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Introduction
Timber utility poles play a significant role in the infrastructure 

of Australia as well as many other countries. There are over 5 million 
timber utility poles currently used in Australian energy networks, 
which are more than 80% of total utility poles in the network. Due to 
the advanced age of Australia’s timber pole infrastructure, substantial 
efforts are undertaken by state authorities on maintenance and asset 
management to prevent utility lines from failure [1]. However, the lack 
of reliable information regarding their in-service condition, including 
the embedment length makes it really difficult for the asset managers 
to make decisions on the replacement/maintenance process with due 
consideration to economy, operational efficiency, risk/liability and 
public safety. For example, in order to avoid any failure and considering 
the public safety, each year approximately 300,000 poles are replaced 
in the Eastern States of Australia with up to 80% of them still being 
in a very good serviceable condition, resulting in significant waste of 
natural resources and money.

Non-destructive testing (NDT) methods based on stress wave 
propagation can potentially offer simple and cost-effective tools for 
identifying the in-service condition of timber poles. Stress waves can 
be generated as a result of deformations caused by impact excitation. 
The propagation of the stress waves depends on the geometry of the 
structure as well as its material properties such as the modulus of 
elasticity, Poisson’s ratio, and density. Since timber is an orthotropic 
material by nature, the wave propagation in longitudinal, tangential, 
and radial directions differs. In this regard, analysing captured impulse 
response signals from a timber pole can provide hints on the structure’s 
soundness. It is also worthy to mention that the captured signals include 
many reflections, which are produced by the timber pole boundaries, 
any damage inside, top and bottom of the pole, and in the case of lateral 
impact up- and downward travelling waves.
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Abstract
Timber utility poles play a significant role in the infrastructure of Australia as well as many other countries for power 

distribution and communication networks. Due to the advanced age of Australia’s timber pole infrastructure, substantial 
efforts are undertaken on maintenance and asset management to avoid any failures of the utility lines. Nevertheless, 
the lack of reliable tools for assessing the condition of in-service poles seriously jeopardizes the maintenance and 
asset management. For instance, each year approximately 300,000 poles are replaced in the Eastern States of 
Australia with up to 80% of them still being in a very good condition, resulting in major waste of natural resources and 
money. Non-destructive testing (NDT) methods based on stress wave propagation can potentially offer simple and 
cost-effective tools for identifying the in-service condition of timber poles. Nonetheless, most of the currently available 
methods are not appropriate for condition assessment of timber poles in-service due to presence of uncertainties 
such as complicated material properties, environmental conditions, interaction of soil and structure, and an impact 
excitation type. In order to address these complexities, advanced digital signal processing methodologies are needed 
to be employed. Deterministic signal separation, blind signal separation, and frequency-wavenumber velocity filtering 
are the three groups of methodologies, which could most probably provide solutions. In this paper applicability and 
effectiveness of the blind signal separation methods is investigated through a numerical data obtained from of a timber 
pole modelled with both isotropic and orthotropic material properties. Principal Component Analysis (PCA), Singular 
Value Decomposition (SVD), and K-means clustering algorithms are the blind signal separation methodologies that 
are employed in this research work.

Most of the currently available NDT methods are not suitable for 
condition assessment of timber poles in-service due to presence of 
uncertainties such as complicated material properties and imperfect 
body (i.e., timber pole natural cracks), environmental conditions, 
interaction of soil and structure, defects and deteriorations as well as an 
impact excitation type. It is necessary to mention that access to the top 
of the in-service timber utility poles is prohibitive due to the presence 
of the electrical or communication wires. In this regard, the hammer 
impact is applied to the timber pole on its side.

In order to address all mentioned complexities, advanced digital 
signal processing methodologies are needed to be employed. From 
the signal processing point of view, in order to be able to assess the 
condition of the timber pole, several existing reflections in the 
captured signals are needed to be separated first. Deterministic signal 
separation, blind signal separation, and frequency-wavenumber 
velocity filtering are the three groups of methodologies, which could 
most probably provide solutions. The effectiveness and the applicability 
of the deterministic signal separation methods as well as frequency-
wavenumber velocity filtering were studied in our previous work [2]. In 
this paper applicability and effectiveness of the blind signal separation 
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Often the scale factor 1/N is distributed throughout the matrix 
and the covariance matrix is written simply as AAT. The eigenvalues of 
the covariance matrix represent the principal components, while the 
eigenvectors represent the orthogonal axes in the transferred domain. 
Some of the applications of the PCA in civil engineering area can be 
found [6,7].

Singular value decomposition

Singular value decomposition (SVD) is a matrix factorization 
process in which M*N matrix, will be decomposed into three matrices 
by equation (3).

TX USV= 				                   Equation 3

Where U and V are M*M and N*N unitary matrices, and S is M*N 
rectangular and diagonal matrix which holds the singular values (same 
as principal components in the PCA). Columns of U and V are called 
left and right singular vectors [8,9].

Equation 3 can be rewritten in terms of summation of the each 
singular value multiplied by its related left and right singular vectors. 
This is shown in equation (4).
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=∑                                                                               (4)

Where the factor uivi
T is an M*N matrix and called the ith eigen-

image of the data matrix. SVD has been applied in many massively in the 
civil engineering field; Freire et al. [10] applied SVD to separate down-
going waves (first arrivals to sensors) from up-going waves (reflections 
and multiples) in vertical seismic profiling. They also used this method 
for the noise attenuation [10]. Vrabie et al. applied the combination 
of SVD and ICA in order to obtain better source (signal) separation 
in terms of better sensor to sensor correlation [11]. Vrabie VD et al. 
[12] introduced three-dimensional SVD; they assumed the data as 
dimensions of the time, sensor numbers, and the sensor directions.

K-mean clustering [13]

The term K-means clustering was first mentioned by James 
MacQueen in 1967 [14]. This method aims to categorize N observations 
into K groups or clusters. It starts by choosing K points as the initial 
centroids for all clusters. Then each point in the dataset is assigned to 
the closest centroid based on a particular proximity measure chosen. 
Once the clusters are formed, the centroids for each cluster are updated. 
The algorithm then iteratively repeats these two steps until the centroids 
do not change or any other alternative relaxed convergence criterion is 
met. Figure 1 demonstrates the K-mean algorithm flowchart [13].

Several proximity measures can be used within the K-means 
algorithm for splitting the data set into K groups such as Manhattan, and 
Euclidean distance, or Cosine similarity. In general as well as this work, 
the Euclidean distance metric is used for the K-means clustering. It is 
essential to consider that different values of K and proximity measures 
can significantly affect the final output. The objective function, which 
is employed by K-means as a convergence criterion, is called the 
Sum of Squared Errors (SSE) or Residual Sum of Squares (RSS). The 
mathematical formulation for SSE/RSS is as follows:

Given a dataset A= {X1,X2,...,XN} consists of N points, the clusters 
obtained after applying K-means clustering can be denoted by C= 
{C1,C2,...,Ck,...,CK}. The SSE for this clustering is defined in the Equation 
(5), where ck is the centroid of the cluster CK [13].

methods in separating the existing patterns in the captured signals from 
the timber utility pole is investigated. Principal Component Analysis 
(PCA), Singular Value Decomposition (SVD), and K-means clustering 
algorithms are the blind signal separation methodologies that are 
employed in this paper. The structure of the paper is as follows. In 
section 2, a review of the employed blind signal separation methods as 
well as the test structure are explained. In section 3, results of employing 
aforementioned signal processing techniques are provided. Discussion 
on the obtained results as well as more detailed explanations of the 
results obtained from the deterministic signal separation methods 
are also provided in this section. Finally, conclusion of this paper 
and suggestions for the future works are provided in section 4. Main 
contribution of this paper is illustrating the complexities exist in the 
condition assessment of the timber pole. These complexities are due to 
the presence of uncertainties such as complicated material properties 
and imperfect body (i.e., timber pole natural cracks), environmental 
conditions, interaction of soil and structure, defects and deteriorations 
as well as an impact excitation type. Due to the presence of the electrical 
or communication wires, the hammer impact is applied to the timber 
pole on its side. Furthermore, in this paper the effects of simulating 
the timber pole with both isotropic and orthotropic material properties 
on the applicability of the blind signal separation methods are also 
investigated.

Methodology
Blind Signal or Source Separation refers to a group of unsupervised 

signal processing techniques in which the input signal or any 
information about it is not available [3]. In these methods, the system is 
assumed to be multi input multi output [4], which means that N signals 
are produced by different sources, these signals are then captured by M 
sensors after travelling through the medium. Based on the statistical 
differences, blind signal separation methods can separate the signals 
from all sources having only signals captured by the sensors. In this 
regard, firstly a data matrix of M*N is made with observations in the 
columns and different sensors in the rows, then the blind separation 
methods can be applied on this data matrix in order to separate the 
source signals. The main algorithms that are used in this paper are 
Principal Component Analysis, Singular Value Decomposition, 
which do not involve any learning algorithm, and k-mean clustering 
algorithm, which contains a learning algorithm.

Principal component analysis

Principal Component Analysis (PCA) or discrete Karhunen–Loève 
transform (KLT) is a mathematical process which transfers observations 
(data) that are possibly correlated, into a set of orthogonal values 
(features) which are linearly correlated and called principal components; 
this method is based on the second order statistics (covariance). Data 
has the most variance over the first principal component (which means 
that this component represents the most correlated and important 
feature of the data), while over the last component data has the smallest 
variance which means it is the most uncorrelated feature of the data 
(can be assumed as white noise) [3,5]. PCA can be mathematically 
expressed as follows. Firstly a data matrix (A) of M*N is made with 
observations in the columns and different sensors in the rows. Then the 
covariance matrix will be calculated using equation (1). 

1

1 N

ij ij ji
i

c a a
N =

= ∑ ---------------                                                                  (1)

Where c and a denote each component of the covariance and 
dataset matrices. Writing the equation (2) in the matrix form gives: 

1 TC AA
N

= -----------------                                                              (2)
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The iterative assignment and update steps of the K-means algorithm 
aim to minimize the SSE function for all of the clusters. In the following, 
Mathematical procedure of minimization of the SSE and also a proof of 
the reason behind choosing the mean of the data points in a cluster as 
the prototype representative for a cluster in the K-means algorithm are 
provided. Here, Ck and ck represent the kth cluster and its mean, and xi 
is a point in the kth cluster. The SSE function can be minimized by its 
differentiating with respect to cj and setting it equal to zero as shown in 
equation (6).
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Based on the equation (3.19), the best descriptive for minimizing 
the SSE function of a cluster is the mean of the points in the cluster. 
In the K-means, the SSE value consistently decreases on each of the 
iterations. This monotonically decreasing behaviour will eventually 
converge to a local minimum [13].

K-mean clustering is one of the most frequently applied blind signal 
separation (or clustering) methods in a variety of fields especially in 
engineering and NDT. For instance, Yousefi et al. have applied the 
K-mean clustering algorithm on the signals obtained from the acoustic 
emission to extract a general pattern of a specific damage on a glass/epoxy 
composite material [15]. Crivelli et al. combined the K-mean algorithm 
with the Artificial Neural Network (ANN) for damage detection and 
real-time structural monitoring of a composite lightweight material 
[16]. Ihesiulor et al. also utilized K-mean algorithm and ANN for a 
delamination prediction in laminated composite structures [17]. Some 
other applications of the K-mean clustering algorithm in engineering, 
and NDT can be found [18-22].

The test structure

To investigate the effectiveness of the proposed methods, they were 
applied to finite element (FE) models of a timber pole. The numerical 
models were created and analysed with the software ANSYS using 
transient analysis. The modelled poles were 11 m or 12 m long and had a 
diameter of 300 mm, which are typical dimensions of utility poles used 
in the field. An impact force, generating stress waves, was applied to the 
surface of the pole at a location 3 m above the pole bottom and with an 
impact angle of 45°. The impact load was similar to a hammer impact 
typically executed in field testing. The impact response of the pole 
structure was captured along the pole at 241 locations (with a spacing of 
0.05 m), with the first measurement point being located at the bottom 
and the last at the top of the pole. To test the proposed algorithm, the 
following two timber pole cases were modelled and analysed:

(a) Timber pole modelled with isotropic material properties with1.5 
m soil embedment.

(b) Timber pole modelled with orthotropic material properties 
with 1.5 m soil embedment.

For the isotropic modelling of the timber, material properties are 
as follows: the density (ρ) was set to 950 kg/m3, the elastic modulus (E) 
to 23,000 MPa, and the Poison’s ratio (ʋ) to 0.3. For the orthotropic 
modelling material properties in Tables 1 and 2 were used. The material 
properties of the soil are ρ=1,520 kg/m3, 100 MPa, and ʋ=0.3.

Results and Discussion
As mentioned earlier, several reflections exist in the captured signals. 

Radial 
Direction

Transversal 
Direction

Longitudinal 
Direction

Elastic modulus (MPa) 1955 850 23000

Table 1: Elastic modulus values of simulated orthotropic timber pole.

These reflections can be caused mainly by timber pole boundaries, its 
top and bottom, and damages or natural cracks inside. The interference 
between these reflections makes the condition assessment impossible 
since for a specific purpose, true reflection peak cannot be detected (e.g. 
if the embedment length is the purpose, the peak related to the reflection 
from the bottom of the pole cannot be detected in its correct time due 
to the interference). In this regard, the applicability and effectiveness 
of the proposed blind signal separation methodologies on separating 
the patterns related to the aforementioned reflections are provided 
in this section. The effectiveness of each methodology is investigated 
on the simulated timber pole with isotropic and orthotropic material 
properties.

PCA

Figure 2 illustrates the principal components of the simulated 
isotropic timber pole with the embedded in 1.5 m soil condition.

Figure 1: K-mean algorithm flowchart.

Radial 
Transversal

Transversal 
Longitudinal

Radial 
Longitudinal

Shear Modulus (MPa) 357 1037 1513
Poison’s ratio 0.682 0.023 0.044

Table 2: Shear modulus and Poisson’s ratio values of simulated orthotropic timber 
pole.
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Figure 2: Principal components of the simulated isotropic timber pole with the 
embedded in 1.5 m soil condition.

Figure 3: (a) Original captured signals; and the signals that transferred back to 
the time domain using; (b) the first 10 most important principal components; (c) 
the rest of the principal components for simulated isotropic timber pole with the 
embedded condition.

First eight most important principal components are used for 
reconstruction of the signals back into the time-space domain. Figure 
3 shows the original signals, the signals that transferred back to the 
time-space domain by using the first eight most important principal 
components, and the reconstructed signals using the rest of the 
principal components. As can be seen in Figure 3, the PCA could 
noticeably clear the signal and highlight the main patterns of the signal. 
It is essential to consider that since the statistical properties of both of 
the upward and downward travelling waves are the same, and the PCA 
is based on the covariance matrix, both of these waves are categorized 
in the same group in the principal components domain. In other words, 
the PCA is not able to separate the upward and downward travelling 
waves from each other, but it can clear the signals from the rest of the 
unwanted patterns.

Figure 4 shows the principal components of the simulated 
orthotropic timber pole with the embedded condition.

The first eight principal components have been used to transfer the 
signal back to the time-space domain, which are shown in Figure 5.

It can be seen in Figure 5 that for the simulated orthotropic timber 
pole with the embedded condition, the PCA cannot clear the signals. 
This is due to the changes of the existing statistical properties in the 
captured signals. The changes in the statistical properties are due to the 
effects of the dispersion caused by the orthotropic material properties 
of the timber pole, which will be explained shortly.

Figure 4: Principal components of the simulated orthotropic timber pole with 
the embedded condition.

Figure 5: (a) Original captured signals; and the signals that transferred back to 
the time domain using; (b) the first eight most important principal components; 
(c) the rest of the principal components for the simulated orthotropic timber pole 
with the embedded condition.

Figure 6: Singular values of the simulated isotropic timber pole with the 
embedded condition.

SVD
Figure 6 shows the Singular values of the simulated isotropic timber 

pole with the embedded condition.

In the SVD, the singular values can be separated in three groups 
of low, medium, and large. The most important singular values are 
grouped in the low, while the less important ones are grouped as the 
high, and the ones in the middle are grouped as the medium. The first 
ten singular values are grouped as the low, ten to thirty are grouped 
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as the medium, and the rest are in the high group. Figure 7 illustrate 
the time-space domain signals, which are obtained from each of these 
groups of the singular values.

It can be seen in Figure 7 that the SVD could highlight the main 
patterns and remove the noise. Since the statistical properties of the 
up- and downward travelling waves are the same, SVD is not effective 
in separating of these travelling waves from each other.

Figure 8 demonstrates the singular values of the simulated 
orthotropic timber pole with the embedded condition.

In this case, only the first five singular values are grouped as low, 
from five to thirty are grouped as medium, and the remaining are 
grouped as the high ones. Figure 9 illustrates the time signals obtained 
from each of these groups of the singular values.

It can be seen in Figure 9 that the SVD could not preserve the main 
patterns as it did in the isotropic case. The SVD and the PCA are both 
based on second order statistics. In fact, the distortion caused by the 
orthotropic material properties of the timber pole and the impact type 
makes it impossible for the algorithms like PCA and SVD to separate 
the existing patterns in the signal from each other. In the situation where 
the timber pole is simulated with the isotropic material properties, 
these algorithms can only remove the noise and are not able to separate 
the patterns with the similar statistical properties like the upward and 
downward travelling waves from each other.

K-mean clustering

In this section, K-mean clustering, which is the iterative and 

Figure 7: (a) Original signals, and the transferred signals to the time domain 
using; (b) the low singular values; (c) the medium singular values, and; (d) the 
high singular values for the simulated isotropic timber pole with the embedded 
in 1.5 m soil condition.

Figure 8: Singular values of the simulated orthotropic timber pole with the 
embedded condition.

Figure 9: (a) Original signals, and the transferred signals to the time domain 
using; (b) the low singular values; (c) the medium singular values; (d) the high 
singular values for the simulated orthotropic timber pole with the embedded 
condition.

learning algorithm, is employed on the data captured form the 
simulated orthotropic timber pole in order to deal with the intrinsic 
complexities exist in the data and to separate the different patterns 
from each other. One of the major steps in the learning algorithms is 
a feature extraction. Feature extraction is needed to be done in a way 
to assure that the most convenience features of the data are fed into 
the learning algorithm. As mentioned earlier, the captured signals from 
the simulated orthotropic timber pole as well as real timber pole suffer 
heavily from the dispersion. On the other hand, dispersion relation 
can be obtained from the temporal (well-known frequency) and the 
spatial (knows as wavenumber) frequency relations (the propagation 
equations are solved for the temporal frequencies, while the roots are 
spatial frequencies). Two-dimensional Fast Fourier Transform (FFT) 
of the two dimensional data (captured signals from 241 sensors) can 
obtain the data in the two dimensions of the temporal and spatial 
frequency domains. Since the dispersion relation is obtained directly 
from the aforementioned transferred data, this data is also used to feed 
to the K-mean clustering algorithm. Original data (that is going to be 
fed into the algorithm) is shown in Figure 10.

It is necessary to consider that since one-dimensional FFT is 
mirrored in the frequency domain, two-dimensional FFT has four 
mirrored sections. For this reason, only one quarter of the transferred 
data (shown by the rectangular in Figure 10) has fed into the K-mean 
algorithm, and the outputs are generalized into the other three sections. 
In this regard, K-mean algorithm is set in a way that it separates its 
input dataset into the five clusters. The result of the K-mean clustering 
is shown in Figure 11.

Figure 11 demonstrates the Silhouette value of each cluster vs. 
the related cluster. As can be seen, third cluster is the most important 
cluster amongst all five, and its silhouette value is one. The related 
data of the third cluster in the F-K (Frequency-Wavenumber) domain 
(which obtained from the K-mean algorithm) that contains the desired 
output is shown in Figure 12.

Figure 13 illustrates the original signals and the K-mean clustering 
outputs in the time-space dimensions. As can be seen in Figure 13b, the 
K-mean clustering could successfully separate the longitudinal and the 
bending waves from each other.

Figure 14 shows the outputs of the K-mean clustering followed 
by the predictive deconvolution (Predictive deconvolution is used for 
separation of the up- and downward travelling waves, details of the 
methodology can be found in [2]). It can be seen in this figure that 
although the predictive deconvolution could remove the downward 
travelling wave, it weakened or in some sensors remove the reflection 
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Figure 10: Two-dimensional FFT of the original data, which is going to be fed 
into the K-mean clustering algorithm.

Figure 11: Silhouette plot of the output of the K-mean clustering algorithm.

Figure 12: Third cluster of the K-mean algorithm, which contains the desired 
output (the longitudinal wave).

Figure 13: (a) Original data captured from the simulated orthotropic timber pole 
after low-pass filtering with 4500 Hz (Hammer impact frequency range); (b) the 
data of the third cluster which is transferred back to the time-space domain; (c) 
the data obtained from the rest of the clusters which is transferred back to the 
time-space domain.

Figure 14: Outputs of (a) the 1.5 kHz low-pass filtering, and (b) the low-pass 
filtering followed by the predictive deconvolution for the simulated orthotropic 
timber pole with the embedded condition.

peaks (especially in sensors near the soil). The very weak detected 
reflection peaks are used for the velocity analysis and the embedment 
length estimation.

The velocity analysis procedure for the sensors that are shown with 
the oval in Figure 14 is illustrated in Figure 15. These sensors are chosen 
based on the real in-field sensors locations (in real in-field tests, only 
eight sensors are attached to the pole starting from the ground level 
with 0.2 m distance).

It can be seen in Figure 15 that although the estimated velocity of 
the down-going wave is in expected range, the velocity of the reflection 
wave is enormously higher than the usual. In fact, although the K-mean 

algorithm could successfully separate the longitudinal waves and the 
bending waves from each other, due to the interference between the 
existing branches, results of the velocity analysis are not reliable. It 
can be seen that the estimated velocity after applying the predictive 
deconvolution will be around the unrealistic value of 14000 m/s. In the 
following, possible reasons of such distortion caused by the orthotropic 
nature of the timber pole are explained.

Hammer impact excites the timber pole in the broad range of 
frequencies (0-5 kHz). If all of the frequencies propagate through 
the timber pole with the same velocity, shape of the signal will not 
change through the propagation period. This means that the statistical 
properties of the several existing patterns will not change. On the other 
hand, if different frequencies travel with different velocities, the overall 
shape of the signal will change. In other word, the existing statistical 
properties will change. This phenomenon is known as dispersion effect. 
Considering the cylindrical timber pole, dispersion relations for the 
simulated isotropic and orthotropic timber poles are shown in Figure 
16. As can be seen in Figure 16a, the simulated isotropic timber pole 
acts as the non-dispersive medium in the frequency range of 0-7 kHz 
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(a) 

(b) 

Figure 15: Velocity analysis procedure of the outputs of the K-mean clustering 
followed by the predictive deconvolution for (a) the first arrivals, and (b) the 
reflection peaks for the simulated orthotropic timber pole with the embedded 
condition.

 

(a) 

 

(b) 
Figure 16: Dispersion curves of the cylindrical timber poles in (a) the isotropic; 
and (b) the orthotropic cases. Dashed lines represent the flexural wave branches 
and hard lines represent the longitudinal branches [23].

(i.e., in this frequency range the group velocity and the phase velocities 
are relatively the same). Consequently, the simulated isotropic timber 
pole acts as a non-dispersive medium under the hammer impact load. 
This is the main reason that the main patterns related to the up- and 
downward travelling waves could easily be detected in the isotropic 
case.

On the other hand, the simulated orthotropic timber pole (which 
is more similar to the reality) is highly dispersive material in the 
frequency range of 0-5 kHz (the hammer impact frequency range). 
Furthermore, lateral hammer impact with 45° angle excitation creates 
both longitudinal and the bending waves simultaneously, while each of 
them has at least two branches in this frequency range. The situation 
is worse when each of mentioned branches has a highly nonlinear 
behaviour.

By looking at Figure 16b, one can simply see that five branches exist 
in the frequency range of the hammer impact. Considering Figure 16b, 
if the timber pole is excited with the broadband frequency impact (i.e., 
hammer), the captured signals suffer from severe distortions. These 
distortions are related to firstly the nonlinear behaviour of each of the 
branches (longitudinal and bending), secondly to the interference or 
the contributions between these branches in the hammer excitation 
frequency range. It is worth considering that when different frequencies 
travel with different velocities, each of the frequency components has its 
own reflection (e.g. from the bottom of the pole), while the interference 
between the reflections created in the single and the same frequency 
but from the different modes can result in the peaks removal in the 
captured signal.

Conclusions and Future Works
Timber pole is an orthotropic material by nature. In this regard, 

its behaviour under the lateral 45° hammer impact excitation is very 
complicated and captured signals suffers from severe distortions. It 
is shown in this paper that since the simulated timber pole with an 
isotropic material properties acts as a non-dispersive medium in the 
hammer impact excitation frequency range, main patterns related to the 
up- and downward travelling waves can be preserved by the PCA and 
SVD, while these patterns could not be separated from each other due 
to their same statistical properties. It is also shown that these algorithms 
are not effective on the captured signals from the simulated timber pole 
with the orthotropic material properties due to the dispersion effects. 
In this regard, K-mean algorithm, which is an iterative and learning 
algorithm, has been modified and employed for separation of existing 
patterns in the captured signals. The results, however, demonstrated 
that although it could successfully separate the longitudinal waves from 
the bending ones, the interference between existing branches was not 
amendable and led to unrealistic and unreliable results.

Main contributions of this paper are as follows. Firstly, to illustrate 
the difference between isotropic and orthotropic simulations of the 
timber poles from the signal processing point of view, and also the 
effects of simplifications in the isotropic simulations. Secondly and 
mainly, to demonstrate the high level of complexities that exist in the 
processing of the captured signals when the timber pole is excited with 
the lateral 45° broadband frequency range impact (i.e.,hammer). In 
fact, if dealing with high level of complexities is not impossible, it is 
a very difficult task. In this regard, the authors strongly recommend 
not exciting the timber pole in a broad range of frequencies especially 
when the impact is applied on the side of the structure with an angle. 
In fact, exciting the timber pole with a narrowband impact excitation 
makes a less complicated situation. Furthermore, for damage detection 
purposes, it is recommended not to use low frequency ranged because 
of “th” large time lengths of the waves.
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