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Abstract
Testing for Hardy-Weinberg equilibrium of genotype frequencies is a crucial first step in the study of population 

genetics. In this paper, we develop an Expectation-Maximization algorithm to estimate the genotype frequencies 
for sibship data with genotype uncertainty. We also develop a likelihood ratio test of Hardy-Weinberg equilibrium 
for sibships with no parental genotypes available and with possible genotyping errors. Simulations show that our 
likelihood ratio test maintains valid control of the type I error rate and good statistical power. Finally, the likelihood 
ratio test is extended across strata when a sample is stratified by multiple ethnic populations with different genotype 
frequencies.

Keywords: Hardy-Weinberg Equilibrium; Genotyping errors;
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Introduction
The genetic composition of a population can be influenced by 

various factors such as migration, mutation, inbreeding, natural 
selection and gene flow. Investigations of these mechanisms through 
behavioral, ecological, breeding and other studies are usually preceded 
by testing of the given population for Hardy-Weinberg equilibrium 
(HWE) [1]. If the allele frequencies in a population with two alleles 
a1 and a2 at a locus are 

1ap  and 
2ap , then testing HWE is to check

whether the observed genotype frequency for genotype (a1,a2) equals 

1 2a a2p p  and the observed genotype frequency for genotype (as,as), 
s=1,2, equals 2

sap . Departures from HWE at particular markers 
may indicate problems which include genotyping errors, sample 
mishandling, inconsistencies within family pedigrees and population 
structure [2]. Therefore, testing HWE of marker genotype frequencies 
has been used for screening genetic markers in association studies [3], 
and for fine-scale localization of a disease-susceptibility locus [4]. Some 
statistical tests to detect and measure deviation from HWE have been 
derived in the twentieth century (see for examples [5-7]). Wigginton et 
al. [8] provided a general algorithm to perform an exact test of HWE in 
large or small samples. The works mentioned above were done under 
the assumptions of independence of individuals and no genotyping 
errors in the sample. 

Bourgain et al. [9] presented a new test for HWE suitable for 
samples containing dependent individuals, when the genealogy of the 
population is available. They used quasi-likelihood which allows them 
to work with large pedigrees. However, their method can’t accommodate 
genotyping errors. Genotyping errors mean that there is a probability of 
observing as when 's

a  is the true allele. It is well known that genotyping 
errors can have significant effects on linkage analysis: see Gordon and 
Ott [10] for effects on estimated REcombination fraction, Gordon et 
al. [11], Leal [12] and Cox and Kraft [13] for effects on the analysis of 
single nucleotide polymorphisms (SNP). 

A likelihood ratio test (LRT) for testing HWE has been developed 
which takes into account potential disease-genotype association[14]. 
Yu et al. [15] presented another LRT using both case and control 
samples. Shriner [16] first offered approximate χ2 and exact tests of 
HWE using uncertain genotypes. However, his method can't handle 
dependent individuals. In this paper, we offer a LRT of HWE for 
dependent individuals with possibility of genotyping errors. Our 

method is designed for sibship data which is used widely in genetic 
association studies [17-20] and gene mapping of complex quantitative 
traits [21]. We apply our method effectively for two generations with an 
arbitrary number of siblings. In principle, our method can be extended 
to arbitrary pedigree structures. Increasing the number of generations, 
however, increases significantly the computational burden. Bourgain et 
al. [9] can handle large pedigrees but no genotyping errors. Shriner [16] 
can handle genotyping errors but no dependent individuals. We can 
handle genotyping errors within sibship data.

In fact, our paper goes somewhat further: we accommodate 
genotype data with dependent individuals, genotyping errors and across 
strata. Considering genotype data sampled from several populations 
allowing for different marker allele frequencies, Haldane [5] first 
developed a HWE test for stratified data. Schaid et al. [22] proposed an 
exact stratified test for diallelic markers for independent individuals. 
However, their methods work under the assumptions of independent 
individuals and no genotyping errors.

Through our likelihood ratio method, we give a test for stratified 
sibship data with possible genotyping errors. Through simulation 
studies, we evaluate the performance of the proposed tests. The results 
show that they have the correct type I error rate and strong power. An 
R function is developed and it can be obtained at http://xingao.info.
yorku.ca/.

Methods
Suppose N sibships are genotyped at a multiallelic marker. We 

assume the genotypes of their 2N parents are not available. Let gi=(gi1, 
gi2) and Gi=(Gi1,Gi2) represent the genotypes of the sibships and their 
parents in the i-th family, respectively. Let as,s=1,…,k, be alleles and 
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a a s s k  be the set of genotypes. Let , 1, ,= 

sap s k , be 
allele frequencies and qm,m∈A, be genotype frequencies. We denote 
their estimators by 

sap ,   sˆ 1, , k=   and  , ∈mq m . To test HWE, we 
want to test

s s'

s s'

s

a a s s'
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H :   q
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     otherwise

First, let us consider the problems for sibling dependence but 
no genotyping errors. When both g and G are known, the complete 
likelihood function is

( ) ( )i

2

N
I(G m,m' )

m m' i i
i 1 (m,  m')

L q;G,g [q q P(g | G (m,m'))] ,  =

= ∈

= =∏ ∏


 (1)

where ' 2( , )∈m m  is a pair of genotypes and '( ( , ))=iI G m m  is an indicator 

function, which is defined by 1,
0 otherwise.

'
' i

i
if the genotype G  is(m, m );

I(G = (m, m )) =




. The 
observed genotypes g of siblings in each family constitute the observed 
data, while the unknown genotypes G of parents constitute the missing 
data. The Expectation-Maximization (EM) algorithm [23] will be used 
to estimate ( , )= ∈mq q m  with missing data.

E-step: The E-step uses the expectation with respect to G of the 
complete log likelihood as follows
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where i=1,…,N, and q(t) is the estimated parameter obtained after t 
iterations.

M-step: Given the expected probability ′ω(t) (t)
i(m,m') i i= P(G = (m,m ) | q , g ),  

we maximize ( )( | , )tQ q g q  to obtain the (t+1)- updated value of q. The 
parameters q(t+1) are determined according to the estimate of the variables 

( )
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The estimates are updated until convergence.

Next, let us allow for random genotyping errors in g by which we 
mean any miscoding of a sibling's correct marker genotype [24]. This 
model is realistic for automated SNP calling, in which a machine makes 
the allele calls without human intervention [11]. We assume the SNP 
loci have two alleles, a1  and a2. Genotying errors occur when allele 
a1 is incorrectly coded as a2 and vice versa. Let ε1 be the probability 
of incorrectly coding a1  as a2, and ε2 be the probability of incorrectly 
coding a2 as a1. The probability P (observed genotype | true genotype) 
is referred to as the penetrance of the genotype [25]. Given error rates ε1 
and ε2, Table 1 presents the matrix of penetrances (Table 1).

The genotying errors will affect ( | ( , '))=iP q G m m  in formula (2). 
Let *, 1,..., ,=ig i N  denote the true genotype of siblings in family i which 
could be different from the observed gi. Then, for * 2∈ig , i=1,…,N,

( )( ) ( )( )
* 2

' * '| , , | ,
∈

= = =∑
i

i i i i i
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P g G m m P g g G m m

( )( ) ( )( )
* 2

* ' * '| , , | ,
∈

= = =∑
i

i i i i i
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P g g G m m P g G m m

( ) ( )( )
* 2

* * '| | , ,
∈

= =∑
i

i i i i
g

P g g P g G m m

where the last equation is due to the fact that g is independent of G 
given g*. The probability *( | )i iP g g  can be computed from Table 1. 
With this modified probability for ( | ( , '))=i iP g G m m , we repeat the 
E-step and M-step as described before to estimate q. So far, we have 
estimated q under no assumption of HWE. We can proceed in exactly 
the same way to estimate 

sap  and 
'sap  under H0. We replace 

's sa aq  

by 
s s'a a2p p  when '≠s s  and replace  

s sa aq  by 2
sap  in our likelihood 

equation (1) above.

The likelihood ratio test statistic is 0 1 0 1ln( / ) 2 )ln2 (ln= − −− L L L L , 
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Under HWE, the test 0 1n(ln2 )l−− L L  has an approximate Chi-
square distribution with ( 1) / 2 ( 1) /   2+ − = −k k k k k  degrees of 
freedom. Finally, we extend our testing procedure to accommodate 
a stratified population where each stratum has different genotype 
frequencies. In what follows, we will propose a likelihood ratio test 
for multiple populations with different genotype frequencies. Suppose 
the genotype data is sampled from L known populations. Let nl be the 
number of families in the l-th, l=1,…,L, population. The likelihood 

ratio test for HWE is given by 0 1
1 1

2 ln / ,
= =

 
−  

 
∏ ∏

L L
l l

l l
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Under HWE, the test has an approximate Chi-square distribution 
with lk(k-1)⁄2 degrees of freedom.

Simulations
In this section, we conduct simulation studies to assess the 

performance of the proposed method. We focus on showing that the 
likelihood ratio test has appropriate type I error rates and good power. 

Observed Geno-
types

True Genotypes
AA Aa aa

AA (1-ε1)
2 ε2 (1-ε1)

2
2ε

Aa 2ε1 (1-ε1) ε1 ε2+(1-ε1)(1-ε2) 2ε2(1-ε2)

aa  
2
1ε ε1 (1-ε2) (1-ε2)

2

Table 1: Penetrances of genotypes with 2 alleles.
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We will also compare our LRT with the approximate χ2 and exact test 
proposed by Shriner [16].

To assess type I error rate, we simulate independent families under 
the null hypothesis of HWE with each family having 2 non-genotyped 
parents and 2 genotyped siblings. We perform 1000 simulation runs at 
a significance level α=0.05. Firstly, we investigate how type I error rate 
varies across different genotyping errors at a fixed genotype frequency of 
parents. We choose two specific genotype frequencies for parents: (0.25, 
0.5, 0.25) and (0.04, 0.32, 0.64) with genotyping errors 1 2 0.01= =ε ε  or 

1 2 0.05= =ε ε . Simulation results for three methods, LRT, approximate 
and exact are given in Table 2. Table 2 demonstrates LRT approximates 
α best, with increased accuracy as the sample size increases. Secondly, 
we investigate how type I error rate varies across different minor allele 
frequencies (MAF), family sizes N, and with or without genotyping 
errors. For simulations without genotyping errors 1 2 0)( = =ε ε , the 
MAF ranges from 0.01 to 0.5. For simulations with genotyping errors 

1 2 0.01( )= =ε ε , the MAF ranges from 0.05 to 0.5. Figure 1 shows that 
without genotyping errors, LRT maintains valid control of type I error 
rate across different MAFs and sample sizes. As the family size and 
MAF increase, type I error rate of LRT is further improved. In the 
presence of genotyping error, LRT still controls type I error rate close 
to the nominal level except for extremely low MAFs. This means that 

the extremely low MAFs coupled with genotying errors lead to larger 
type I error inflation. For example, with MAF=0.01, genotying errors 

1 2 0.01= =ε ε , and N=500, the type I error rate is 0.193.

We further investigate the impact of MAFs and inbreeding 
coefficient f on the power of the proposed LRT [8,26-28]. We simulate 
independent parents under the alternative hypothesis with f ≠ 0. We 
perform 1000 simulation runs at a significance level α=0.05. Firstly, we 
examine the impact of genotying errors on the power. We simulate two 
scenarios of genotyping errors 1 2 0.01= =ε ε  or 1 2 0.05= =ε ε  with 
genotype frequencies set to be (0.1, 0.2, 0.7) or (0.04, 0.1, 0.86). Table 3 
shows that LRT has a higher power compared to the approximate and 
exact tests, and the power increases as the sample size increases and 
genotyping errors decrease. Secondly, we investigate how the power 
varies across different MAFs, family sizes N, and inbreeding coefficient 
f. The results are summarized in Figures 2 and 3. The MAF ranges from 
0.05 to 0.5 and genotyping errors are 1 2 0.01= =ε ε . Figures 2 and 3 
demonstrate that the power of LRT increases with the sample size, MAF 
and the inbreeding coefficient f.

We further evaluate the performance of the proposed LRT across 
strata in terms of type I error rate and power. We run experiments 
with 1000 repetitions and L=2 known populations at a significance 

Type I error rate
ε1 ε2 N G LRT Approximate χ2 Exact

0.01 0.01
100

(0.25, 0.5, 0.25)

0.057 0.078 0.084
200 0.051 0.098 0.098

0.05 0.05
100 0.071 0.298 0.323
200 0.044 0.592 0.626

0.01 0.01
100

(0.04, 0.32, 0.64)

0.025 0.080 0.075
200 0.051 0.102 0.101

0.05 0.05
100 0.049 0.334 0.376
200 0.047 0.675 0.691

Table 2: Type I error rate using uncertain genotypes for two alleles.

Figure 1: Type I error rate of LRT against MAF for different family size (50, 100 and 500). The labels "with errors" and "without errors" represent the simulations with 
genotyping errors and without genotyping errors, respectively.
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Figure 3: Power against f for different family size (100 and 500) with MAF=0.05 or MAF=0.17. For MAF=0.05, f ranges from -0.02 to 1; for MAF=0.17, f ranges 
from -0.2 to 1.

Figure 2: Power against MAF for different family size (100 and 500) with f=0.1 or f=0.4.

Power
ε1 ε2 N G LRT Approximate χ2 Exact

0.01 0.01
100

(0.1, 0.2, 0.7)

0.598 0.097 0.087
200 0.894 0.126 0.116

0.05 0.05
100 0.548 0.328 0.365
200 0.836 0.666 0.677

0.01 0.01
100

(0.04, 0.1, 0.86)   

0.384 0.088 0.109
200 0.725 0.102 0.125

0.05 0.05
100 0.498 0.392 0.433
200 0.847 0.758 0.766

Table 3: Power using uncertain genotypes for two alleles.
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level α=0.05. Firstly, we assess type I error rate and power for different 
genotyping errors. To assess type I error rate, we set the genotype 
frequencies for parents to be (0.25, 0.5, 0.25) for population 1 and (0.16, 
0.48, 0.36) for population 2. To assess the power of LRT, we set the 
genotype frequencies for parents to be (0.04, 0.32, 0.64) for population 
1 and (0.2, 0.2, 0.6) for population 2. In each population, we choose the 
same error rates 1 2 0.01= =ε ε  or 1 2 0.05= =ε ε . In Table 4, the type I 
error rate and power are summarized. It can be seen that our LRT are 
valid, in the sense that they maintain appropriate control of the type I 
error rate. The power of the LRT increases as the sample size increases 
and genotyping errors decrease. Next, we investigate how type I error 
rate varies across MAF1 (MAF in the population 1) and MAF2 (MAF 
in the population 2), the family size, and with or without genotyping 
errors. For the simulation without genotyping errors ( )1 2 0= =ε ε , 
the range of MAF1=MAF2 is from 0.01 to 0.5. For the simulation with 
genotyping errors 1 2 0.01( )= =ε ε , the range of MAF1=MAF2 is from 
0.05 to 0.5. Figure 4 shows that the LRT can approximate α better as 
the family size and MAFs increase. Genotyping errors lead to larger 
type I error inflation when MAFs are extremely low. Finally, we also 
investigate the effect of MAFs, inbreeding coefficient f and the sample 

size on power by Figures 5 and 6. The range of MAF1=MAF2 is from 
0.05 to 0.5 and the genotyping errors are 1 2 0.01= =ε ε . It is observed 
that the power of LRT increases with the sample size, MAF and the 
inbreeding coefficient f.

Real Data Analysis
We analyze the human CEPH genotype dataset (V10) which is 

available online (www. cephb.fr/cephdb). The dataset contains DNA 
marker genotypes for 32,356 marker loci from 65 families.

Within each family, the second generation contains 1 to 15 
genotyped siblings. We perform HWE test on the collection of all 
second generation siblings. We select a few markers D1S16, D1S20, 
D1S14 and D1S70 on the chromosome 1 with MAF ranges from 0.119 
to 0.454. We obtain the p-values on these markers and compare them 
with the p-values from the approximate and exact tests. The results are 
summarized in Table 5. For the markers D1S16, D1S20 and D1S14, the 
decision of the LRT to accept or reject HWE is in agreement with the 
other two methods. However, for marker D1S70, the LRT accepts the 
HWE, while the approximate and exact tests both reject the HWE. The 

Figure 4: Type I error rate of LRT against MAFs for different family size (50, 100 and 500). The labels "with errors" and "without errors" represent the 
simulations with genotyping errors and without genotyping errors, respectively.

Under the null hypothesis Under the alternative hypothesis
ε1 ε2 nl G Type I error rate G Power

0.01 0.01
100 (0.25, 0.5, 0.25)

0.043
(0.04, 0.32, 0.64) 0.918

100 (0.16, 0.48, 0.36) (0.2, 0.2, 0.6)

0.01 0.01
200 (0.25, 0.5, 0.25)

0.048
(0.04, 0.32, 0.64) 1.000

200 (0.16, 0.48, 0.36) (0.2, 0.2, 0.6)

0.05 0.05
100 (0.25, 0.5, 0.25)

0.046
(0.04, 0.32, 0.64) 0.753

100 (0.16, 0.48, 0.36) (0.2, 0.2, 0.6)

0.05 0.05
200 (0.25, 0.5, 0.25)

0.051
(0.04, 0.32, 0.64) 0.980

200 (0.16, 0.48, 0.36) (0.2, 0.2, 0.6)

Table 4: Type I error rate and power across strata.
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Figure 6: Power against MAFs for different family size (100 and 500) with f=0.1 or f=0.4.

Figure 5: Power against f for different family size (100 and 500) with MAFs=0.05 or MAFs=0.17.
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estimates of genotype frequency and allele frequency based on our EM 
algorithm are (0.49, 0.4, 0.11) and (0.693, 0.307), respectively, which 
does not manifest a severe deviation from HWE. This discrepancy is due 
to the fact that our method takes into account the dependencies among 
the multiple siblings and estimates the founders' genotype frequencies 
through EM algorithm. In contrast, blindly applying the other two 
methods on dependent siblings leads to the use of the siblings' genotype 
frequencies as the founders' genotype frequencies. The convergence 
of EM algorithm is demonstrated through Figure 7, which plots the 
difference between successive updates of parameters against iteration 
number. It is observed that the EM algorithm converges quickly after 
a few iterations.

Conclusion
In this paper, we develop a likelihood ratio test for HWE for sibship 

data with random genotying errors. One constraint of our method is 
that we need to know the genotyping error rates ε1 and ε2  accurately. 
Our method is shown to maintain the type I error rate better and to 
be more powerful than previous tests that do not take into account 
dependence of siblings and genotyping errors.
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