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Introduction
The lethal-7 (let-7) family of miRNAs is one of the most studied 

groups of miRNAs, and contains several prototypical miRNAs. Let-7 
was first identified in Caenorhabditis elegans (C. elegans), in which it 
was shown to exert a suppressive effect on let-60/Ras [1]. Let-7 was 
subsequently identified as the first known miRNA and has since become 
the most-investigated human miRNA [2]. Thirteen members of the let-
7 family have been identified to date (let-7a-1, let-7a-2, let-7a-3, let-7b, 
let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, miR-98, and miR-
202); they have similar sequences and target a wide spectrum of genes 
[2,3]. Let-7 family miRNAs are important for normal development, 
cell differentiation and are highly conserved in human tissues [4]. 
Let-7 expression is commonly found to be down-regulated in human 
cancers, and this down-regulation contributes to carcinogenesis and 
progression [5,6]. Yu et al. infected BT-IC breast cancer cells with let-
7-lentivirus, increased let-7 paralleled reduced H-Ras and HMGA2.
Silencing H-Ras in a BT-IC-enriched cell line reduced self renewal but
had no effect on differentiation, while silencing HMGA2 enhanced
differentiation but did not affect self renewal [7]. This results showed
that let-7 regulated tumor cell self renewal and differenciation through
different targets.

In addition, let-7 miRNAs appear to play a role in the part of signal 
cascades, including Ras and NF-κB signaling cascades (Figure 1), which 
are involved in the suppression of invasion and metastasis of cancers, by 
interacting with upstream regulators and downstream let-7 targets [8-
10]. Iliopoulos et al. confirmed an epigenetic switch activates a positive 
feedback loop required for cell transformation, which involving NF-
kB, Lin28, let-7, and IL-6 [11]. Normally, IL6-mediated activation of 
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Abstract
miRNAs are a class of small non-coding RNAs that modulate gene expression. Let-7 was first discovered in 

Caenorhabditis elegans and is one of the most extensively studied miRNAs. The human let-7 family contains 13 
miRNAs. The expression of these miRNAs is decreased in most human cancers and contributes to carcinogenesis 
and progression. Thus, the let-7 family of miRNAs has attracted the attention of researchers in various fields. 
Exogenous let-7 restoration has been confirmed to show antitumor efficacy in many human cancers. Let-7 functions 
as a tumor suppressor by acting upon several multi-signaling pathways and multiple downstream target oncogenes 
that are involved in most human cancers. Let-7 shows potential for modulation of chemoresistance and radiation 
sensitivity in human cancers. miRNAs in the let-7 family represent potential broad-spectrum antitumor molecules 
for human cancer therapy, and miRNAs in this family have been studied intensively for their therapeutic potential. 
However, most previous studies have been limited to a single functional aspect or focused on a single effect in a 
particular type of cancer. Here, we review the latest research on let-7 and discuss its potential value as a broad-
spectrum antitumor molecule.

the STAT3 transcription factor is necessary for transformation, while 
let-7 functions as suppressors directly inhibit IL-6 expression. When 
Src activation triggers a rapid inflammatory response mediated by NF-
kB. This NF-kB directly activates Lin28 and rapidly reduces let-7 levels, 
and resulting in higher levels of IL-6, and in turn IL-6 activates NF-kB, 
thereby completing a positive feedback loop for cell transformation. 
Choudhury and his colleagues confirmed miR-21 and let-7 control in 
an inversely related way in two major cancer pathways Ras and NF-κB 
[12]. Their study suggested that let-7 is a direct negative regulator of 
the Ras gene family, and is proposed to repress the activation of NF-
κB through down-regulation of Ras and IL-6; while miR-21 suppresses 
multiple targets to activate Ras and enhances NF-κB activation through 
Pten-Akt and thereby increasing the activity of Akt. 

These let-7–related signaling pathways are considered to be 
potential targets for therapeutic miRNAs [12,13-16]. let-7 family 
miRNAs have been considered for use as potential biomarkers, as well 
as prognostic markers that can help predict cancer progression and 
response to treatment [17-25]. In addition, let-7 miRNAs have emerged 
as a new class of potential therapeutic molecules for cancer and have 
been employed using a replacement strategy [26]. Restoration of let-7 
expression has been confirmed to be an effective therapy for human 
cancers [27]. Moreover, dysregulation of let-7 has been confirmed 
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involving with chemotherapy resistance and radiation sensitivity [8]. 
let-7 family miRNAs are potential broad-spectrum antitumor molecules 
for human cancer. 

Let-7 family miRNAs suppress the expression of a wide 
spectrum of target genes

The let-7 pathway is evolutionarily ancient and plays vital roles in 
diverse biological processes. Let-7 miRNAs regulate the expression of 
various downstream target genes such as human Ras (K-Ras, N-Ras, 
H-Ras), HMGA2/A1, IMP-1, c-Myc, and caspase-3 [7,16,25,28-30]. 
Let-7 miRNA was first confirmed to target the Ras signal pathway as a 
potential pan-Ras suppressor [1]. Let-7 family members are direct and 
strong regulator of the RAS family. A study conducted in C. elegans 
predicted that the 3’- untranslated region (UTR) of human ras genes 
would contain multiple let-7 complementary sites (LCS), which allow 
let-7 to regulate Ras expression; it was later shown that the strong 
regulator N-ras, K-ras, and H-ras mRNAs contain 9, 8, and 3 potential 
LCSs, respectively [1]. Using comparative bioinformatics, 12 conserved 
let-7–regulated oncofetal genes were identified, including HMGA2 
and IMP-1/CRD-BP [31]. IMP-1 and HMGA2 are major miRNA 
targets. IMP-1 carries six putative LCS in its 3’-UTR, of which five are 
conserved among mammalian species. IMP-1 is a direct target of let-
7 and promotes the growth and motility of tumor cells. Introduction 
of pre-let-7g or pre-let-7d caused down-regulation of IMP-1 protein 
expression in A549 cells, which express low endogenous levels of let-
7. Let-7 expression inhibits reexpression of IMP-1. Introduction of 
let-7 into cells has a similar effect as the direct knockdown of IMP-1. 
Knockdown of IMP-1 in MCF7 cells caused reduced expression of 
c-Myc. Whereas let-7 can also affect the translation of c-Myc directly. 
c-Myc was also confirmed to be a target of let-7a via the predicted 
binding site in the 3’-UTRin Burkitt lymphoma cells [3]. A number 
of the identified putative let-7 targeted cell cycle regulators are known 
to be c-Myc–regulated genes (i.e., CDK6, CDC25a). And there is a 
double-negative feedback loop between Myc and let-7 miRNAs. Myc 
expression is inhibited by let-7d, whereas Myc inhibits some members 
of the let-7 family sharing with Lin28. [30]. Computer-based sequence 
analysis showed that the first eight nucleotides from the 5’ end of let-7a 
miRNA were complementary to nucleotides 153–159 of the caspase-3 

3’-UTR [31]. Only K-ras, h-ras, and n-ras mutations are involved in 
25–30% of all human cancers. Thus, let-7 miRNAs represent potential 
broad-spectrum therapeutic molecules based on these multiple target 
genes.

Restoration of let-7 expression shows therapeutic effects in 
human cancers

These target genes of let-7 are important regulators that are involved 
in most human cancers. These results provide evidence for the potential 
broad-spectrum therapeutic use of let-7 for human cancer, wherein let-
7 expression can be restored by exogenous miRNA replacement. 

Studies have confirmed that the restoration of let-7 miRNA 
expression significantly inhibit tumor growth and metastasis in human 
cancers in vitro and in vivo. Re-expression or overexpression of let-7a 
miRNA significantly inhibited cell proliferation or tumor growth in 
lung cancer and HepG2 and SMMC7721 hepatocellular carcinoma via 
suppression of K-Ras and c-Myc protein expression [29,32]. Another 
study reported that let-7f was capable of reducing cell growth of TPC-1 
papillary thyroid carcinomas [33]. Further, the ectopic expression of 
let-7g in K-Ras–expressing murine lung cancer cells induced both cell 
cycle arrest and cell death. Significant growth reduction of both murine 
and human non-small cell lung (NSCL) tumors were also observed 
when let-7g was overexpressed using lentiviral vectors [34]. The plasmid 
vector pCMV-let-7g induced the re-expression of let-7g and inhibited 
tumor cell proliferation and migration through the K-Ras/HMGA2/
Snail axis in MHCC97-H and HCCLM3 hepatocellular carcinoma [35]. 
Let-7 miRNAs also showed antitumor effects in other human cancers, 
such as breast cancer and gastric cancer [36,37]. 

Activating k-ras mutations and K-Ras overexpression are present 
in nearly all pancreatic carcinomas. Blocking of the Ras pathway is 
a treatment strategy for pancreatic carcinoma [38]. However, less is 
known about the effect of restoration of let-7 levels. In vitro, increased 
let-7 levels result in strong inhibition of cell proliferation, but in vivo 
they fail to impede tumor progression through vector-induced stable 
let-7 miRNA overexpression, as well as restoration through intratumoral 
gene transfer of let-7 miRNA [39]. There are three possible explanations 
for this. The dysregulation of let-7 miRNAs may differ in different types 
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Figure 1: Summarize framework of important let-7 related signaling pathways, and upstream regulators and downstream let-7 targets.
Yellow words: Target genes; Orange words: Regulating signaling pathway
Purple arrows: Shows the positive feedback loop involving NF-kB, Lin28, let-7, and IL-6 
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of cancers; thus a let-7 member may display different functions in 
different cancers [3,17,32,33,40]. The study conducted in C. elegans [1] 
predicted that although the 3’-UTRs of human k-ras mRNAs contain 8 
potential LCSs, However, only 1 LCS is conserved among mammalian 
species. Further, the highly conserved let-7 miRNAs have been shown 
to have suppressive effects in cancers with fewer mutated ras oncogenes 
but overexpression of Ras proteins, such as in hepatocellular carcinoma 
[35,38,41]. We verified that let-7a targets wild-type and mutated ras 
genes in humans through luciferase activity reporting analysis system. 
Our results showed that targeting of K-ras yielded a >30% reduction, 
whereas targeting of wild-type N-ras produced a 50% decrease in 
luciferase activity compared to the control, and no significant difference 
was observed with targeting of wild-type H-ras and mutated K-ras 
and N-ras (Figure 2). This result is consistent with previous studies 
[1,35,38,41]. The intratumoral transfer of molecules to other tumors 
may provide another explanation. Our previous study suggested that 
cholesterol-conjugated let-7a miRNA (Chol-let-7a) shows stronger 
inhibitory effects when administered systemically than when delivered 
through local injection [32,42,43].

The restoration of let-7 miRNAs not only inhibits tumor growth 
and metastasis, but also promotes cell apoptosis and cell differentiation, 
which also exert therapeutic effects against human cancers [32,33]. Let-
7a restoration regulates cell death by directly targeting caspase-3 and 
BCL-XL, or by silencing Aurora-B [27,41,44,45]. Chol-let-7a miRNAs 

promote HCC cell apoptosis in vitro and reverse the orthotopic tumor 
cell phenotype, with no significant atypia in most areas after Chol-let-
7a systemic therapy [32].

These results confirmed that restoration of let-7 miRNA expression 
can inhibit tumor growth and metastasis in different type of human 
cancers. Let-7 miRNAs are therefore broad-spectrum antitumor 
molecules that can be used in human cancer therapy.

The potential of let-7 miRNAs to modulate the drug resistance 
and radio sensitivity of human cancers

Drug resistance remains an important problem in treatment of 
cancer, especially in advanced and recurrent cases. Identification of the 
factors regulating drug resistance will help in development of strategies 
to resolve this problem.

Previous studies have reported that the dysregulation of let-7 
expression in human cancers is associated with chemoresistance [46-
50]. Lower let-7a expression was associated with epirubicin resistance 
in primary breast tumors, wherein upregulation of let-7a expression 
sensitized resistant breast tumor cells to epirubicin in vitro. [46]. Let-
7b and let-7c were significantly downregulated in clear cell renal cell 
carcinoma (RCC) tissues and the dysregulation of let-7b and let-7c 
contributed to the chemoresistance of RCC cells to fluorouracil (5-
FU) by downregulating Akt2. Transfection of let-7b or let-7c combined 
with 5-FU inhibited proliferation and potentiated the antitumor effects 
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Figure 2: Let-7a target human Ras by luciferase reporter assays.
293A cells(2 × 104) were incubated in 24-well plates for 24h and transfected with Lipofectamine 2000 (Invitrogen) and 100 ng pmiR-Glo-3’ UTR reporter vector including 
binding sites for let-7a (Promega, Madison, USA) and let-7a mimics or a negative control. After 24h, cells were lysed and assayed for luciferase activity using the Dual-
Luciferase Reporter Assay System (Promega). Firefly luciferase activity was normalized to Renilla luciferase activity for each well. Experiments were repeated 3 times.
(A)	 LCRs of human wild-type K-ras,N-ras (3’ UTR) to let-7a; LCRs loci in mutated human K-ras,N-ras
(B)	 Luciferase reporter assays of wild-type human K-ras,N-ras
(C)	 Luciferase reporter assays of wild-type human K-ras,N-ras
The results represent the mean ± SEM. All data analyses were performed with SPSS 17.0 software (IBM, Inc., Armonk, NY, USA). Student’s t-test was used for 
statistical comparisons between groups. p<0.05 was considered to be statistically significant.
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of 5-FU at tolerable concentrations, and then enhanced sensitivity to 
5-FU by affecting the apoptotic pathway [51]. In vitro results showed 
that let-7g miRNA contributed to an increase in 5-FU-induced cell 
cycle inhibition in human hepatoma cells and sensitized the cells to 
5-FU, leading to increased effectiveness of the drug in the treatment 
of hepatoma [52]. Patients with relapsed ovarian cancer tested before 
and after chemotherapy also showed down-regulation of let-7g and 
upregulation of IMP-1 and multidrug resistance 1 (MDR1). Moreover, 
the introduction of let-7g into ADR-RES ovarian cancer cells reduced 
the expression of both IMP-1 and MDR1 and rendered the cells more 
sensitive to treatment with taxol or vinblastine [53]. 

Dysregulation of let-7 expression in human cancers is associated 
with radiation resistance. In A549 lung carcinoma cells and 
ASPC1 pancreatic cancer cells possessing a k-ras mutation, let-7a 
overexpression decreased K-Ras expression and radiosensitized the 
A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras 
expression and radiosensitized A549 and ASPC1 cells [54]. These 
results confirmed that dysregulation of let-7 is associated with radiation 
resistance.

In breast cancer cells, let-7a and let-7b were dramatically decreased. 
Following pre-Let-7a miRNA transfection, overexpression of let-7 
dramatically enhanced the sensitivity of SK-BR-3 clone (S1) cells to 
radiation, which suggested that downregulation of let-7 miRNA could 
be one of the mechanisms underlying Lin28-induced radioresistance 
in breast cancer cells [40,41,55]. The association of Lin28, an inhibitor 
of let-7 miRNA, with paclitaxel resistance and radiation resistance 
was also confirmed in breast cancer cells [55,56]. Lv et al. confirmed 
that the T47D cancer cell line, which highly expresses Lin28, is more 
resistant to paclitaxel than the MCF-7, Bcap-37, or SK-BR-3 cancer cell 
lines, which show low-level expression of Lin28 [55]. T47D cells also 
showed increased sensitivity to paclitaxel treatment after knock-down 
of Lin28. Combinatorial treatment for NSCLC with let-7b and miR-
34a resulted in the strongest synergistic enhancement of the efficacy of 
erlotinib. In addition, transfection with let-7b is known to reverse drug 
sensitivity in chemotherapy‑resistant SGC7901/DDP and SGC7901/
VCR gastric cancer cells by targeting the downregulation of c-Myc [57]. 
These results indicate that let-7 miRNAs can effectively reverse drug 
resistance and can be used as adjuvant therapeutics for the treatment 
of human cancers to modulate chemotherapy and radiation resistance 
[58,59]. 

Broad-spectrum antitumor molecules, advantages, and 
challenges

Let-7 miRNAs represent a type of potential broad-spectrum 
therapeutic molecules, based on the mechanism of miRNAs differs 
from that of siRNAs, which mediate sequence-specific cleavage of 
nascent mRNAs [60]. This is an advantage of all miRNAs, not let-7 
alone. Unlike siRNAs, miRNAs require only partial complementarity to 
the 3’-UTR of their target mRNA to regulate their multiple targets [60]. 
These we have discussed above. Thus, a perfect match is not necessary 
for miRNA function. When used as a drug, there is therefore no need 
to design special miRNAs to target different oncogenes or different 
cancers. We have recently confirmed that vector-based let-7 dsRNA 
suppresses neuroblastoma tumor growth by acting against multiple 
targets, including N-Ras, K-Ras, c-Myc, and HMGA2 (data not shown). 
Although the vector used is a vector-based siRNA construct of the type 
used to produce dsRNAs (siRNAs) of interest, upregulation of let-7a 
only successfully suppresses the N-Ras, K-Ras, c-Myc, and HMGA2 
proteins, but does not down-regulate mRNA levels of the related 

oncogenes (data not shown). This result suggests that the vector-based 
let-7a expression also function as miRNAs, but not siRNAs. Mechanism 
of the molecule may primarily depend on its sequence but not the 
method to produce. 

Broad-spectrum drugs, compared with relatively specific drugs, 
have advantages in terms of reduced research and development 
costs, and benefit more patients. In addition, because cancer is a 
multifactorial disease, let-7 should be more effective than single-target 
drugs. Members of the let-7 family can be used as effective antitumor 
molecules either singly or in combination. Let-7 can be combined with 
other RNAi molecules, such as siRNA or other miRNAs, as part of a 
small-molecule cocktail therapy, which may create a new strategy for 
cancer treatment. In addition, let-7 can be combined with existing 
chemotherapy drugs, targeted biological drugs, and clinical treatment 
methods such as radiotherapy, to increase sensitivity to drugs and 
radiation therapy. In addition, let-7 may delay drug resistance to 
chemotherapy and radiotherapy. 

However, multi-target drugs may produce more adverse off-
target and side effects. During assessment of the potential of let-7 as 
a therapeutic molecule, its off-target effects should be considered. 
We examined the off-target effects of cholesterol conjugated let-7a 
(Chol-let-7a) to liver and kidney in nude mice when it is used via 
systemic delivery method. It is encouraging that the results suggested 
that Chol-let-7a induced only mild off-target effects, including non-
specific reaction changes in the liver and kidney following systemic 
administration for 5 weeks (data not shown). Let-7a levels were 
significantly increased in Chol-let-7a–treated xenografts, whereas let-
7a levels were still much lower in orthotopic tumors than in normal 
control livers. Let-7a abundance in Chol-let-7a–treated liver tissues did 
not differ from that of normal control mice. Thus, the off-target effects 
of additional Chol-let-7a appear to be slight. We think that most of the 
reactive features may result from the delivery system and the tumor self. 

In addition, off-target effects could be avoided by developing a 
targeted delivery system and by choosing patient-specific routes of 
administration according to tumor type. For example, local injection 
could be used in thyroid cancer, as cholesterol-conjugated let-7 miRNA 
has been confirmed to be a potential useful liver-target carrier for 
systemic therapy of hepatocellular carcinoma and liver metastatic 
malignant tumors originating from pancreatic carcinoma, colorectal 
carcinoma, or lung cancer.

Hurdles and limitations in the use of let-7 miRNAs as drugs 

Let-7 miRNAs have shown potential therapeutic effects in human 
cancers, and represent broad-spectrum antitumor molecules. A few 
preclinical and clinical studies using members of the let-7 family are 
currently in progress [32,61-63]. However, much additional research is 
required before let-7 miRNAs can be used as drugs in clinical settings, 
especially for systemic therapy. 

miRNA-based approaches has moved toward clinical trials base on 
many preclinical studies that have produced promising results. As well 
as clinical trials that are being planned or are underway [27]. Although 
the results and conclusions of the clinical trials will provide significant 
value for miRNA therapy, including let-7. However, a major hurdle 
to the clinical use of let-7 family miRNAs for systemic therapy is the 
lack of an effective, non-toxic carrier; this is also true for several other 
miRNAs known to have therapeutic effects.

The delivery of exogenous miRNAs is based on the use of viral 
and non-viral vehicles [64-66]. Viral vehicles are not preferred as they 

http://www.ncbi.nlm.nih.gov/pubmed/26379707
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are known to cause death due to severe liver cytotoxicity in mice [67]. 
Certain non-viral vehicles have been used for miRNA transfer in recent 
years. Chemical modification, such as cholesterol labeling and the 
use of nanoparticle delivery vehicles, has been successful when used 
for the delivery of miRNAs in vivo. However, it is difficult to choose 
low-toxicity nanoparticles for clinical use based on the available 
experimental models [68,69]. As shown in a few studies primarily based 
on in vitro cell viability or as observed in preclinical models, the toxicity 
of nanoparticles has two primary causes. First, silver nanoparticles show 
potential inflammatory effects, heat shock, and diverse cellular effects; 
second, nanoparticles can potentially damage the genetic material, as 
they can cross cell membranes and reach the nucleus [70,71]. 

Synthetic miR-34a and let-7 mimics have been successfully 
delivered to target lung tissues using neutral lipid emulsions; they were 
found to cause a reduction in lung tumors in mice [70,72]. Zhang et 
al. designed a hepatocyte-targeting ligand to increase the efficiency of 
targeted delivery of anti-miR-155 [71,73]. Our results have shown that 
Chol-let-7a miRNA targets liver tissues and orthotopic tumors while 
causing mild inflammation and cellular cytotoxicity in the livers and 
kidneys of nude mice. In addition, a significant upregulation of let-7a 
was observed in tumor tissues, but let-7a levels remained much lower 
than those in normal liver cells and tissues (data not shown). These 
targeted miRNA delivery methods resulted in strong antitumor effects 
with few off-target effects, and show potential for use as delivery 
systems in cancer therapy. However, the safe and effective delivery of 
let-7 miRNAs into solid tumors remains a challenge. Additional studies, 
with a particular focus on exploring off-target effects induced by both 
the delivery system and let-7 miRNA overexpression, are needed.

Conclusions
Dysfunction of let-7 miRNAs is implicated in most human 

cancers. Let-7 miRNAs are involved in tumor growth, and resistance 
to chemotherapy and radiation therapy. Let-7 family miRNAs represent 
broad-spectrum antitumor molecules for cancer therapy.
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