m/z 616 (non-lipid) in the positive mode, 
we normalized positive-mode datasets and negative-mode datasets 
to the average area. Average-normalized datasets (i.e., positive- and 
negative-mode lipid datasets) were then combined into a single dataset 
and subjected to statistical analysis using BRB-ArrayTools (NCI, USA, 
version 4.1) [13]. We performed class prediction analyses using all 
classifier functions of BRB-ArrayTools (compound covariate predictor, 
diagonal linear discriminant analysis, 1- and 3-nearest neighbors, 
nearest centroid, and support vector machine). Class prediction 
analyses were first performed by randomly dividing the training set 
into two (training and test) subsets at 1-to-1 ratio (i.e., 7 and 7 pairs). 

nQuery Advisor software (version 7.0, Statistical Solutions, Saugus, 
MA) was used for randomization. Each classifier predicted class 
labels of 7 pairs in the test set for each of 100 random training-to-test 
partitions. Informative peaks identified in training set (14 pairs) were 
then used to predict class labels of 8 samples in the validation set. 

MALDI LIFT (MS/MS) analysis was performed on cryosections 
after MALDI MS and the data were mapped to public lipid databases 
(www.lipidmaps.org). 

Results
MALDI MS analyses were performed for 36 surgical tissue samples 

(16 cancers and 20 adjacent normal tissue samples) from 22 patients 
(Table 1). Among these 36 samples, 28 samples (14 tumor/normal 
pairs) were from the same patients. These 14 tumor/normal pairs were 
used as a training set. Another 8 unpaired samples (2 cancers and 6 
adjacent normal tissue samples) were used as a validation set.

In the positive ion mode, MALDI MS signals from 3 to 20 spots 
(with a median value of 11) were averaged to generate an average mass 
spectrum for each cancer sample, and signals from 3 to 23 spots (with a 
median value of 15) were averaged in normal samples. In the negative 
ion mode, MALDI MS signals from 3 to 26 spots (with a median value 
of 13) were averaged to generate an average mass spectrum for each 
cancer sample, and signals from 5 to 19 spots (with a median value of 
14) were averaged in normal samples. As shown in figure 2, 84 features 
(39 and 45 for positive and negative modes, respectively) were finally 
processed for subsequent analyses. 

Papillary thyroid carcinomas in the training set demonstrated 

Figure 1: General procedure. Representative optical image of the 
cryosection ITO slide with matrix (left) and magnified areas of the H&E-
stained consecutive cryosection slide of a tumor sample (right) are shown. 
The H&E-stained cryosection slide was evaluated for tumor-rich (>75%) area. 
Guided by the H&E-stained cryosection slide, deposited matrix spots on ITO 
cryosection slides representing tumor-rich area (shown in red) were selected 
using FlexImaging software for each tumor sample. Similar procedures were 
performed for normal tissue samples. Mass spectra data from selected spots 
was then exported to ClinProTools for further data processing.

Training set  Validation set

Number of patients 14 (paired samples) 8 (unpaired samples)

Median age (year) 49.5 55

Gender

Female 13 (93%) 7 (88%)

Male 1 (7%) 1 (12%)

Primary tumor location

Unilateral 10 (71.4%) 8 (100%)

Bilateral 4 (28.6%) 0 (0%)

Surgery

Total thyroidectomy 13 (93%) 8 (100%)

Lobectomy 1 (7%) 0 (0%)

Pathologic stage, 
AJCC1

Age<45
Stage I 

T1bN0
T3N1a 

Stage III 

1 (7.1%)
3 (21.4%)

0
1 (50.0%)

Age ≥ 45

Stage I

T1aN0 2 (14.3%) 0
Stage III

T3N0 4 (28.6%) 1 (50.0%)

T3N1a 4 (28.6%) 0
1AJCC, American Joint Committee on Cancer (7th Edition)

Table 1: Patient characteristics.

http://www.lipidmaps.org
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significantly different lipid profiles from normal tissue samples. There 
were 27 lipid peaks differentially expressed between cancer and normal 
at a feature selection P value <0.001, and the probability of getting 
at least 27 peaks significant by chance if there are no real differences 
between cancer and normal samples is less than 0.001, suggesting the 
clear difference in lipid profiles (Table 2). According to the principal 
component analysis, papillary thyroid carcinoma samples were 
separately clustered from adjacent normal tissue samples (Figure 3). 

We performed class prediction analysis after randomly dividing 28 
training set samples into two groups at 1-to-1 ratio. The median class 
prediction accuracy of all predictors in random test sets was 100% (7 out 
of 7 pairs) in 100 random training-to-test partitions (feature selection 
P <0.001). Then, 8 additional samples (2 cancer and 6 adjacent normal 
samples) were used to validate informative peaks identified using 14 
pairs of samples in the training set. Using peaks differentially expressed 
between 14 pairs of cancer and adjacent normal samples, we could 
correctly predict 100% of validation set samples (8 out of 8 samples) by 
all predictors. These results clearly demonstrate that papillary thyroid 
carcinomas and adjacent normal tissues have distinct lipid profiles 
(Supplementary table 1).

Seven tumor samples were collected from American Joint 
Committee on Cancer (AJCC) stage I thyroid cancer patients and 9 
tumor samples were from stage III patients (Table 1). There were 3 
peaks differentially expressed between cancer and normal at a feature 
selection P value<0.1, and the probability of getting at least 3 peaks 
significant by chance if there are no real differences according to stage 
was 0.78. This result indicates that lipid profiles are not significantly 
different between stage I and stage III cancers. 

Using MS/MS analysis, we identified lipid MALDI peaks 
differentially expressed between cancer and normal tissue samples 
at a feature selection P value<0.001 (Figure 4). Peaks m/z 741.6, m/z 
772.7, and m/z 798.6 in the positive ion mode, that were overexpressed 
in thyroid cancer, were identified as sphingomyelin (SM) 34:1, 
phosphatidylcholine (PC) 32:0, and PC 34:1 (Figure 4A). Peaks 
m/z 599.5, m/z 835.6, m/z 861.7, and m/z 885.7 in the negative ion 
mode, that were overexpressed in thyroid cancer, were identified as 
phosphatidylinositol (PI) (18:0/0:0), PI (16:0/18:1), PI:Cer (d18:1/22:0) 
and PI (18:0/20:4) (Figures 4B and 4C). Lysophosphatidylcholine 18:3 
(m/z 518.4 in the positive ion mode) and lysophosphatidylserine 18:1 
(m/z 524.4 in the positive ion mode) were identified as lipids under 
expressed in papillary thyroid carcinomas (Figure 4D).

Discussion
This study demonstrates that the lipid profiles are different between 

papillary thyroid carcinoma and adjacent normal tissue samples. We 
identified phosphatidylcholines 32:0, and 34:1 as overexpressed peaks 
in papillary thyroid carcinoma. While we prepared this manuscript, 
Ishikawa et al. [12] reported that PC 32:0, PC 34:1 and SM 34:1 are 
overexpressed in a thyroid cancer patient. Our study extends the 
finding of prior smaller-scale lipid MALDI MS study, by assigning a 
larger number of cancer-associated peaks and by demonstrating the 
diagnostic utility of this approach in prospective clinical samples. 
Collectively, our data comprise an unparalleled comprehensive 
list of papillary thyroid carcinoma-specific lipids. Increase in the 
phosphatidylcholine content has been observed in several common 
solid tumors [8-10]. Since phosphatidylcholine is a major constituent 
of cell membrane, phosphatidylcholine requirement may increase 

Figure 2: Overlays of average mass spectra obtained from papillary thyroid 
carcinoma (shown in red) and adjacent normal tissue (shown in green), in 
positive-(upper panel) and negative-(lower panel) ion modes, respectively. 
Results are the average of all cancer samples (shown in red) and average of 
all normal tissues (shown in green), respectively.

Figure 3: A principal component analysis (PCA) plot for papillary thyroid 
carcinoma (shown in green) and adjacent normal (shown in red) samples, 
based on the lipid MALDI MS profiles (‘1-correlation distances among samples’ 
as the distance metric). Samples whose lipid MALDI profiles are very similar 
are shown close together.
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in rapidly growing cells. Eliyahu et al. [14] reported that choline 
transport rates and choline kinase activity increase by several fold 
in breast cancer, leading to increased phosphocholine. Increased 
phosphocholine, in turn, may contribute to the increased content of 
phosphatidylcholine in cancer. Several investigators reported that 
choline kinase plays a role in carcinogenesis [15-17]. Thus, increase in 
phosphatidylcholines 32:0, and 34:1 is consistent with the data in the 
literature. Our study also reveals that lysophosphatidylcholine 18:3 and 
lysophosphatidylserine 18:1 were underexpressed in papillary thyroid 
carcinomas, compared with normal tissue. While lysophospholipids 
are generated by phospholipase and reactive oxygene species generated 
in inflammatory conditions [18], decrease in these lysophospholipids 

Overexpressed in cancer

Peak P FDR Normal Cancer Ratio1 Assignment

p741.6 0.0001 0.0008 8.1 12.0 1.5 SM (34:1) K+

p750.5 <0.0001 0.0002 7.8 14.6 1.9 

p772.7 <0.0001 0.0002 5.5 9.1 1.6 PC (32:0) K+

p798.6 0.0001 0.0005 7.5 14.5 1.9 PC (34:1) K+

n552.6 0.0006 0.0019 3.1 3.5 1.1 

n588.2 0.0001 0.0005 8.3 12.0 1.4 

n599.5 0.0001 0.0008 7.3 9.6 1.3 PI (18:0/0:0)

n616.6 0.0004 0.0016 2.4 3.3 1.4 

n687.6 0.0007 0.0023 5.8 7.5 1.3 

n701.7 <0.0001 0.0001 3.4 5.5 1.6 

n835.6 <0.0001 <0.0001 3.0 7.5 2.5 PI (16:0/18:1)

n857.7 <0.0001 <0.0001 1.4 2.7 2.0 

n861.7 <0.0001 <0.0001 1.8 4.4 2.4 PI-Cer (d18:1/22:0)

n885.7 <0.0001 0.0002 3.0 13.9 4.8 PI (18:0/20:4)

Underexpressed in cancer

Peak P FDR Normal Cancer Ratio1 Assignment

p518.4 0.0003 0.0015 1.7 1.2 0.7 LPC (18:3)

p524.4 0.0002 0.0012 2.2 3.5 0.4 LPS (18:1)

p572.3 0.0005 0.0017 2.2 1.1 0.5 

p650.5 0.0002 0.0009 3.0 2.0 0.7 

p672.1 0.0004 0.0016 3.6 1.5 0.4 

p701.6 0.0001 0.0008 2.6 1.3 0.5 

p705.5 <0.0001 0.0002 5.8 3.6 0.6 

p717.5 0.0008 0.0025 4.8 2.8 0.6 

n533.5 0.0004 0.0016 4.3 3.4 0.8 

n555.2 0.0003 0.0015 3.1 3.5 0.7 

n563.2 0.0005 0.0017 4.8 3.2 0.7 

n584.5 <0.0001 0.0003 14.5 6.3 0.4 

n620.2 0.0001 0.0008 11.5 6.4 0.6 

1Ratio, Ratio of cancer to normal; 
2p741.6, m/z 741.6 in the positive ion mode; 

3n552.6, m/z 552.6 in the negative ion mode
FDR: False Discovery Rate; SM: Sphingomyelin; PC: Phosphatidylcholine; PI: Phosphatidylinositol; PI:Cer, Phosphatidylinositol:ceramide; LPC: Lysophosphatidylcholine; 
LPS: Lysophosphatidylserine

Table 2: Peak differentially expressed between papillary thyroid carcinoma and normal tissue at p<0.001.

in cancers has not been reported thus far. Further studies are needed to 
validate this interesting finding.

Our study demonstrates that the lipid MALDI MS profiles 
distinguish cancerous epithelium from normal epithelium at 100% 
accuracy, for the first time to our knowledge. Papillary thyroid 
carcinomas often pose a diagnostic challenge to pathologists. In this 
regard, our finding that papillary thyroid carcinomas and normal tissue 
have highly distinct lipid profiles is noteworthy. In addition to the high 
classification power, potential advantages of histology-directed lipid 
MALDI MS analysis may include low reagent cost, rapid experimental 
procedure, and small amount of tissue required for the analysis. Hence, 
further studies using larger clinical sample sets may be warranted to 
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Figure 4: Molecular identification using MALDI LIFT (MS/MS) analyses. (A) Peaks at m/z 741.6, 772.7, and 798.6 in the positive ion mode (B) Peaks at m/z 599.5 and 
835.6 in the negative ion mode (C) Peaks at m/z 861.7 and 885.7 in the negative ion mode (D) Peaks at m/z 518.4 and 524.4 in the positive ion mode.

evaluate the possibility of clinical translation of lipid profiles we have 
identified.
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