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Abstract

Gene sequence classification is a well-known problem that impacts several sub-disciplines of Bioinformatics
including functional genomics and gene expression data analysis. In gene classification task gene families are
frequently formulated using large Generalized Hidden Markov Models (GHMMs) representing a bottleneck for any
decoding method and weakening its efficiency. Thus an efficient decoding of such GHMMs remains a key challenge.
In this paper, we introduce a new pruned-based strategy for improving the decoding of GHMM using pruning
techniques. We focus on viterbi decoding algorithm but the strategy is applicable to GHMM decoding in general.
Unlike standard decoding methods, a paradigm shift from screening to-wards recognition is first performed to
integrate all considered models into a combined state space. Then the decoding process is limited to the activated
states within a beam around the optimal solution to significantly reduce the computational e ort, and thus greatly
speeding up the model decoding. Our experiment on Eukaryotic gene demonstrates the e activeness of our
approach for speeding up gene classification task.

Keywords: Beam-search; Gene expression; Generalized hidden
markov model; Recognition; Pruning techniques; Screening

Introduction
Genomes expression data analysis of organisms has and will

continue to produce large quantities of gene sequence data. Only very
similar gene sequences are grouped together in databases called Gene
Families. The genes in each family would be similar in functions or
protein coding. These databases could be searched for other gene
members. That is to say, searching similarities of gene sequences with
genes databases can also be formulated as a pattern classification
problem that is called gene classification. Often classifying the
enormous number of genes into relatively small number of groups
would be extremely useful to draw valuable information from the data
and it is the basis for prediction of the functions of unknown genes.

The gene classification problem can be stated as follows: given a
number of gene families and a target gene, how to find the most
probable model in which the gene sequence belongs to it. Hidden
Markov models (HMMs) [1] are commonly used to formulate gene
families. HMMs are probabilistic graphical models that capture the
dependencies between random variables in time-series data. They have
been successfully applied to several areas of artificial intelligence such
as speech recognition e.g. [2] robotics e.g. [3] pattern recognition [4]
and several areas of bioinformatics, such as Trans membrane protein
classification e.g. [5] to perform predictive and recognitive tasks. The
power of HMMs stems from the provision of efficient and intuitive
algorithms that grant HMMs their predictive and recognitive
capabilities by computing quantities of interest described by the model.
For example, given the specifications of the model, there exist efficient
algorithms for computing the probability of observed events [6].

HMMs however, remain unexplored in application domains where
they can be useful, by virtue of the unavailability of the statistical data
necessary for the specification of the parameters of the model.
Although overcoming the lack of real data by means of approximation
[7] or synthesis [8] is possible for some applications, it is not an option
for many types of applications. For example, epidemiological data
describing factors influencing the occurrence of illnesses cannot be
approximated or synthesized when not sufficient.

According to Bayesian measure, performing a gene classification
task using HMMs always endowed with the evaluation process that
takes the target gene sequence O and a set of n HMMs �� ��  as input

and produces the best HMM �∗ model that is suitable to the input gene
sequence i.e., the HMM �∗model that has the maximum value of the
probability � � � . However, computing � � �  is equal to the sum
over all maximum possible sequence of hidden states of probability� �,�, �  of the most likely sequence of hidden state� , the gene
sequence O and the HMM �. Thus, in the evaluation process of HMM,
one frequently resorts to apply a decoding algorithm such viterbi or 1-
best to obtain the most likely sequence of hidden state Π.

Reviewing the Bioinformatics publications beyond these principle
aspects, there is hardly any work discussing the optimization of the
model evaluation itself. Performing database screening implies
computing the classification scores of multiple models for the target
sequences. Usually the evaluation is performed sequentially i.e., the
scores for each model are calculated separately and the computational
e ort is substantial. Even the widely used method of parallelization
using specialized hardware does not solve the principle problem since
it only heals the symptoms.
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In order to improve the sequential search procedure using all known
models, we reorganize the classical model evaluation. This offers the
opportunity of integrated classification with these models. Pruning the
search space of a HMM literally means reducing the number of
explored states during the decoding process. In this paper, using the
well-known beam-search approach we prune the search space of
GHMMs which greatly reduces the computational e ort during model
evaluation. Therefore, our proposed technique speeds up the gene
classification by doing the following:

• Integrate all considered HMMs into a combined state space, so a
paradigm shift from screening towards recognition is performed.

• Incorporate beam-search as a pruning technique [9] into the
evaluation of HMMs to reduce the computations.

The rest of the paper is organized as follows: Section 2 covers the
related work of our proposed problem. In section 3 we present a
description of HMMs for pattern classification. Section 4 describes the
proposed approach to speed up gene classification. In Section 5, the
performance evaluation of the proposed technique is introduced. We
conclude our work in Section 6.

Related Research
The challenge of gene finding in the genome is an important and di

cult task. Finding genes will lead to more progress like knowing the
functions of gene, predicting diseases, and determining spurious genes,
also considered an important step in understanding the genome of a
species and more. Using computational techniques, much e orts have
been done in working with genes such as classify genes, identify
common phenomena in known genes, describe the common
phenomena, and scan uncharacteristic sequence to identify regions
that match the model which become putative genes. The most two
common computational approaches are:

Direct
In direct approaches, the exact or near-exact matches of DNA, or

proteins from the same or closely related organism are used, there are
many tools for finding gene based on direct approach such as FASTA
[10] BLAST, and ESTGENOME [11].

Indirect
The indirect approaches are classified into the following:

• Comparative homology approaches: As the entire genomes of
many different species are sequenced, a promising direction in
current research on gene finding is a comparative genomics
approach. This is based on the principle that the forces of natural
selection cause genes and other functional elements to undergo
mutation at a slower rate than the rest of the genome, since
mutations in functional elements are more likely to negatively
impact the organism than mutations elsewhere. Genes can thus be
detected by comparing the genomes of related species to detect this
evolutionary pressure for conservation. This approach was first
applied to the mouse and human genomes, using programs such as
SLAM, SGP and Twinscan/N-SCAN [12]. Parra et al. applied
Comparative homology approach on Mouse and Human genomes
[13]. Marina et al. applied Comparative approach on Human
genome using SLAM program [14]. Wiehe et al. proposed a
program called SGP based on homology approach [15]. Birney et
al. proposed high quality annotations project from one genome to

another for comparative gene finding by using GeneWise which is
based on HMM [16]. In our proposed approach, we use Gene-
Mark for nding genes, which is different from GeneWise, where
GeneWise is a pair-HMM style with strong similarities to the more
recent dual genome predictors called Double Scan, but Gene-Mark
is a pro le-HMM style. However, there has been no work on the
theory by which the GeneWise was developed, and also there is no
details on the precise implementation of aspects of the GeneWise,
but for Gene-Mark there have been many works discussed the
precise implementation of it. Such techniques play the central role
in the annotation of all genomes [17].

• Ab initio approaches: Because of the inherent expense and
difficulty in obtaining extrinsic evidence for many genes, it is also
necessary to resort to Ab initio gene finding, in which genomic
DNA sequence alone is systematically searched for certain tell-tale
signs of protein-coding genes. These signs can be broadly
categorized as either signals, specific sequences that indicate the
presence of a gene nearby, or content, statistical properties of
protein-coding sequence itself. Ab initio gene finding might be
more accurately characterized as gene prediction, since extrinsic
evidence is generally required to conclusively establish that a
putative gene is functional. [18,19]. Burge et al. proposed one of
the most common program called Gene Scan for finding genes
based on Ab initio approach which we use in our proposed
approach [20].

• Hybrid approaches: The hybrid approach is the combination of
homology comparative and Ab initio approaches. Yeh et al.
proposed Genome Scan which is based on hybrid approach.
GenomeScan is very similar to Gen Scan which is based on Ab
initio approach, the only di erence between them is that Genome
Scan finds genes in a single strand of DNA, but GENSCAN find
genes in double strands of DNA sequence [21]. Krof et al. proposed
Twinscan [22].

The best approaches for finding genes are the following: BLAST or
FASTA as a direct approach, Gene-Mark based on HMM as a
comparative homology approach, and Neural Networks (NNs) and
GENSCAN based on HMMs as Ab initio and Hybrid approaches. Guig
et al. showed that HMM is the best suited model for the problems that
need grammatical structure such as gene finding and gene
classification. All of the previous approaches are relied on HMMs [23].

HMMs for Pattern Classification
In the pattern recognition domain, memberships of sequences to

patterns are recognized, but in Bioinformatics applications, sequence
databases are screened for new targets of more or less abstract pattern
families e.g. gene families. There is an enormous volume of literature
on the application of HMMs to a broad range of pattern recognition
tasks. The suitability and decay of HMMs is undeniable and so they are
established as one of the major workhorses of the pattern recognition
community.

Performing pattern classification with HMMs requires the robust
estimation of their parameters, namely the transition and emission
probabilities as well as the model structure. Using representative
samples the probability values are usually estimated by means of
variants of the EM algorithm called Baum-Welch. Once HMMs are
established, they can serve as models for distinct pattern families e.g.
gene families, and after that they have to be evaluated when classifying
sequences of observations e.g. genes sequences. This evaluation is
performed using the Forward algorithm in which the general
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probability P(O | �K)of a HMM �K that produce the sequence O. This
evaluation can be approximately done by using the common Viterbi
algorithm. Viterbi algorithm additionally decodes the most probable
sequence of chosen states Π producing the sequence of observations
using Bayes rule and thus obtain the evaluation value as:P (� | O, �) = � (�,� | �) � (� | �) � (�*,� | �) =max� � (�,  � | �) = P* (� | �)   (1)

When the evaluation of HMMs is performed via Viterbi algorithm,
the states are arranged in a N M dimensional matrix V, where N is the
number of states in HMM and M is the length of the sequence O.

HMMs evaluation aspects: screening vs. recognition
Besides the theoretical framework there are several aspects to be

mentioned regarding the evaluation of HMMs in pattern classification
applications.

Screening: In Screening a specific HMM �� represents model for a
single pattern family K e.g. gene family. Traditionally, the databases are
screened for more or less similar occurrences of such models.
Therefore, for each part of the database O, some kind of score is
computed representing the probability of �� producing the requested
sequence O. As stated above, Viterbi algorithm is used to deliver the
score while additionally respecting the most probable state sequence
П*. Generally the probability �(�,∏ *  ��)is defined as in Equation
1.

Recognition: Recognition tasks usually consist of the discrimination
of multiple pattern e.g genes families, so several HMMs are established.
In terms of Bioinformatics domain, the search for homologies of
multiple different sequence families is performed on a database of
sequences. The evaluations of each HMM �� are compared for all
relevant sequences. The higher evaluation probability of the
appropriate HMM is a stronger homology.

Accelerating the Evaluation Model
Since the number of sequences is enormous, homology detection as

well as homology classification became very challenging task in terms
of computational e ort dedicated to the search and classification
problem. Usually, research in molecular biology is performed in a
more or less iterative manner, i.e., once new insights are obtained new
questions are to be answered. Mostly this implies new database
searches in order to find gene sequences belonging to a particular gene
family. Thus, efficient model evaluation techniques are mandatory
when applying gene family models to the task of gene classification for
huge amounts of data.

In Bioinformatics domain, the acceleration of the evaluation is
performed algorithmically. Currently, biological sequence analysis is
usually accelerated by increasing the computational power, i.e., by the
deployment of more computers. Unfortunately, the general problem of
extraordinary computational e ort still remains. Brute Force methods
for example using specialized hardware for massive parallel model
evaluation only treat the symptoms whereas the reasons for
computationally expensive data base searches when applying GHMMs
are usually not addressed. The dimensionality of the problem even

increases when applying new methods for improving the general
detection and classification performance as discussed before.

State space pruning
Analyzing the state-of-the-art in HMM based on gene sequence

analysis and reconsidering the basic theory of HMMs, it becomes clear
that the evaluation of gene family models is usually rather
straightforward. This means that no optimizations either heuristic or
theoretic are applied. In 1970, Bruce Lowered proposed the so-called
Beam-Search algorithm for heuristic state space pruning during model
evaluation [9]. Using this technique, substantial accelerations in HMM
evaluation become possible. In this paper, using Beam-Search and
Viterbi algorithms a new technique to prune the state space in
evaluation process is proposed which greatly speeds up the
computation.

Search space pruning
The Viterbi algorithm is widely used to find the most probable path

П* through the whole state space V of a HMM K producing the
observation sequence O. The main idea for each step l of the
incremental algorithm consists of the calculation of maximally
achievable probabilities ��(�) for partial emission sequences �1.....��
and state sequences�1.......��.��(�) = max�1...�� − 1 � (�1, ..., ��,�1...�� ��)  �� = ��            (2)

Since the dependencies of the HMM states are restricted to their
immediate predecessors (Markov Assumption) the calculation of��+ 1(�) is limited to the estimation of the maximum of the product
of the preceding �� �  and the appropriate transition probability.
Additionally the local contribution of the emission probability��(��+ 1)is considered. Stepping through the state space all ��+ 1 �
are recursively calculated using the following rule:��+ 1 (�) = max� �� (�) t�� .  ��(��+ 1)        (3)

Finally the globally most probable state sequence is created by
tracing back the local maxima. Considering the necessary
computational e orts for Viterbi algorithm where a large number of
possible paths needs to be considered. The more states which have to
be explored at each step, the more continuations of all possible paths so
far become reasonable. Thus, the number of traced paths dramatically
increases and as a consequence the processing time for model
evaluation will be increased. In order to reduce the processing time,
Lowerre in [9] introduced the beam-search algorithm that establishes a
dynamic criterion for search space pruning based on the relative
differences of the partial path scores. The state space is pruned and the
search is restricted to the promising paths only.

Some of HMMs are used in order to sufficiently represent the
applications domain, many of the HMM states cover mutually quite
different pattern families. Some parts of the state space of each HMM
are quasi irrelevant for one particular final solution and the remaining
states are activated regarding to the most probable path. Formally all
states ��  that have �� (�) are more or less similar to the locally
optimal solution ��* = max��� (�)are activated. The threshold of

acceptable differences in the local probabilities is proportional to ��* by
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the parameter B. So the set of activated states at a given time is located
in a beam around the optimal solution and determined by:� = �� ��(�) ≥ �  ⋅  ��*} � . � ��*= max�  �� (�) ��� 0 < B << 1             (4)
The only parameter of this optimization technique is the beam-

width B. Exploring the Viterbi matrix V at the next step l + 1, the new
activated states will be the states that are treated as possible
predecessors for the estimation of local path probabilities. Thus, at
every Viterbi step the following modified rule is used for the estimation

of ��+ 1 (�) as:��+ 1 (�) = max � ∈ �� ��(�)���  ��(��+ 1)       (5)
Note that the Beam-Search algorithm represents a heuristical

approximation of the standard Viterbi procedure.

Combined state spaces
Pure classification tasks (in terms of classical pattern recognition)

e.g. performing target classification for gene sequences, are calculated
separately by every HMM finally the highest scoring.

Model determines the classification result. It is clear that, it will be
more appropriate if all relevant models are treated combined instead of
fully evaluating every model separately. Technically, this implies that
the states of all HMMs are integrated into a global state-space which is
conceptually segmented into the particular models. In Figure 1, the
accelerated model evaluation process for gene family HMMs is
illustrated. All known models of gene families (1,...,K) are integrated
into a single combined state space (the grey shaded box). The
evaluation process is shown in the diagram of the state space V on the
right side. Large number of HMM states do not need to be activated
(pruned states). The sequence O is classified using the combined state
space by finding the Viterbi path (dashed line) through all models. The
effect of state space pruning can be noticed via the ratio of activated
states (black circles) to the overall number of states. For every Viterbi
step only a moderate "Beam" of states around the Viterbi path is
activated. Arranging all relevant gene families models (Figure 1), we
can note the following:

At the beginning of a particular sequence classification process the
initial states of all models are activated, i.e., they are treated as starting
points for Viterbi path-search. These paths including their extensions
of the remaining Viterbi steps need to be considered in parallel which
is basically no advantage compared to the usual separate evaluation.
However, applying the Beam-Search algorithm further substantial
savings of necessary computations can be obtained in addition to those
implied by local state-space pruning for single models.

Huge number of HMM states can be skipped for further evaluation.
Reasoned by the avoidance of the exploration of devious paths within
the combined state space where it is not necessarily to completely
evaluate all known GHMMs. Contrary to this, when performing
serialized evaluation of multiple models, at least one complete path
through all particular models needs to be evaluated.

The lower model will not be evaluated since all successor states are
pruned (global pruning) and for the remaining models a certain
number of assigned states is pruned as well. At the end of combined
model evaluation the index of the best fitting model is delivered

including its score for the requested sequence. Compared to the
conventional approach multiple repeats of this procedure are not
necessary since a global classification is performed.

Due to the deployment of the beam-search pruning algorithm a
substantial reduction of the computational complexity can be achieved
for single model evaluations since irrelevant parts of the models need
not to be explored by transfer recognition into screened. So for
screening applications all considered models are integrated into a
combined search space yielding further savings of necessary
computations. Reasoned by the avoidance of the exploration of devious
paths within the combined state space not necessarily all known
GHMMs need to be evaluated completely.

Figure 1 illustrates the proposed model evaluation process for
GHMMs. We choose the search for homologies of gene families. All
known GHMMs of gene families (λ1, λ2,...λKon the left side of the
sketch) are integrated into a single combined state space (the grey
shaded box). The evaluation process is performed on the state space V
on the right side. Following our approach lots of HMM states do not
need to be activated-they are pruned (empty circles). The sequence O
is classified using the combined state space by finding the Viterbi path
(dashed line) through all models. The effect of state space pruning can
be noticed via the ratio of activated states (black solid circles) to the
overall number of states (all circles). For every Viterbi step only a
moderate "beam" of states around the Viterbi path is activated.

Figure 1: The explored states in case of combined and pruned state
space.

Results and Discussion
The plain Viterbi algorithm always ensures that the most probable

path through the state space for a given observation sequence is found
because the whole Viterbi matrix is examined. The existing pruning
techniques like the beam-search are in principle suboptimal since only
a subset of HMM states are explored. Therefore, the possibility to miss
the optimal solution exists. Contrary to the existing pruning
techniques, the capabilities of our proposed pruning approach are
assessed concerning the maximally possible search space reduction
together with the increasing classification error rate. We performed
baseline experiments evaluating the Viterbi matrices in the
conventional way without pruning. Adjusting the beam-width B
according to this constraint then we evaluate our approach for a given
corpus comparing to the baseline results in two stages:
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• All known models are subsumed in order to create a combined
state space allowing integrated search for the most probable path.

• For all sequences, GHMMs of our working domain are evaluated
sequentially including the beam-search pruning. The main idea
here is to demonstrate the local search space reduction for single
model. Thus mutual influences of the different search processes are
neglected by keeping the sequential processing methodology.

We establish GHMMs as stated before using a GENSCAN package.
The domain for our experiments is finding homology members of gene
families. Thus, we trained several GHMMs using multiple alignments
of the likewise publicly available gene family library [24]. The
recognition domain consists of 4 models. Randomly separating sample
sequences of each gene family delivers a test set used for the
experiments. We separated 80 sequences for every family yielding 320
test sequences. For assessing the efficiency of our approach, we initially
performed experiments without any pruning of the state space using
the recognizer of the GENSCAN package. Since the HMMs used in
both experiments are identical, similar recognition rates were
achieved. Performing the GENSCAN baseline experiment results in
95:1% classification accuracy.

In Figure 2, the efficiency of the pruning techniques are illustrated,
where the observed slight improvements over the baseline results are
caused by artifacts of the beam-search algorithm and are in general not
significant. Yielding evidences for the efficiency within the proposed
combined state space as well as for the traditional sequential model
evaluation two test series are plotted in the diagram.

• The recognition rate for experiments using the combined search
space depending on the appropriate beam-widths is shown using
the dot line.

• The dash line indicates the average recognition rates of
experiments performed in the traditional way of classifying
sequentially. All 4 models are evaluated separately for all 320
sequences with varying beam-widths reducing the local search
space of the appropriate model.

Figure 2: Efficiency of search space pruning for combined and local
search using various beam-widths.

The varying beam-widths B for all experiments are not shown
directly but by the percentage of overall explored states. Additionally,

the classification accuracy of the baseline experiment (without
pruning) is shown using the sold line.

It can be seen that only a small fraction of the states actually need to
be explored while keeping the classification accuracy as high as if the
complete state space would be considered. As a consequence of these
great reductions of computational effort can be achieved. Using the
classification paradigm with combined search space only about 25% of
the HMM states needs to be explored. Comparing to the standard
experiment without pruning on a CPU of 2:8 MGz and 512 MB of
RAM, the run time of the model evaluation for the test set could be
reduced by approximately a factor of 4. The absolute run times for the
standard experiment were 204 seconds whereas the pruning
experiment takes about 51 seconds.

Furthermore, even when evaluating the models sequentially, as in
most present GHMM applications where databases are screened using
a single target HMM, a large number of states does not need to be
explored. Here local reductions of up to 50% of explored states can be
achieved. On the same computational equipment as described above
the model evaluation could be accelerated by a factor of two. For this
type of experiments the absolute run times are 220 seconds for the
standard experiment and 112 seconds in pruning case. With small
modifications even on highly specialized parallel hardware can
immediately save the computational e ort and so speed up the
evaluation of GHMMs two times.

The combined state space only makes sense when actually deploying
the pruning method. Since the states of all models are integrated into a
global state space without pruning more alternative successors for each
state become possible. Deploying the beam-search algorithm to this
global state space after the first evaluation step most of the states not
belonging to the most probable model are deactivated. Besides the
local pruning within the most probable model in summary, we have
stronger reduction rates of the global state space than the local state
spaces (factor of 4 vs. factor of 2). Using the combined state space in
our implementation the absolute run time is only half of the sequential
case. Thus the overall run time can be reduced to a third of the
standard GHMM evaluation.

Conclusion
The well-known beam-search algorithm is used to reduce the

number of activated explored states in Viterbi decoding process. The
reduction of the number of activated states significantly speeds up the
process of evaluation model. Performing a paradigm shift from
screening towards recognition, where we subsumed all considered
models into a combined state space then the Viterbi-path through all
models is determined by an integrated evaluation approach. For a
representative test, we perform several experiments on a set of 320
sequences belonging to 4 different gene families. Following our
recognition approach, the combined state space could be significantly
pruned and only about 25% of all states need to be explored. Deploying
the pruning approach to the conventional process of sequentially
evaluating the appropriate model yields average reductions of about
50% of the states explored while decoding. Comparing to the classical
evaluation of GHMMs in our implementation within the traditionally
framework the absolute run times depending on the state space
organization could be accelerated by factors of 4 (for the combined
approach) and 2 (for the conventional screening approach)
respectively. The proposed approach is generally applicable to a wide
variety of Bioinformatics tasks. Even high throughput applications
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which are presently often performed on massive parallel architectures
or specialized hardware can be done using the proposed approach of
local pruning.
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