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Abstract

Conventional feedback control models of the oculomotor system fail to account for the destabilizing effects of
neural transmission delays. To address this shortcoming, a linear quadratic tracking algorithm used to control
smoothly pursuing eye movements of various target trajectories is presented. Based on the type of input to the
system, it is shown that stability, in the presence of large motor feedback delays, can be maintained by modulating
weighting factors intrinsic to the model. Conditions, such as the initial orientation of the eye relative to the location of
where a target first becomes salient and the possible oscillatory nature that the reference trajectory may present,
play important roles in determining the optimal cost to go motor control strategy at the onset of a tracking movement.

Keywords: Eye movements; Smooth pursuit; Saccades; Optimal
control; Motor control delay; Linear quadratic tracking; Lyapunov
stability; Delayed differential equations

Introduction
Human perception is the process of acquiring, interpreting,

selecting and organizing sensory information to effectively interact
with the environment. It is argued that the ability to perceive and
direct visual attention to an object that warrants more detailed analysis
is the most important of the senses. The oculomotor system has
evolved to serve this purpose and, consequently, has important
communicative value for studying neuromuscular integration.

Research involving sensorimotor control seeks to answer the
fundamental question: How does our brain select inputs to produce a
desired intention and manifest it in the form of movement. The
difficulty associated with this question becomes more apparent for
multi-body, multi-dimensional systems whose equations of motion are
nonlinear and coupled. Since the eye is confined to three rotational
degrees of freedom, and because the actions of its extraocular muscles
are direct, the oculomotor system provides an initial context for
gaining insight into more complex strategies of sensorimotor control.

Although extensive studies of eye movements have been useful for
understanding the mechanisms of sensorimotor control, new findings
associated with the mechanical characteristics of the ocular plant and
neurological processing at much deeper levels have given rise to
spirited debates questioning the brain’s role [1-4]. In other words, how
much of the observed behavior of eye movements is a consequence of
orbital mechanics and how much is due to neural processing. This is a
recurring theme in the literature and deserves more attention.

Smooth pursuit eye movements
Through centuries of evolution, humans and primates have

developed the sophisticated ability to track an object of interest with
zero latency and in the presence of large neural transmission delays of
up to 150 ms [5-7]. Once a moving target has been acquired, our eye
begins to purse that target to maintain the object’s focus on a small

region of the retina (≅∅1.2 mm) called the fovea [8]. This region is
packed with high threshold and color sensitive photoreceptors which
allow us to view an image, in color and with high resolution.

A smooth pursuit is characterized as a slow eye movement with a
maximum velocity of approximately 70°/s. It is commonly preceded by
a fast eye movement called a saccade which is described as a ballistic
repositioning of the gaze direction to that of a newly predicted target
location as shown in Figure 1 [7,9,10].

Figure 1: Smooth pursuit of various ramp trajectories.

Effects of neural transmission delays
Time delays are a distinctive feature of biological information

transmission and constitute the major difference between
sensorimotor control and the modern control of mechatronic systems
(see Table 1). Neural transmission delays severely limit the maximum
gain that may be used if stability is to be maintained in closed loop
feedback control [11-14]. Frequency domain modeling and analysis
shows that time delays reduce the phase margin, which in turn lessens
the damping ratio for the closed loop system and results in a response
that is more oscillatory. The reduction in the phase also decreases the
gain margin frequency and, hence, the admissible gain, thereby
moving the system closer to instability [15-17].
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System Type Communication Feedback Loop
Delay

Actuator
Bandwidth

Biological Neurons     100
m/s

Trans-cortical>100
ms

Muscle << 10 Hz

Mechatronic Electrons     108
m/s

Encoder/
Tachometer<1 ms
GPS 130 ms

Electro-
magnetic>100 Hz
Electro-hydraulic
>> 1000 Hz

Table 1: Comparison of system operating variables for biological and
mechatronic systems.

Consider the delayed position feedback control of a second order
system (shown in Figure 2) that is used to describe the mechanical
characteristics of the ocular plant (please refer to the methods section
for more information regarding this model).

The response clearly illustrates how small delays in position
feedback dramatically affect the stability of the system. What is more
revealing is that their magnitudes are smaller than the delays observed
in experimental recordings [18,19]. A clue as to how the sensorimotor
system may overcome this challenge lies in the fact that muscle acts as
a neuromuscular-actuator with non-zero output mechanical
impedance [20-22]. Unlike a direct current, permanent magnet motor
(DCPMM), which is meticulously designed to generate torque
independent of displacement and velocity, muscle generates movement
based on its length-tension and force-velocity characteristics [9,23,24].
The output mechanical impedance of muscle may provide many effects
similar to feedback action without being vulnerable to the destabilizing
effects of neural transmission delays [25-27].

Figure 2: Destabilizing effects of time delay A) Westheimer model with position feedback delay. B) System response to an oscillatory input for
three small time delays which are well below that of a neural transmission delay.

Optimal control strategies in sensorimotor control
A mechatronic system can perform simple repetitive tasks faster and

far more precisely than a human. Their actuator torque output is
produced reliably every time based on a controlled input. The
transmission lines through which the controller communicates with its
sensors and transducers work a million times faster than our
sensorimotor system and are not at the mercy of the destabilizing
effects of time delays. Yet the paradox is that humans are far more
dexterous and can adapt to their environment far better. So how do we,
as engineers, model a highly variable biological system with these
limitations? Here we turn to the powerful tools of optimal control
theory which seek to determine the control signals that will cause a

process to satisfy the physical constraints of a dynamic system and, at
the same time, extremize a performance criteria or cost-to-go function
[17,28].

Early adopters open loop optimization
Pioneering work done in the mid-1980s embodies the successful

implementation of optimal control theory to study sensorimotor
control. At this time Enderle et al. presented a time-optimal control
model of saccadic eye movements [29,30]. This model accurately
computes the separately maintained controls used to generate the
active-state forces developed within the agonist and antagonist
muscles. Moreover, the calculated controls have a direct correlation to
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the burst firing frequency of oculomotor nuclei in the midbrain which
are experimentally verified. Although the development of this model
began in the 1980s, its recent acceptance has been more pronounced as
more researchers are turning to the principles of optimality to better
understand the strategies used in sensorimotor control [12,31,32].
Enderle’s time-optimal control model continues to grow in popularity
as it evolves, incorporating better parameter estimates [33,34] and
adopting complete muscle fiber models [23,35-37] Not only is the
model being used to successfully test both visual and auditory
stimulated saccades,18 but it has also been extended to describe
complex three dimensional movements of the eyes relative to the head-
neck complex [38,39].

An important note to be made regarding Enderle’s model is that it
specifies a discrete point to point task and utilizes open-loop
optimization. A stationary target is specified and the machinery of
optimization generates the controls and movement profiles based on
the performance criteria and the dynamic constraints inherent to the
system. Because of the type of task and optimal control construct, this
model does not need to address the destabilizing effects of neural
transmission delay.

Closed loop optimization using sensory feedback
The time-optimal control model works perfectly for its intended

purpose of acquiring a stationary target in minimum time, but what
happens when we need to track a moving target and have to wrestle
with the physiological limitations of neural transmission delays.

The work presented here aims to shed some light on that subject.
Specifically, a linear quadratic tracking algorithm has been developed
to smoothly pursue a target with a positional feedback delay of 150 ms.
Optimization theory is used to construct a performance criterion that
penalizes a weighted sum of the difference between the desired and
actual state trajectory and the weighted sum of control effort, all of
which is constrained by the dynamics of a simple second order model
of the ocular plant. This is the first time that a linear system plant with
realistic time delays has been presented in the literature.

Methods

Dynamic formulation
In 1954, Westheimer modeled horizontal saccades using a second

order model of the ocular plant (Figure 3 adapted from Ref. [7]).

The differential equation governing the model is��2�(�)�� + ���(�)�� + ��(�) = �(�) (1)

Or in standard second order form

�2�(�)�� + 2�����(�)�� + ��2�(�) = ��2� �(�) (2)

The transfer function for this model is simply

�(�)�(�) = ��2��2 + 2���+ ��2 (3)

Figure 3: Second order eye dynamics A) Westheimer model of the
ocular plant. The parameters J, B and K are rotational elements for
moment of inertia, friction, and stiffness, respectively, and represent
the eyeball and its associated viscoelasticity. The torque τ(t), applied
to the eyeball is the result of antagonist muscle co-activation. The
angular position of the eye is given by θ(t). B) Bond Graph of the
model illustrating the respective energy flow in the system.

State-Space representation
Using the bond graph in Figure 3B and choosing Lagrangian state

variables (i.e., Inertance flows, fi and displacements, qi) the respective
state vector and control vector is defined as� � = �1 � , �2 � � = � � , �̇ � � (4)� � = � � (5)

In state-space form�̇ � = �� � + �� � (6)

��� �1 ��2 � = 0 1−��2 −2��� �1 ��2 � + 0��2� � � (7)

For a 20° target saccade, Westheimer’s reported the natural
frequency and the damping ratio of the system to be ωn

2=120 rad/s
and ζ=1/√2 for an eye with a weight of 25 g and a radius of 11 mm.
Converting to SI units of kg-N-m and solving for the stiffness
(k=0.998), the stability matrix, F, and the control-effect matrix, G, can
be represented numerically such that��� �1 ��2 � = 0 1−14, 400 −169.7 �1 ��2 � + 014, 424.2 � �       (8)

Tracking controller
The goal of the tracking problem is to maintain the system state x(t)

as close as possible to the desired state (or reference trajectory) xd(t)
while using minimal control effort in the time interval, t∈{t0, tf }
[17,28]. The optimal control problem is therefore posed the following
way:

Find the optimal control u*(t), for the state-space system given in
(7) that tracks a desired trajectory, xd(t) and minimizes the
performance criteria
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� � � ,� � , � = � � �� , �� +∫�0�� ℒ � � ,� � d�

= 12 � �� − �� �� �� �� � �� − �� ��
+ 12∫�0�� � � − �� � �� � � − �� � + � � ��   � � d�

 (9)

subject to the dynamic equality constraint� � � ,� � , � − �̇ � = 0 (10)

where the final time tf is fixed, the final state, x(tf), is free to vary and
the state and control is not bounded. The terminal state weighting
matrix, P, and the state weighting matrix Q are real, symmetric,
positive semi-definite matrices and the control weighting matrix, F, is a
real, symmetric, positive definite matrix.

The Hamiltonian for the tracking problem is defined asℋ � � ,� � , � � , � = ℒ � � ,� � , � + � � �� � � ,� � , �  (11)

Where the Lagrangian isℒ � � ,� � , � = � � − �� � �� � � − �� � + � � ��   � �
(12)

And the augmented state is� � �� � � ,� � , � = � � ��̇ � = � � � �� � + �� �        (13)

The necessary conditions for optimality are

State Equations∂ℋ∂� = �. � = �� � + �� � (14)

Co-State Equations∂ℋ∂� = − �. � = � � � � + � � �� � − � � ��(�) (15)

Optimality Condition∂ℋ∂� = �� � + � � �� � = 0 (16)

The optimal control law as a function of the co-state variable is
therefore,� � = − �−1� � ��(�) (17)

Substituting the optimal control law (17) into the state equations
(15) and combining with the co-state equations (15), yields the
Hamiltonian system

�. ��. � = � � −� � �−1 � �� �−� � −�� � � �� � + 0� � �� �       (18)

Note that this is a two-point boundary value problem in which we
will need to integrate the co-state variables backwards in time. The
terminal boundary conditions are∂� � � , �∂� +ℋ � � ,� � , � � � = �����+ ∂∂�� � �� , � − �� � � = ���� �� = 0 (19)

Because the final time is fixed and x(tf) is free to vary, the following
terminal constraint must then be satisfied�� �� = ∂∂�� � �� (20)

The partial derivative of the terminal cost with respect to the state is
therefore� �� = � �� � �� − �� �� (21)

Assuming (21) holds for the entire interval, such that� � = � � � � − � � �� � (22)

taking the time derivative�. � = �. � � � + � � �. � − �. � �� � − � � ��. �                 (23)

and substituting back into (18) yields the matrix differential Riccati
equations (MDRE)�. � + ��� � + � � � − � � ��−1��� � + � � �= � � ��. � + �. � + ��� � − � � ��−1��� � + � �� �

(24)
Here we introduce the tracking variable and its derivative as� � = − � � �� �  (25)�. � = − �. � �� � − � � �. �(�) (26)

Substituting (25) and (26) into (24) results in�. � + � � �� � + � � � � − � � � � �−1 � �� � � �+ � � � �+ �. � + � � �− � � � � �−1 � �� � � � − � � �� � = 0
(27)

The optimal state and desired trajectory cannot be zero for the
entire interval; therefore (27) can be partitioned into two separate
equations and integrated independently.�. � + � � �� � + � � � � − � � � � �−1 � �� � � �+ � � = 0 (28)

�. � + � � �− � � � � �−1 � �� � � � − � � �� � = 0      (29)

Rewriting the terminal condition for the tracking variable from (21)
is simply
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� �� = − � �� �� �� (30)

The optimal control law (17) is now written in terms of the Riccati
variables and tracking variables, which can be further simplified into a
feedback gain matrix, K(t), and a command signal, v(t),�* � = − �−1� � �� � � � − �−1� � �� �≜ � � � � + � � (31)

Delayed position state feedback
The linear quadratic tracking controller (LQTC) is shown in Figure

4. A delay of 150 ms is added to the position state feedback to
appropriately model the neural transmission delay observed with
smooth pursuit eye movements.

Figure 4: Optimal LQTC with Delayed Position Feedback.

The algorithmic steps involved are to numerically integrate the
Riccati equations (28) and the tracking equations (29) backwards in
time. These values can then be used to solve for the optimal state
trajectory by substituting the optimal control (31) into (14) and
numerically integrating.�. � = �� � + �� �= � − ��−1� � �� � � � − ��−1� � �� � (32)

The optimal control (31) is now solved using the optimal state
trajectory found in (32).

Application development
To help facilitate the selection of weighting values, a real-time

application was built using Wolfram Mathematica to quickly test the

response of the tracking algorithm for various waveforms with various
frequencies as shown in Figure 5. The user may select the initial
condition of the eye and the desired magnitude of the waveform. State,
control and terminal-state weighting matrices can be inputted directly.
The user may increase the position feedback delay gradually to
effectively test the stability based on the chosen parameters. Four
different plots are available as a visual aid to the designer. The State
plot gives the response in terms of eye position and velocity. The phase
option shows the phase portrait of the states and the Lyapunov stability
of the system. The control selection shows a plot of the optimal control
computed for the system. Finally, the MDRE option allows the designer
to see both the time course of the numerically integrated Riccati and
Tracking variables.
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Figure 5: Linear Quadratic Tracking Application.
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Results

Closed loop unity feedback control effects of time delay

Figures 6 and 7 illustrate the destabilizing effect neural transmission
delays have when introduced into the position feedback of the
Wertheimer model. The values for the delays shown in Figures 6 and 7
are well below those observed with smooth pursuit eye movements.

Ramp Response

Figure 6: Ramp response for closed loop unity feedback system A)
with zero delay, B) with delay of 20 ms.

Oscillatory Response

Figure 7: Oscillatory response for closed loop unity feedback system
A) with zero delay, B) with delay of 15 ms.

Closed loop linear quadratic tracking control-no time delay
vs time delay of 150 ms in position feedback

Experimentation of weighting values for tracking ramp and
oscillatory trajectories resulted in the following numerical values for
the state-weighting, control-weighting and terminal-state weighting
matrices.� = 15 55 60 ; � = 1;� �� = 1 00 0  (33)

Overall, these weighting values provided the best all-around
tracking performance for the continuous waveforms tested across
frequencies up to 1 Hz.

Ramp Response

Target trajectory =20 t, Initial Eye Position=0°

Figure 8: LQTC ramp tracking with A) zero delay, B) 150 ms delay.

Cosine Response

Target trajectory =20   ��� �2 � ; Eye starting position=3°

Figure 9: LQTC tracking of a Cosine with initial target error of 17°.
A) 0 delay B) 150 ms delay.

Target trajectory =20   ��� �2 � ; Eye starting position=20°
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Figure 10: LQTC of Cosine with eye starting at initial target
position. A) 0 delay B) 150 ms Delay.

The optimal control calculated for when the eye initially starts on
the target has an anticipatory effect. It senses the delay and adjusts its
course accordingly as shown in Figure 11.

Figure 11: The predictive nature of the optimal control A) 0 ms
delay B) 150 ms delay.

Sum of Sines

Target Trajectory =20 sin �3 � + sin 2�3 � ; Eye initial
position=0°

Figure 12: LQTC of the sum of Sines A) 0 delay, B) 150 ms delay.

Figure 13: Optimal control for sum of Sines A) 0 delay, B) 150 ms
delay.

Product of Sines

Target Trajectory=20 sin �4 � + sin �2 � ; Eye initial position=0°

Figure 14: LQTC of Product of Sines A) 0 Delay B) 150 ms Delay.
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Figure 15: LQTC Optimal control for product of Sines A) 0 Delay,
B) 150 ms Delay.

Discussion

Weighting effects
The effectiveness of the LQTC is driven by the performance criteria

specified in (9) which establishes tradeoffs between state and control.
The state-weighting matrix, Q, specifies the relative importance
between each state while the control-weighting matrix, R, establishes
the permissible energy expenditure (a scalar value in this study).
Consider the response of the LQTC with different state-weighting
factors for an oscillatory input at different frequencies as shown in
Figure 16. The relative tradeoff between position and velocity
performance for different frequencies is a direct result of the weighting
values and readily apparent by inspection.

Careful experimentation with different weighting values for
multiple waveforms at different frequencies resulted in the values
presented in (33). The effect of penalizing velocity more heavily than
position, along with weighting the coupling between them, resulted in
exceptional tracking performance.

Effects of initial eye position
The initial orientation of the eye in relation to where the target is

presented affects the time in which the LQTC can fully pursue the
trajectory. Figure 9 provides a good example of this issue. The
difference between the position of the eye and the target trajectory is
initially 17°. For the case with no delay, it takes five seconds for the
tracker to fully engage the target and pursue it with minimal error. The
addition of a time delay of 150 ms further exacerbates the situation
requiring nine seconds for the LQTC to fully track the reference
trajectory. Interestingly, if the initial eye position starts on the target as
shown in Figure 10 for comparison, the tracker performs exceptionally,
even for a delay of 150 ms this can also be observed for the ramp
(Figure 8), the sum of sine waves (Figure 12) and the product of sine
waves (Figure 14). This behavior is not surprising however. As
mentioned earlier, smooth pursuit eye movements are commonly
preceded by a saccade to rapidly position the eye to the target
trajectory where it then switches control strategies to smoothly pursue
it. The results presented in Figure 16, therefore, reinforce that fact.

Figure 16: Effect of state-weighting values on response with a 150
ms delay.

Optimal control
Referring back to the optimal control law (31), the command signal

v(t) depends on system parameters and future values of the reference
trajectory, xd(t). Having this knowledge as a priori, we can anticipate
where we intend to go based on the current state of the system. This
statement is directly supported by observing the optimal controls
computed for the zero delay and 150 ms delay responses of Figures 11.
In both cases, the LQTC effectively tracks the input. The major
difference is the optimal control required to do it. The optimal control
of Figure 11A is an exact replica of the desired trajectory. In contrast,
the optimal control of Figure 11B leads the input to account for the
neural transmission delay because it has prior knowledge of not only
the trajectory to be tracked but also the current state of the system. In
essence, the LQTC uses an internal representation of the system state
and makes adjustments to improve behavioral performance. Figure 13,
the optimal control for the sum of Sines and Figure 15, the optimal
control for the product of Sines, further validates this point.

Model weakness
The LQTC requires that all states are measurable and available for

feedback. Additionally, it requires prior knowledge of the desired
trajectory which might not always be the case. Finally, the controller
assumes that the inputs to the system and the measured states are noise
free. Because sensorimotor systems are inherently noisy, it seems that
the logical progression would be to introduce an estimator. This is left
for future work.
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Conclusion
A linear quadratic tracking control algorithm was developed to

study smoothly pursuing eye movements in the presence of 150 ms
neural transmission delays. The excellent tracking capabilities of the
controller were presented for a variety of input reference trajectories
with varying frequencies. The resulting optimal control was shown to
have an anticipatory quality resulting from prior knowledge of the
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reference trajectory and an internal representation of the system state.
Finally, the effects of initial eye position in relation to the start of the
target trajectory were discussed. The results support the requirement
for switching control strategies in which a saccade precedes the smooth
pursuit.
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