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INTRODUCTION

Air pollution a topic that deals with discharge of different gases, 
fine particulate matter, or finely dispersed liquid aerosols into 
the atmosphere at rates greater than the environment’s capacity 
to dissipate, dilute, or absorb them. This century has seen air 
pollution become one of the key environmental concerns, with 
the consequences becoming more visible over time. It has a 
tremendous negative impact on human health and quality of 
life and is regarded as one of the most serious environmental 
threats to human health [1]. Rapid urbanization is predominantly 
associated with deteriorating urban air quality [2]. Increased 
urbanization causes substantial changes in Land Cover Land Use 

(LCLU) in metropolitan areas. As a result of such rapid land-
use changes, the climate in urban regions has been altered from 
its natural state when contrasted to the surrounding rural and 
suburban areas [3]. Over the last four decades or so, continuous, 
and rapid economic expansion and urbanization, as well as a 
significant increase in vehicle population, have resulted in severe 
environmental challenges [4-7].

Urban population growth is accompanied by an increase 
in anthropogenic activities such as burning fossil fuels for 
transportation, cooking, and building cooling or heating, which 
in turn raises the levels of air pollutants like Sulphur Dioxide 
(SO

2
), Nitrogen Dioxide (NO

2
), Carbon Monoxide (CO), and 
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Particulate Matter (PM). Daily deposits and accumulations of 
primary and secondary particles from many anthropogenic and 
natural sources are mixed with hazardous compounds from 
vehicle emissions, and exhausts [8]. Road surface abrasion, road 
dust resuspension, vehicle component wear and tear, tyre, clutch, 
and brake wear are all non-exhaust emission sources of PM 
[9,10]. Non-exhaust emission sources of pollution include factors 
such as traffic volume and vehicle speed [11]. PTEs (Potential 
Toxic Elements) and PM with a diameter of less than 10 m 
are released into the atmosphere because of brake wear, which 
includes brake lining and disc abrasion brought on by grinding, 
volatilization, and condensation of brake pad material [12-14]. 
Particles that have already been deposited may be resuspended 
due to tyre stress, turbulence from moving vehicles, and other 
factors like wind and pedestrian activity [15]. The suspension of 
particles occurs because aerodynamic drag from moving vehicles 
causes greater turbulent activation than adhesive forces [16,17]. 
Car speed and particle resuspension have a definite link; as 
speed increases, so does the rate of resuspension [18-20]. Many 
atmospheric phenomena are influenced by atmospheric aerosols, 
including cloud formation, visibility, radiation, and solar 
radiation transmission; they also play an important part in the 
acidity of clouds, rain, and fog [21-23]. Gases such as Carbon 
Monoxide (CO), Nitrogen Oxides (NO

x
), Methane (CH

4
), and 

Volatile Organic Compounds (VOCs) are produced because of 
industrialization, urban development, and transportation, and 
are chemically involved in the formation of tropospheric ozone. 
Ozone in the troposphere is also caused by the transfer of air mass 
from the stratosphere Biomass burning, particularly forest fires, 
and contributes to ozone levels in tropical regions [24-29]. CO 
interacts with water vapour to generate the OH radical, which, in 
the presence of UV radiation, leads to the production of Ozone. 
The increase in Ozone Gas-to-Particle Conversion (GHG) 
concentration causes warming of the troposphere, which in turn 
causes climate change in the long run [30,31]. Ozone at ground 
level works as a powerful oxidant, harming both people and 
plants [32]. Ozone in the lower troposphere has roughly doubled 
due to elevated VOC and NO

X
 levels during the past couple of 

centuries, making it the third-most significant human greenhouse 
gas after CO

2
 and CH

4
. Ozone generation increases with rising 

NO
x
 during the NO

x
-limited regime because it is sensitive to 

variations in NO
x
 concentrations. In contrast, during the VOC-

limited regime, ozone generation increases with rising VOCs and 
thus decreases with increasing NO

x
 concentrations. Therefore, 

any decrease in NO
x
 under a VOC-limited environment always 

results in a rise in ambient ozone levels [33]. Ozone exposure 
has been linked to both acute and chronic respiratory problems 
in people, with asthmatic patients and children suffering the 
worst effects. In addition to these effects, ozone also harms plants 
[34,35].

Exposure to CO, SO
2
, and NO

2
 can lead to decreased work 

capacity, worsening of pre-existing cardiovascular diseases, 
unfavorable effects on pulmonary function, respiratory 
infections, lung irritation, and changes in lung defense systems 
[36,37]. Emissions from vehicles and industries are substantial 
contributors to NO

x
 concentrations in metropolitan areas [38]. 

And aromatic VOCs such as Benzene, Toluene, Ethylbenzene, 
and Xylenes (BTEX) account for 60% of non-methane VOCs, 

furthermore, these VOCs react with nitrates to generate secondary 
organic aerosols. The presence of VOCs in urban air is primarily 
due to anthropogenic factors, such as the use of mechanical 
vehicles powered by petrol or diesel engines [39]. Agriculture 
is the main source of NH

3
 emissions into the atmosphere, and 

through interactions with water vapour and other air pollutants, 
such as oxidation products of Sulphur Dioxide (SO

2
) or Nitrogen 

Oxides (NO and NO
2
, or NO

X
), gaseous NH

3
 in the atmosphere 

leads to the production of airborne fine particulate matter [40,41]. 
A significant portion of PM2.5 is composed of ammonium 
compounds, such as Ammonium Sulphates (NH

4
HSO

4
 and 

(NH
4
)2SO

4
) and Ammonium Nitrate (NH

4
NO

3
) [42]. The 

influence of NH
3
 emissions on PM2.5 depends on meteorological 

factors (such as temperature and relative humidity), the degree of 
the perturbation to NH

3
 emissions, and the amount of Particulate 

Nitrate (NO3-), Gaseous Nitric Acid (HNO
3
), and Particulate 

Sulphate (SO
4

2- and HSO
4
-), which are the by-products of the 

oxidation of SO
2
 and NO

x
, two combustion by-products [43,44].

NH
3
 has a profound impact on the biogeochemical nitrogen cycle 

and has negative health and environmental consequences [45-
47]. NH

3
 can also cause eye, nose, and throat irritation, dizziness, 

and headaches in humans [48-50]. After NH
3
 is released into 

the atmosphere, it can either deposit in the form of rain or dry 
deposition in the area’s water bodies or it can interact with other 
substances to produce other pollutants and do further damage 
[45-50]. Ammonia can play a critical role in the nucleation of 
aerosols [51,52]. These ammoniated particles scatter light, 
reducing visibility and perhaps cooling the atmosphere. [53] 
Innovations in science and technology are critical for reducing 
pollution emissions, increasing resource efficiency, and finding 
solutions to environmental pollution issues [54]. As in 2016 
and 2019, the United Nations Environment Programme issued 
two assessments recognizing improvements in Beijing’s air 
quality because of efficient control tactics linked to clean fuel, 
construction dust, transportation dust, and coal- fired boilers 
[55]. India being a developing country is facing strong air 
pollution due to large scale urbanization, poor infrastructure 
and improper implementation of rules and regulation, and 
other quality measures. Current study checked the air pollutants 
status of two Indian industrial towns in Haryana state, and their 
possible interaction among each other. The aim of this study is 
two-fold, (i) to determine the relationship between particulate 
and characteristics gaseous pollutants, and to check any possible 
correlation between different air pollutants during the past four 
years at the two study sites; (ii) to examine the influence of local 
meteorological parameters on the concentration of particulate as 
well as gaseous pollutants, emitted directly and formed in the 
atmosphere. 

MATERIALS AND METHODS

For the present study, two observation sites, Dharuhera and IMT-
Manesar (Figure 1A), characterized by small and large industrial 
activity, respectively, in Haryana State were selected (Figures 1A 
and 1B) .Depict the sectorial layout and satellite view of the two 
study sites, respectively. They are well-known industrial hubs of 
the State. A few of the major industries at these sites include Hero 
Moto Corp, JTEKT India, Venus Engineers, DELPHI Automotive, 
Amul, Carlsberg, Lumax industries, ASK automotive, FCC 
Clutch India, Jaguar, and Company, JNS Instruments. These 
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activities are responsible for the recent increase in urbanization 
in these towns (having populations of more than 30,000 each). 
Coupled with high vehicular density and industries these hubs 
are high on pollution. Dharuhera is a poorly planned place and 
is surrounded by rural sectors (visible from the satellite view in 
Figures 1A and 1B, especially the northern part of Dharuhera), 
while IMT-Manesar is comparatively well planned and with 
urban background. India’s busiest highway NH48 passes through 
both towns (Figure 2). Which might have dominant hand in air 
pollution to these sites. Some possible, frequent and distinct air 
pollutant sources like transport, stubble burning, automotive, 
chemical industries, road dust resuspension, wood stove burning 
etc. at both sites are displayed in (Figures 3A and 3B). Some 
geographical and meteorological features of the study sites are 
presented in Table 1.

The data for this study was obtained from the real-time Air quality 
data of monitoring stations of Central Pollution Control Board 
(CPCB), open archive website, where various air pollutants along 
with some meteorological parameters are monitored continuously 
all over the country. For the current study, the datasets of four 
years (1 January 2019 to 31 December 2022) of particulate matter 
(PM2.5 and PM10) and gaseous pollutants (NO

x
, SO

2
, NH

3
, CO, 

O
3
, C

6
H

6
) at two sites were analyzed. Time series for all parameters 

considered in this study were plotted along with correlograms. 
Out of the resultant many correlograms, only 18 were chosen, 
showed correlation coefficient of more than 0.5 and included 
in this communication. The other correlograms where the 
correlation coefficients were either very low or negative. We do 
not mean that they are not important, but they might be showing 
correlation with lag or lead, and negative correlation indicates 
inverse relationship. Associated geographical, meteorological, 
and demographic data was taken from the web (Google maps, 
census, climate data-org, Metoblue).

RESULTS AND DISCUSSION

The results obtained from the analysis of observations performed 
are presented and discussed in the following sub-sections.

Time series analysis of particulate matter

This subsection depicts the time series plots of all parameters 
studied during the study period (from 1 January 2019 to 31 
December 2022). The motive of this analysis was to check 
the trends in the concentrations of pollutants during the last 
four years. If there is any reduction or increase in pollutants 
concentrations, exemplify the pollution strategies and mitigation 
management plans implemented in these regions.

Figure 1: (A) Study sites: Dharuhera (left) and IMT-Manesar (right); (B) Site layouts; Dharuhera (left) and IMT-Manesar (right).



4J Pollut Eff Cont, Vol. 12 Iss. 3 No: 1000403

Yadav S, et al. OPEN ACCESS Freely available online

Figure 2: Some characteristic pollution sources prevailing at Dharuhera.

Figure 3: Time series analysis of (A) PM2.5 at study sites; (B) PM10 at study sites.
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ratio during summertime than wintertime. NO
x
 (NO+NO

2
) 

time series of NO
x
, NO, and NO

2
 are depicted in Figure 7. The 

overall concentrations of NO
x
 at these sites throughout the study 

period were below daily prescribed limits. At Dharuhera site NO
x
 

emissions were below 80 µg/m3 while at IMT, concentrations 
occasionally clocked higher during study period. The annual 
trend of winter peaking and monsoon plummeting was once 
again apparent like particulate matter, possible influence of BLH 
and wind (speed and direction) [58,59]. Increased NO

x
 during 

winter might have been due to the lowered photolysis of ozone 
due to temperature plummeting (as NO

X
 aids in O

3
 formation) 

[61]. IMT-Manesar (Figure 8). Time series of NO
x
; (1) Dharuhera; 

(2) IMT-Manesar. For the NO emissions (Figure 8), at the studied 
sites, once again, IMT-Manesar had higher NO emissions than 
that at Dharuhera. Concentration peaks in Dharuhera were close 
to 100 µg/m3 while it is above 150 µg/m3 level at IMT. The winter 
peaking and monsoon plummeting are like NOX variations (role 
of planetary boundary layer height and mixing), these findings 
are consistent with earlier published research works [62,63]. For 
NO

2
 concentrations at both locations (Figures 9A and 9B), the 

difference between NO
2
 concentrations at the two study sites 

were smaller than NO and the total nitrogen compounds of 
NO

x
, still IMT being the bigger sink (of nitrogen oxides) than 

Dharuhera. The common peaks of winter were a bit diffused 
for NO

2
 (contrasting to sharp peaks of NO

x
 and NO) and align 

with the results reported in the literature [59,62]. The higher 
concentrations of NO

x
 (NO+NO

2
) at IMT sites indicate the 

presence of stronger NO
x
 sources, which generally encompasses 

high temperature combustion processes (industries, vehicles, 
tobacco etc.). The annual variations in nitrogen oxides can 
have the meteorological influence (mainly) and seasonal source 
variability (minor). Although the mean concentration of nitrogen 
oxide pollutions had been below daily limit by CPCB (80 µg/
m3), indicating low (possible) health issues due to such pollutants 
at both sites, but the seasonal fluctuations can introduce health 
problems during wintertime especially to sensitive age group 
(even though annual mean is into the green zone) [63].

Carbon monoxide (CO)

Time series of CO concentrations of both sites are depicted in 
(Figures 10A and 10B). The daily averages of CO concentration 
were below the prescribed limits of CPCB at both sites. Overall 
CO concentrations were higher in Dharuhera, which might be 
due to the higher biomass burning processes (rural background/
surroundings). In this case the annual trend of concentration 

Particulate matter

Time series of PM2.5 and PM10 at the Dharuhera and IMT-
Manesar sites are depicted in (Figures 4A and 4B). Particulate 
concentrations are mostly associated with the air quality of any 
region. Especially PM2.5 concentrations depict health-wise 
quality of the ambient air of a region. The world’s most polluted 
places are often ranked based upon PM2.5 daily mean emissions. 
We can deduce that the concentration of PM2.5 at IMT-Manesar 
(red line) is more than that at Dharuhera (black line) for most 
of the days in this 4-year period. The concentration is above the 
daily prescribed limit by the CPCB. The undulations or trends 
provide an understanding of how much extent these sites are 
polluted. One common trend that was noticed at both locations 
was the annual peaking of PM2.5 concentrations during the 
wintertime (November-December months) and plummeting 
during the monsoon months (July-August) [56,57]. The increase 
in concentrations during the wintertime is attributed to the 
boundary layer height and other meteorological parameters [58]. 
Further, there is no systematic reduction or increase in their 
concentrations with time. In the case of PM10 concentration at 
both sites, as depicted in a similar trend is apparent (Figures 5A 
and 5B). PM10 pollution remains above (daily) the prescribed 
limit. The annual trend of peaking and plummeting is like 
PM2.5 [59]. Dharuhera showed higher PM10 concentrations 
in comparison to IMT-Manesar for most of the time in these 4 
years. The PM10 concentrations signify the presence of more soil 
dust-driven sources in the Dharuhera region in contrast with the 
IMT-Manesar but vehicular pollution appears to be more over 
the IMT-Manesar region. The rural surroundings, open fields, 
traffic jams etc. in the Dharuhera region contribute more to 
the PM10 concentrations, which contradicts the IMT-Manesar 
settings (Figures 6A and 6B). Depicts a considerable proportion 
of PM2.5 embedded in PM10. As PM2.5 is a part of PM10, the 
ratio between PM10 to PM2.5 stays always more than one. In 
the present study, it ranges between 1 and 6, signifying PM10 
dominance in these regions (especially in Dharuhera). However, 
the ratio between two was significantly higher during the summer 
months than wintertime, usually, during winter, due to low 
temperatures and hence the possibility for formation of particles 
is higher than during summertime, lower wintertime ratio could 
mean significantly high proportion of PM2.5 in PM10 due to 
higher nucleation possibility [60]. And higher wind speeds aid 
in the resuspension of coarse dust particles (PM10), and higher 
vertical mixing of fine particulate matter led to high PM10/PM2.5 

Parameter Dharuhera IMT-Manesar

Location 28.22˚N 76.78˚E 28.35˚N 76.93˚E

Annual mean temperature 25.06˚C 25˚C

Annual mean minimum temperature 19.01˚C 19.06˚C

Annual mean maximum temperature 31.14˚C 31.08˚C

Annual mean precipitation 570 mm 636 mm

Annual mean relative humidity 51.25% 52.91%

Annual mean wind speed 10.1 kmph 9.83 kmph

Table 1: Geographical and meteorological features of the two study sites.
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subsection, correlation plots with Pearson’s coefficient are 
depicted for each site.

Correlograms pf pollutants at dharuhera site: Out of 65 
correlograms between variables, only 6 exhibited significant 
correlations (better than ± 0.5) at the Dharuhera site may be 
partly due to relative strength of sources also and due to lack 
of synchronization between the variations in concentration of 
pollutants under study. The significant six correlation plots are 
shown in and explained in the paragraphs to follow. PM2.5 versus 
PM10 showed a strong positive correlation (0.81), which signifies 
a constant proportion of PM2.5 in the PM10 concentration 
at Dharuhera site throughout these four years. As PM2.5 
(particles with less than 2.5 micrometer aerodynamic diameter) 
is a subpart of PM10 (diameter of less than 10 micrometer), so 
this kind of correlation is inherent. PM2.5 versus NO

x
 showed a 

moderate positive correlation (0.5), which simply directs towards 
any possible interaction between these two (without complete 
surety). Usually, NO

x
 particles aid in secondary particulate 

formation in the atmosphere, so a moderate correlation shows 
possible formation of secondary PM2.5 particles through GPC 
(Gas-To-Particle Conversion) phenomenon in the atmosphere. 
PM10 versus NO

x
 showed a moderate positive correlation 

coefficient (0.52), as in the case of PM2.5 and NO
x
. Formation of 

secondary PM10 particles is unlikely (because it requires ambient 
environmental conditions favorable to GPC conditions), so there 
might have been some common sources of PM and NO

x
 ((like 

vehicles). Multiple studies have showed similar findings. The 
Nitrogen family (NO

x
, NO, NO

2
) showed significant positive 

correlation among the three, with highest correlation between 
NO and NO

X
 (0.87), followed by NO

2
 and NO

x
 (0.83), and NO 

and NO
2
 (0.58). Possible reasons for their high correlation are 

common emitters or sources like vehicles and industries, and 
their interaction in the atmosphere (NO

X
 is made up of NO 

and NO
2
), and other NO-NO

2
-O

3
 quasi- equilibrium. Such 

relationships and interactions were found in related works and 
they need further study [70-75].

was like PM and NO
x
 pollutants at the IMT site only, while at 

Dharuhera, it’s quite irregular, which might mean the presence 
of some (constant) local source, like some industry, fireplace, 
furnace, biomass burning activities, which overcompensate the 
effects of meteorology [64,65].

Ammonia (NH3)

Time series of ammonia at both sites are depicted in Figure 11. 
The ammonia concentrations at both sites were well into safe 
zone. IMT-Manesar emitted considerably higher ammonia than 
Dharuhera into the atmosphere. Ammonia emissions might 
have been general agriculture (fertilizer and livestock) and 
waste (anaerobic digestion) based material in Dharuhera, while 
industrial (coal-based boilers, fertilizer plants) and waste at the 
IMT-Manesar. NH

3
 concentrations at this place follow winter 

peaking and summer plummeting trend which was peaking 
during summertime absent at the Dharuhera site [66]. The 
significantly higher concentrations at IMT-Manesar showed 
the dominance of non-agricultural based sources and role of 
meteorology over seasonal fluctuations [67]. Time series of 
ozone of the studied sites are depicted in the ozone is also a by-
product of photochemical reaction between VOCs and NO

X
 in 

the presence of UV. Its direct emitters are airplane, smokestacks, 
and heating systems. At study sites ozone concentrations were 
below prescribed limits of 8 hour-100 µg/m3 by CPCB. Ozone 
concentrations peaked during summertime and plummeted 
during wintertime, showing its temperature dependencies [62]. 
The reason of NO

X
 plummeting and ozone could be due to the 

increased formation of ozone from NO
X
 through photochemical 

oxidation, although it would have been clearer with VOC’s trend. 
The mean and maximum emission levels are depicted in the 
figure with blue and red lines, respectively [68,69].

Intra-site correlograms

To check direct interactions among air pollutants, all parameters 
(particulate matter, gaseous pollutants, relative humidity, and 
wind speed) were correlated with each other. In the following 

Figure 4: Time series analysis. Note: (a) PM10/PM2.5 at study sites; (b) Time series analysis NO: (1) Dharuhera, (2) IMT-Manesar.
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Figure 5: Time series. Note: (A) NOx; (1) Dharuhera, (2) IMT-Manesar; (B) NO
2
: (1) Dharuhera, (2) IMT-Manesar.

Figure 6: Time series. Note: (A) CO at (1) Dharuhera, (2) IMT-Manesar; (B) NH3: (1) Dharuhera, (2) IMT-Manesar.

Figure 7: Time series of ozone: (1) Dharuhera, (2) IMT-Manesar.
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Figure 8: Correlation between various pollutants at the Dharuhera site.

Figure 9: (A) Correlation between various pollution parameters; (B) Co-relationship between various pollutants at IMT-Manesar.

Figure 10: (A) Co-relationship between various pollutants at IMT-Manesar; (B) Inter-site linear regression analysis plots.
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Correlograms of pollutants at IMT (Manesar Site): At IMT site 
more parameters showed meaningful correlation than the first 
site. Twelve out of 65 had better than ± 0.5 correlation coefficient 
during the study period, which are depicted in only PM2.5 to 
PM10, Nitrogen family correlations were common between two 
sites, even though the meteorology of both sites is quite similar. 
So, the obtained correlations might be due to the common 
sources (majorly) and atmospheric interaction. It is clear from the 
figure that PM2.5 and PM10 show a strong positive correlation 
(0.87), little higher than of Dharuhera site. The reason will be like 
the first case (at Dharuhera site) [75,76]. Nitrogen family (NO

X
, 

NO, NO
2
)-showed strong positive correlation. With highest 

correlation between NO and NO
X
 (0.93), followed by NO

2
 and 

NO
X
 (0.86), and NO and NO2 (0.68). These correlations were 

higher than the previous site (like particulate matter) [73,75,77]. 
Ammonia has a significant positive correlation between NH

3
, 

NO
x
, NO, and NO

2
 were seen at IMT (only). With a correlation 

of 0.82 between NH
3
 and NO

X
, 0.77 for NH

3
 and NO as well 

as NO
2
. Strong positive correlation might showcase the presence 

of NO
X
 and NH

3
 interaction in the N

2
 formation in the air 

[75,78]. Carbon Monoxide showed a positive correlation with 
ammonia and N family pollutants. A correlation coefficient 
of 0.64 between CO and NO

2
, 0.62 between CO and NO

X
, 

and 0.53 for CO and NO and same with NH
3
 also. Common 

sources among these three are most apparent reason for positive 
correlation (industries with poor combustion and ventilation 
processes) [79]. Ozone showed correlation with relative humidity 
at IMT site only. The correlation coefficient was negative and 
moderate (-0.53). The inhibition of ozonolysis due to increased 
humidity results in negative correlation. Only temperature 
shows a positive correlation with ozone among meteorological 
parameters, which aids in the photochemical process of ozone 
formation. Other parameters were not included here because of 
their weak relationship. For most interactions, the correlation 
coefficient was in-between ± 0.15 and ± 0.45. It may be noted 
here that the poor correlation coefficient doesn’t always mean 
absence of any kind of interaction between two, as explained 
above portray the regression analysis plots together with derived 
correlation coefficients between air pollutant concentrations, 

recorded at the IMT-Manesar site. It is clear from the figure 
that PM2.5 and PM10 show a strong positive correlation (0.87), 
little higher than of Dharuhera site. The reason will be like the 
first case (at Dharuhera site). Nitrogen family (NO

X
, NO, NO

2
)-

showed strong positive correlation. With highest correlation 
between NO and NO

X
 (0.93), followed by NO

2
 and NO

X
 (0.86), 

and NO and NO
2
 (0.68). These correlations were higher than the 

previous site (like particulate matter). Ammonia has a significant 
positive correlation between NH

3
, NO

X
, NO, and NO

2
 were seen 

at IMT (only). With a correlation of 0.82 between NH
3
 and NO

X
, 

0.77 for NH
3
 and NO as well as NO

2
. Strong positive correlation 

might showcase the presence of NO
X
 and NH

3
 interaction in the 

N
2
 formation in the air. Carbon Monoxide showed a positive 

correlation with ammonia and N family pollutants. A correlation 
coefficient of 0.64 between CO and NO

2
, 0.62 between CO 

and NO
X
, and 0.53 for CO and NO and same with NH

3
 also. 

Common sources among these three is most apparent reason 
for positive correlation (industries with poor combustion and 
ventilation processes). Ozone showed correlation with relative 
humidity at IMT site only. The correlation coefficient was 
moderate (-0.53). The inhibition of ozonolysis due to increased 
humidity results in negative correlation. Only temperature 
shows a positive correlation with ozone among meteorological 
parameters, which aids in the photochemical process of ozone 
formation. Other parameters were not included here because of 
their weak relationship. For most interactions, the correlation 
coefficient was in-between ± 0.15 and ± 0.45. It may be noted 
here that the poor correlation coefficient doesn’t always mean 
absence of any kind of interaction between two, as explained 
above pollutants at IMT-Manesar (Tables 2 and 3).

Inter-site correlograms

This section deals with the relationship between similar 
parameters of both sites. Due to the short distance between two 
sites, there can be some common sources of pollutants. This 
can include the contribution of mobile sources (vehicles) and 
dispersion by the wind. The resultant regression analysis plots of 
similar pollutants at both the study sites are presented in during 
January 2019-December 2022. Some pollutants like PM2.5 (0.84) 

Figure 11: Inter-site trend analysis plots.
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and PM10 (0.77) exhibited strong positive correlation, while 
other exhibited moderate to insignificant positive correlation, 
NO

2
 (0.56), NO

x
 (0.53), NO (0.47), Ozone (0.42), CO (0.38), 

Benzene (0.18), SO2 (0.17), and NH3 (0.11). The strong positive 
correlation between particulate matter of two sites might be due 
to the common source of traffic, as National Highway 48 [NH 
48]passes through both sites and both sites are close to each 
other, so this might be the contribution of long-range commute 
and heavy transport vehicles (diesel) plying on the national 
highway. For NO

x
, the moderate correlation signifies poor 

overlapping of sources, as vehicles also emit these pollutants, so 
the moderate positive correlation is possibly due to the common 
vehicles plying on the NH 48, and interaction between PM and 
NO

x
 (nucleation). Like the contribution of agriculturally based 

sources in Dharuhera while non-agricultural based sources at 
IMT for NH

3
 emissions. Moreover, the sites are around 28 km 

apart, so contribution from any stationary source in-between or 
away from both sites could be solely due to the wind transport 
and dispersion. While for the mobile sources, NH 48 played 
a significant role in pollutant concentrations. Such features, 
depicting higher concentrations due to transport phenomenon 
have been reported, over a pristine station (Panchgaon), lying 
in between the experimental sites considered in the present 
study. Table 4, presents a composite picture of particulate and 
gaseous pollutant concentrations (average and maximum values) 
at both the study sites, together with their inter-site correlation 
coefficients, computed between two sites during the study period 
of four years (2019-2022) [80].

Parameter 1 Parameter 2 Correlation(r) 

PM2.5 PM10 0.81

PM2.5 NO
X

0.5

PM10 NO
X

0.52

NO NO
2

0.58

NO NO
X

0.87

NO
2

NO
X

0.83

Table 2: Correlation between pollutants at Dharuhera site.

Parameter 1 Parameter 2 Correlation 

PM2.5          PM10 0.87

NO          NO
2

0.68

NO          NO
X

0.93

NO          NH
3

0.77

NO          CO 0.53

NO
2

         NO
X

0.86

NO
2

         NH
3

0.77

NO
2

         CO 0.64

NO
X

         NH
3

0.82

NO
X

         CO 0.62

NH
3

         CO 0.53

O
3

         RH -0.53

Table 3: Correlation between pollutants at IMT-Manesar site. 

Pollutant       Correlation
Concentration at 

Dharuhera
Concentration at IMT-

Manesar
         CO          CO

(r) Average Maximum Average Maximum

PM2.5 0.8 79 ± 52 506 85 ± 54 408

PM10 0.77 185 ± 112 808 159 ± 85 626

O
3

0.42 31 ± 16 190 28 ± 17 156

NO 0.47 12 ± 10 101 22 ± 20 218

NO
2

0.56 31 ± 20 140 26 ± 22 140

Table 4: Mass concentrations and correlation of various pollutants at two sites.
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CONCLUSION

The motivation behind this study was to understand the trend 
of various pollutants at the study sites (Dharuhera and IMT-
Manesar), associated with different industrial complexes in the 
last four years, and their interactions with local meteorology. 
Following are the salient results obtained from the study:

No significant reduction in pollutant emissions was observed in 
the study period (except slight reduction in CO concentration) 
over both study regions. Except for PM2.5 and PM10, all 
pollutant emission levels were below prescribed limits throughout 
the study period. Daily concentrations of Particulate Matter (PM) 
were found to be higher than the prescribed values by the CPCB 
at both locations, with a leading hand of Dharuhera in PM10 
(coarse-mode) and IMT-Manesar in PM2.5 (fine-mode).Both 
Particulate Matter (PM2.5 and PM10) and NO

x
 (NO and NO

2
) 

peaked during winter season and plummeted during rainy season. 
Both Particulate Matter (PM2.5 and PM10) and NO

x
 (NO and 

NO
2
) peaked during winter season and plummeted during rainy 

season. Both Particulate Matter (PM2.5 and PM10) and NOx 
(NO and NO

2
) peaked during winter season and plummeted 

during rainy season. Concentrations of NOx were higher over 
IMT-Manesar region than over Dharuhera. Annual variation 
in CO concentration was not clear over Dharuhera while it 
is prominently seen with winter peaking and summer (rainy) 
plummeting over IMT-Manesar. O

3
 concentration was found 

peaking during summer and dropping during winter over both 
study sites. More pollutants showed significant correlation over 
IMT-Manesar than over Dharuhera region. A significant positive 
correlation was seen between NO

x
, PM2.5 and PM10, CO and 

NH
3
.Relative humidity showed negative while temperature and 

wind speed showed positive correlation with O
3
. For inter-site 

correlation analysis, only particulate matter exhibited strong 
positive correlation, indicating the role of NH 48 for particulate 
pollution at both sites.
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