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Abstract
The mechanistic events of female infertility have been investigated for over 50 years and despite progress many 

causes of infertility remain elusive. However, over half of idiopathic infertility issues have been attributed to a defective 
ovarian tissue responsible for the maintenance of a conceptus, the corpus luteum (CL). Many CL defects are attributed, 
in part, to abnormal vascularization (angiogenesis), which occurs primarily during the developmental stage of the luteal 
lifespan. A few well-established angiogenic growth promotants have been implicated in luteal angiogenic processes 
but the mechanisms of the process are still under investigation. Recent evidence supports a role for the adipokine 
hormone leptin as a probable component in the angiogenic and developmental processes of a CL. Leptin expression 
is present during the developmental and maturation stages of the luteal lifespan and stimulates the expression of 
angiogenic hormones in the CL. Induced leptin deficient CL have a higher occurrence of abnormal, underdeveloped 
gross morphology and an increase in the number of large diameter vessels and large luteal cells. Leptin replacement 
therapy in leptin deficient CL accelerates tissue development, increasing overall tissue mass and forming a structure 
that resembled a mature CL during the early stages of development. Collectively, the evidence supports the supposition 
that leptin is involved in the angiogenic and developmental processes of luteal tissue.
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Commentary
The corpus luteum (CL) is an important ovarian tissue that secretes 

progesterone, a steroid hormone essential for the maintenance of 
pregnancy in mammals. It exhibits tumorigenic growth properties 
during the developmental process, doubling in size and cell number 
every 60-70 h [1]. In order to support the exponential tissue growth 
the CL is highly vascularized, having the highest rate of blood flow per 
unit of tissue in the female body [2]. Inappropriate vascularization leads 
to aberrant CL development and reduced circulating concentrations 
of progesterone [3]. The reduced progesterone is associated with an 
increased occurrence of miscarriage [4], which is not mitigated with the 
use of synthetic progestins in subjects suffering recurrent miscarriages 
[5]. Hence, understanding the underlying mechanisms of luteal 
development, including the angiogenic process, can potentially lead to 
therapies that correct luteal deficiencies and ameliorate luteal infertility. 
Vascularization of the CL occurs through an angiogenic process where 
vessels form from pre-existing vascular networks of an ovulated follicle. 
This process is regulated in part by the angiogenic hormones vascular 
endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2) 
and angiopoietin 1 (Ang1). Both VEGF and FGF2 promote capillary 
membrane destabilization, endothelial cell differentiation, proliferation, 
migration and vascular tube formation in human, bovine, and ovine 
luteal tissue [6,7]. Angiopoietin 1 then promotes the maturation and 
stabilization of nascent vessels through the recruitment of stromal 
support cells, including pericytes and smooth muscle cells [8]. Each of 
these angiogenic factors is regulated by the adipogenic hormone leptin, 
which has previously been reported to exhibit angiogenic properties 
in non-ovarian tissues [9,10]. The expression of leptin and its receptor 
have been identified in luteal tissue, but the function of leptin was 
believed to be limited steroidogenic regulation. However, its role in 
luteal steroidogeneis has proven to be moderate without the addition 
of growth promoting hormones [11, 12] which suggests that leptin may 
serve an alternate function previously overlooked that is supportive of 
the highly vascular tissue. 

In 2014, Wiles et al. [13] reported that leptin upregulates the 
expression of VEGF, FGF2 and Ang1 in cultured dispersed lutea, but 
this stimulatory effect was limited to the early developing lutea despite 
sustained luteal expression of leptin and its receptor in the mature 
CL. This implied that leptin might be involved in luteal angiogenic 

processes as the CL forms. This supposition was explored by creating 
a leptin deficient CL with the infusion of a leptin antibody throughout 
the development and maturation stages of the luteal lifespan. The 
induced luteal leptin deficiency increased the occurrence of CL with an 
abnormal, persistently underdeveloped gross morphology during the 
late stage of the luteal lifespan, frequently resembling an early developing 
CL [14]. Furthermore, leptin deficiency altered the microscopic 
morphological landscape by increasing the number of large diameter 
vessels (Table 1) and population of large luteal cells (Table 1) [14]. These 
changes in luteal landscape may be a compensatory adaptation to the 
reduction in the contribution of leptin to the angiogenic processes 
during CL development. The adaptation may have prevented an initial 
impairment of progesterone production by modifying vasculature 
to provide ample substrate for hormone synthesis and increased the 
large luteal cell population to increase progesterone synthesis [15]. 
The aberrant morphology of leptin deficient lutea can be reversed 
when leptin replacement therapy is applied during the early stage of 

Treatment
Avg # of large 
luteal cells per 

area*#

Avg. # of small 
luteal cells per 

area*#

Ratio of 
large:small 
luteal cells 
per area*#

Avg. large 
vessel 

diameter*
(mm) 

Control 59.20 ± 1.54a 43.94 ± 2.15a 1.4 ± 0.08a 21.3 ± 0.03a

Leptin Antibody 76.3 ± 1.79b 33.11 ± 1.16b 2.3 ± 0.32b 33.0 ± 0.33b

a,b Superscripts indicates means different between treatment groups (P<0.01); 
*Effect of treatment is significant (P<0.001); #Area of tissue=26.6 × 104 μm2 at 20x 
magnification
⌘Published data [14] and adapted for commentary
 Table 1: Microscopic morphology of mature CL from control and leptin antibody 
treatment groups.
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development [14]. However, unlike the leptin deficient CL, the early 
stage rescued CL exhibited accelerated development, appearing as 
a mature stage CL with increased tissue area and large luteal cell size 
(Table 2) [14,16-18]. Interestingly, both FGF2 and leptin were localized 
on the cell membrane and in the cytosol of large luteal cells of the 
rescued CL. This observation may explicate the greater size of the large 
luteal cells in the rescued CL in that FGF2 promotes both angiogenesis 
and the proliferation and differentiation of steroidogenically active 
luteal cells [19]. Collectively, the induced luteal leptin deficiency 
may have increased tissue sensitivity to leptin, which promoted 
compensatory development upon hormone replacement. In summary, 
leptin appears to contribute to the development of the CL by facilitating 
a normal vascular landscape, potentially through angiogenic growth 
promotants, that influence normal luteal morphological formation. 
Future investigation will explore the mechanism through which 
leptin influences luteal development and the potential impact on the 
maintenance of a gravid CL.
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Treatment
Avg # of large 
luteal cells per 

area*#

Avg. # of 
small luteal 

cells per 
area*#

Ratio of 
large:small 
luteal cells 
per area*#

Avg. large 
luteal cell size 
per area*# (μm)

Control 235.84 ± 6.11a 82.92 ± 3.25a 3.06 ± 0.08a 16.32 ± 0.65a

Leptin 
Antibody+Leptin 85.32 ± 3.34b 51.76 ± 2.43b 1.86 ± 0.06b 22.56 ± 0.70b

a,b Superscripts indicates means different between treatment groups (P<0.0001); 
*Effect of treatment is significant (P<0.0001); #Area of tissue=26.6 × 104 μm2 at 
20x magnification
⌘Published data [14] and adapted for commentary
Table 2: Microscopic morphology of developing CL from control and leptin 
antibody+leptin treatment group.
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