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Abstract
Partial or complete deletion of the long arm of chromosome 5 [del(5q)], with or without additional karyotypic 

abnormalities, is present in 10-15% of myelodysplastic syndromes (MDS). Anemia in these MDS responds less 
often to erythroblastic stimulating agents. However, immunomodulatory, anti-cytokine, and anti-angiogenic agent 
Lenalidomide (CC5013, Revlimid®) leads to red blood cells transfusion independence of low risk MDS with del(5q). 
The low risk del(5q) MDS is now recognized as a distinct pathologic subtype of MDS with markedly better clinical 
responses with lenalidomide treatment compared to non del(5q) MDS patients. Several mechanisms of action are 
believed to contribute to the therapeutic effect of lenalidomide. They include the effect on the immune system, with 
cytokine production, T- and natural killer cells co-stimulation, stimulation of erythropoiesis, substantional improvement 
in the hematopoiesis-supporting potential of bone marrow stroma and significant decrease in the adhesion of bone 
marrow CD34+ cells, and anti-inflammatory effects and angiogenesis inhibition. The exact mechanism of action 
of lenalidomide on del(5q) clones is not known, but there appears to be several candidate (tumor suppressor) 
genes whose expression may be modulated by lenalidomide treatment. The addition of lenalidomide inhibited 
the in vitro proliferation of erythroblasts harboring del(5q) while the proliferation of cells from normal controls and 
cells without 5q deletion was not affected. Patients with mutated TP53 were shown to have poorer erythroid and 
cytogenetic responses to lenalidomide and a higher potential for acute myeloid leukemia (AML) evolution. The 
mechanism of lenalidomide action is different in non-del(5q) MDS, where lenalidomide restores and promotes 
effective erythropoiesis without direct cytotoxic effect. Recent trials have focused on combining lenalidomide with 
other agents active in MDS.

deletion. Although the length of the deleted area varies from case to 
case, deletion in the band 5q32-33 is common. The 5q- syndrome is 
characterized by a female predominance, severe refractory macrocytic 
anemia, normal or elevated platelet counts, abnormal hypolobulated 
megakaryocytes, stable clinical course with relatively rare progression 
to acute myeloid leukemia (AML). MDS with isolated del(5q) in which 
the sole cytogenetic abnormality is del(5q) is a distinct entity with 
the risk of evolution into AML of approximately 10% [11,15]. It is 
characterized by macrocytic anemia with or without other cytopenias 
and/or thrombocytosis. Myeloblasts comprise less than 5% of bone 
marrow and less than 1% of peripheral blood.

Lenalidomide [3-(4-amino-1-oxo1,3-dihydro-2H-isoindol-2-
yl)piperidine-2,6-dione; Revlimid; Celgene Corporation, Summit, 
NJ, USA] is 4-amino-glutarimide analog of thalidomide with potent 
immunomodulatory, antiangiogenic and direct neoplastic cell 
inhibitory activity [16-23]. Thalidomide was synthesized in Germany, 
in 1954, from α-phtaloylisoglutamine, to be used as a sedative and 
antimetic drug. In 1957, after a short period of preclinical studies, 
thalidomide was approved for first trimester gestational sickness in 
humans. The appearance of malformations, such as phocomelia in the 
newborn, resulted in its ban three years later [21-23]. The US Food and 
Drug Administration (FDA) approved thalidomide in 1998 for the 
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Introduction
Interstitial deletions involving long (q) arm of chromosome 5 are 

one of the common cytogenetic abnormalities in MDS patients [1-14]. 
The presence of del(5q), either as the sole karyotype abnormality or 
as part of a more complex karyotype, is present in 10-15% of patients 
with de novo MDS and has distinct clinical implications for MDS 
[1]. Outcomes among MDS patients with deletion 5q vary greatly, 
both in terms of overall survival (OS) and risk of transformation to 
AML. The presence of additional chromosomal abnormalities or an 
excess of blasts shortens OS and increases risk of transformation to 
AML. Del(5q) MDS patients frequently have symptomatic anemia, 
and its treatment has traditionally consisted of red blood cell (RBC) 
transfusions and, for some, iron chelation therapy. The 5q- syndrome, 
a subtype of low risk MDS, is characterized by an isolated 5q 
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treatment of erythema nodosum leprosum [24]. A small but consistent 
fraction of transfusion-dependent MDS patients achieved transfusion 
independence by treatment with thalidomide [25-27]. 

Lenalidomide was developed in order to avoid thalidomide side 
effects (sedation and neuropathy), and to increase efficacy [16-21]. 
Lenalidomide shares a number of structural and biological properties 
with thalidomide but it is safer and more potent than thalidomide. 
Lenalidomide was first studied in a single- center trial [28]. Erythroid 
and cytogenetic responses were achieved in a study of 43 patients 
with MDS, particularly in patients with isolated del(5q31-33) [28]. 
Lenalidomide was administered in three different dosing schedules: 
25 mg daily, 10 mg daily, and 10 mg daily for 21 days of each 28-
day cycle [28]. The erythroid response rates were highest in patients 
with the International Prognostic Scoring System (IPSS) low or 
intermediate-1 risk MDS. Transfusion independence was achieved 
in 20 of 32 patients (63%), and three additional patients had reduced 
red blood cells transfusion needs [28]. Ten of 12 patients (83%) with 
del(5q31) experienced major erythroid responses, defined as sustained 
transfusion independence, compared with a 57% response rate in 
patients with a normal karyotype and a 12% response rate in patients 
with other cytogenetic abnormalities. Complete cytogenetic remissions 
were achieved in 75% of the del(5q31) patients (9 of 12 of these 
patients), with one additional patient achieving at least a 50% decreases 
in abnormal metaphases [28]. Myelosuppression (neutropenia and/or 
thrombocytopenia) was the most common adverse event, but it was 
dose-dependent, favoring the 10 mg daily dose for 21 days of each 28-
day cycle.  

Multicenter Phase II Trials of Lenalidomide
After encouraging results of a single-center trial (MDS-001) 

[28] (Table 1), the effect of lenalidomide on red blood cell (RBC) 
transfusion-dependent del(5q) MDS cases of low and intermediate-1 
IPSS risk assessment was investigated in a large multicenter phase II 
study (MDS-003). This trial led to FDA approval of lenalidomide in 
the USA as well as to approval in several other countries for treatment 
of RBC transfusion-dependent anemia due to low or intermediate-1 
risk MDS associated with a chromosome 5q deletion with or without 
additional cytogenetic abnormalities [29]. The initial schedule was 
10 mg of lenalidomide for 21 days every 4 weeks, but the treatment 
schedule was subsequently amended so that the 10 mg dose was given 
every day because of the shorter interval between initiation of treatment 
and a response in the pilot study. Of the 148 transfusion-dependent 
patients who were included in the study, 46 were treated on the 21-
day schedule and 102 received continuous daily dosing. Overall, 112 
(76%) patients responded to treatment with a median time to response 
4.6 weeks. Among these, 99 no longer needed transfusions by week 24, 
while the remaining 13 patients had a reduction of 50% or greater in the 
number of transfusions required. There was no significant difference 
in response rate between the two treatment schedules. Response rate 
was independent of additional chromosomal aberrations. Patients 
with pretreatment thrombocytopenia had an inferior outcome. Almost 
half of the patients, including some with complex karyotypes, had a 
complete cytogenetic response. Neutropenia and thrombocytopenia 
were the most common treatment-associated adverse events. Most 
other adverse events were of low or moderate severity and included 
pruritus, rash, diarrhea, and fatigue. Adjustment of the lenalidomide 
dose due to intolerance was required in 124 patients, including 93 
of those receiving continuous daily dosing and 31 of those receiving 
21-day dosing. Thirty patients discontinued lenalidomide treatment 
because of adverse events including thrombocytopenia or neutropenia, 

rash AML, anemia, facial edema, congestive heart failure, urticaria, 
diarrhea, weight loss, renal insufficiency, cerebrovascular accident, 
dementia, dyspnea, pyrexia, and pneumonia.

However, the European Medicine Agency (EMA) did not approve 
lenalidomide for this indication. Their concern, based on results of the 
MDS-003 trial, was that lenalidomide may trigger progression to AML 
in some patients with del(5q). Data comparing long-term outcomes in 
lenalidomide-treated and untreated patients with MDS with del(5q) 
are limited but it is now clear that the concern of the EMA has not been 
confirmed by a recent study [30].      

Kuendgen et al. [30] have evaluated clinical outcomes of 295 
lenalidomide-eated patients from two clinical trials (MDS-003 and 
MDS-004, Table 1) and 125 untreated red blood cell transfusion-
dependent patients with del(5q) low- or intermediate-1-risk MDS 
from a large multicenter registry. Median follow-up was 4.3 years 
from first dose for lenalidomide-treated patients and 4.6 years from 
diagnosis for untreated patients. Risk factors for AML progression and 
mortality were assessed. In conclusion, lenalidomide treatment did not 
increase AML progression risk, but instead confered a survival benefit 
in red blood cell transfusion-dependent patients with del(5q) low- or 
intermediate-1-risk MDS. 

The long term effect of lenalidomide on the 5q-syndrome was 
investigated retrospectively in 168 patients treated in four MDS trials 
[31]. For those patients who achieved transfusion-independency, the 
median duration of response was 2.2 years. In multivariate analysis 
cytogenetic response, lower bone marrow blast percentage, and lower 
baseline transfusion burden were independent predictors of prolonged 
overall survival.

Current recommendation state that treatment with lenalidomide 
in del(5q) MDS should be continued until disease progression [32]. The 
question whether interrruption of lenalidomide treatment for patients 
in remission would be beneficial has been also addressed [33]. It is 
important for several reasons: 1) it could reduce costs and side effects; 
2) it could facilitate disease progression to AML. Different mechanisms 
have been discussed to explain AML progression. Evidence that pre-
therapeutic telomere length was significantly shorter in those patients 
who ultimately transformed to AML than in those who did not, was 
presented [34]. Transformation to AML is occasionally observed, 
paticularly in patients without a cytogenetic response to lenalidomide. 
Jädersten et al. [35] performed molecular studies in a patient with 
classical 5q- syndrome with complete erythroid and partial cytogenetic 
response to lenalidomide, who evolved to high-risk MDS with complex 
karyotype. Immunohistochemistry of pretreatment marrow biopsies 
revealed a small fraction of progenitors with overexpression of p53 
and sequencing confirmed a TP53 mutation. TP53 mutated subclones 
have not previously been detected in 5q- syndrome and indicates 
heterogeneity of this disease. Subsequently, TP53 mutations with a 
median clone size of 11% (range, 1% to 54%) were detected in 10 from 
55 (18%) low-risk MDS or intermediate-1 risk patients with del(5q) 
by next-generation sequencing [36]. TP53 mutations are associated 
with strong nuclear p53 protein expression. Patients with mutation 
had significantly worse outcome. TP53 mutations may lead to genetic 
instability and disease progression. This clonal heterogeneity in low-
risk MDS patients with del(5q) may be of importance when assessing 
the prognosis and selecting the therapy in these patients. It has been 
speculated that continuous administration of lenalidomide may lead 
to selective pressure on stem cells that induces genomic instability, 
resulting in acute leukemia transformation [37]. 
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Longest transfusion-free intervals are achieved in patients low-risk 
MDS patients with del(5q) who are exposed to lenalidomide 6 months 
beyond complete cytogenetic remission [33,38-41]. Lenalidomide 
should not be withdrawn prematurely in patients who achieve 
transfusion independence as partial cytogenetic remission patients 
seem to have a higher relapse rate than complete cytogenetic remission 
patients. 

Response rate to lenalidomide in low- or intermediate-1-risk MDS 
without a 5q deletion was investigated also in a multicenter, phase 
II study (MDS-002) [42] (Table 1). 214 patients received 10 mg oral 
lenalidomide daily or 10 mg on days 1 to 21 of a 28-day cycle. The 
most common grade 3/4 adverse events were neutropenia (30%) and 
thrombocytopenia (25%). 56 (26%) patients achieved transfusion 
independence after a median of 4.8 weeks of treatment with a median 
duration of transfusion independence of 41.0 weeks. A 50% or greater 
reduction in transfusion requirements occured in 37 additional 
patients, yielding a 43% overall rate of hematologic improvement (in 
comparison with 76% in the case of low- or intermediate-1-risk MDS 
patients with del(5q)). Responding karyotypes included trisomy 8 
(n=3), -Y (n=3), deletion 11q (n=2), and deletion 17p (n=1). While 
clonal suppression represents the main mechanism of lenalidomide 
action in MDS patients with del(5q), the restoration and promotion 
of effective erythropoiesis is the main mechanism in non-del(5q) MDS 
patients [43]. 

Sibon et al. [44] have recently reported 31 lower-risk non-del(5q) 

MDS patients with anemia refractory to erythropoiesis-stimulating 
agents (ESA) and treated with lenalidomide. Twenty patients from this 
group also received an ESA. An erythroid response was obtained in 15 
patients (48%), including 10 of the 27 (37%) previously transfusion-
dependent patients, who became transfusion-independent. Nine 
of responders relapsed, whereas 6 (40%) were still responding and 
transfusion free after 11 months. Median response duration was 24 
months.  

These studies were based on scientific knowledge because small 
deletions in several ribosomal genes, including RPS14, were found 
in CD34+ cells not only in patients with del(5q) but also in patients 
with non-del(5q) MDS. This observation suggested that deregulated 
ribosomal biogenesis may not be limited to del(5q) MDS [45-47]. 
Czibere et al. [48] showed that lower risk non-del(5q) MDS patients with 
RPS14 haploinsufficiency tend to have prolonged survival. Defective 
ribosomal biogenesis has a lead role in disrupting erythropoiesis in a 
variety of anemias. Disruption of ribosomal biogenesis has been clearly 
demonstrated in multiple ribosomopathies to greatly perturb p53 
signaling [49-58].

Bone marrow aspirates of patients who responded to lenalidomide 
showed before treatment decreased expression of the set of the genes 
needed for erythroid differentiation. Lenalidomide seems to overcome 
differentiation block in del(5q) patients with decreased expression of 
these genes compared to the non-responders [58]. Thus, lenalidomide 
restored erythroid differentiation potential by upregulation of the 

Table 1:  Trials in lenalidomide approved for use in MDS by the United States Food and Drug Administration (FDA).

Trial Lenalidomide dose Number of patients Results Comments

MDS-001 
phase I/II 
study

Varying doses of oral 
lenalidomide, ranging from 25 mg 
daily down to 10 mg for 21 days 
of every 28-day cycles [28].

43 patients with MDS and 
transfusion-dependency or 
symptomatic anemia. All patients 
were refractory to erythropoietin or 
had high endogenous erythropoietin 
levels. 88% of patients had low- 
or intermediate-1 risk IPSS risk 
assessment. 60% of patients had 
del(5q) chromosomal aberration.

This study showed the potential of 
lenalidomide in erythropoietin-resistant 
del(5q) MDS but also a role of lenalidomide 
in erythropoietin-refractory non-del(5q) MDS 
patients. 83% of patients with del(5q31) MDS 
responded compared to 53% of patients with 
a normal karyotype and 12% of patients with 
other karyotype abnormalities [28].

Responses were definied according 
to the modified International Working 
Group (IWG) criteria [61]. Neutropenia 
and thrombocytopenia were common 
side effects.

MDS-002 
phase II 
study

10 mg of lenalidomide orally 
either for 21 of 28 days, or with 
continuous dosing [42].

215 patients at a median age of 71 
years with low or intermediate-1 risk 
MDS with or without non-del(5q) 
chromosomal abnormalities.

26 patients were identified as transfusion-
independent with a median hemoglobin rise of 
3.2 g/dL. A further 17% achieved a reduction 
of pretreatment transfusion requirements. The 
duration of response was at least 24 weeks.

Ebert et al. [59] identified a set 
of erythroid-specific genes with 
decreased expression in non-del(5q) 
MDS responders on patient samples 
from this trial.

MDS-003 
phase II 
study

10 mg of lenalidomide orally  for 
21 of 28 days with possible dose 
reductions in case of adverse 
events to 5 mg daily and 5 mg 
daily every other day [29].

148 transfusion-dependent, lower-
risk, del(5q) patients. 111 had 
a single del(5q) chromosomal 
abnormality, and 37 patients 
had additional chromosomal 
abnormalities.

64% of patients became transfusion-free (at 
least 56 days of transfusion independence) 
and at least 1 g/dL increase in hemoglobin. 
44% of patients achieved  a complete  
cytogenetic remission (absence of the del(5q) 
cytogenetic abnormality).

MDS-003 was a single-arm study. 
Factors predicting response to 
lenalidomide in del(5q) MDS were  a 
platelet count decrease by at least 
50% in non-thrombocytopenic patients 
at base-line (before starting with 
lenalidomide treatment).

MDS-004 
phase III 
study

10 mg of lenalidomide orally  
for 21 of 28 days, 5 mg of 
lenalidomide on days 1 to 28, or 
placebo on days 1 to 28 of 28-
day cycles [65].

205 del(5q) MDS patients were 
randomized 1:1:1 to lenalidomide 
10 mg/day, lenalidomide 5 mg/
day, or placebo in the double-blind 
treatment phase.

56.1% of patients treated with 10 mg of 
lenalidomide, 42.6% of patients treated with 
5 mg lenalidomide and 5.9% of patients with 
placebo achieved red blood cell transfusion 
independence for at least 26 weeks. Median 
time to response was about 4 weeks, median 
maximum of hemoglobin increase was 6.3 
g/dL. Complete cytogenetic response rates 
were 29.4%, 15.6%, and 0% for lenalidomide 
10 mg, lenalidomide 5 mg, or placebo.

52 patients (25.4%) progressed in this 
phase III study to AML with almost 3 
years of follow-up.

MDS-005 
phase III 
study

10 mg of lenalidomide orally  
once daily (administered as one 
10 mg lenalidomide capsule and 
2 placebo capsules) or placebo 
(3 placebo capsules) once daily 
for up to 4 years (see Steensma 
DP-The Hematologist March 1, 
2011 and Celgene MDS 005).

375 low risk (low- or intermediate 
1-risk) MDS patients without 
del(5q) who do not respond to 
erythropoiesis-stimulating agent 
therapy and require regular red 
blood cell transfusions.

Study start date: November 2009; estimated 
study completion date: December 2018; 
estimated primary completion date: April 2016 
(final data collection date for primary outcome 
measure).

clinicaltrials.gov Identifier: 
NCT01029262 (A servise of the U.S. 
National Institutes of Health). This 
international a phase III trial, double-
blind is being conducted at more than 
70 medical centers in 14 countries, 
including 9 centers in the United 
States and Canada.
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suppressed erythroid gene signature (genes for α- and β-globin, 
ankyrin 1, band 3, band 4.2, carbonic anhydrase, ferrochelatase and 
glycophorin B) [59]. 

The “Groupe Francophone des Myélodysplasies” conducted a 
multicenter phase 2 trial with lenalidomide in intermediate-2 (19 
patients) and high-risk MDS (28 patients) with del(5q) [60]. Forty 
seven patients (24 males and 23 females, with a median age of 69 years, 
range, 36-84 years) were treated. Forty three patients of 47 patients had 
transfusion-dependent anemia. Patients received 10 mg lenalidomide 
once daily orally during 21 days every 4 weeks. In patients without 
response after 8 weeks, the lenalidomide dose was increased to 15 
mg/day in the same time schedule during an additional 8 weeks. If no 
response was found in this additional time of treatment, lenalidomide 
was discontinued. Thirteen of the 47 patients (27%) achieved response 
according to International Working Group (IWG) 2006 criteria [61]. 
Median duration of overall response was 6.5 months, 11.5 months 
in patients who achieved the complete remission. Grade 3 and 4 
neutropenia and thrombocytopenia were seen in most patients.     

Möllgård et al. [62] hypothesized that increasing doses of 
lenalidomide may be successfully used in high-risk MDS and AML with 
chromosome 5 abnormalities. They tested this hypothesis in prospective 
phase II multicenter trial with 28 patients (12 with intermediate-risk 2 
or high-risk MDS and 16 with AML). Oral lenalidomide was given at 
a dose of 10 mg/day in weeks 1 to 5. The dose was increased to 20 mg/
day in weeks 6 to 9, and to 30 mg/day in weeks 10 to 16. In the case of 
suspected drug-related toxicity the dose was lowered to 5 mg/day. The 
overall response rate in treated patients with MDS was 36% (4/11) and 
that for AML patients was 20% (3/15). Seven patients stopped therapy 
due to progressive disease and nine because of complications, most of 
which were disease-related. Patients with TP53 mutations responded 
less well than those without mutations. No responses were observed 
among 11 cases with deleterious TP53 mutation [62]. 

Randomized Phase III Placebo-controlled Study of 
Lenalidomide in del(5q) Patients

This study [63-67] (Table 1) examined the safety of lenalidomide 
in a randomized phase III trial (MDS-004) in low-/int-1-risk 
myelodysplastic syndromes (MDS) with a del(5q) abnormality.

Similar criteria to those used in the MDS-003 study were chosen. 
Two hundred five patients were randomized to receive treatment with 
either lenalidomide 10 mg orally daily for 21 days of each 28-day cycle, 
lenalidomide 5 mg orally daily for 28 days of each 28-day cycle, or 
placebo. Erythroid responses were assessed at 16 weeks. Nonresponders 
were then in open-label treatment and they were excluded from the 
efficacy analysis. Red blood cell transfusion independence was achieved 
in 53.6% of patients treated on 10 mg arm, 33.3% on 5 mg arm and 
6% on the placebo arm. Cytogenetic response rates were also highest 
in the 10 mg arm (41.5% of patients), while in 5 mg arm (17.4%) and 
in the placebo arm (0%). The median rise in hemoglobin at the time 
of the best response was also higher in patients treated with the 10 mg 
lenalidomide. No difference in the rate of AML transformation among 
three arms was found. This study confirmed that the preferred starting 
dose of lenalidomide in patients with del(5q) low-/int-1-risk MDS 
remains 10 mg. 

Health-related quality of life (HRQL) outcomes were assessed 
using the Functional Assessment of Cancer Therapy-Anemia in 167 
RBC transfusion-dependent patients with IPSS low- or intermediate-
1-risk del5q31 MDS treated with lenalidomide versus placebo in a 

randomized phase III clinical trial, MDS-004 [67]. Clinically important 
changes in HRQL from baseline were observed at weeks 12, 14, 36, 
and 48 among responders in both treatment groups (5 mg and 10 mg 
lenalidomide). Lenalidomide treatment may be effective in improving 
HRQL outcomes [67].   

Further Clinical Studies of Lower Risk MDS Patients 
with Del(5q) Treated with Lenalidomide

Many of the initial clinical and laboratory observations obtained 
in the MDS-003 trial were confirmed in the study of Le Bras et al. [68]. 
Ninety five lower risk MDS patients (low and intermediate 1 risk in 
IPSS, 25 males and 70 females with a median age of 70.4 years) with 
del(5q) were treated with 10 mg of lenalidomide daily, 21 days every 
28 days for at least 16 weeks. Patients with at least a minor erythroid 
response after 16 weeks were treated in the same way until disease 
progression, treatment failure or treatment-limiting toxicity.                       

Erythroid response was evaluated according to IWG 2000 
criteria [69]. Sixty two of the 95 patients (65%) achieved erythroid 
response according to IWG 2006 criteria [61]. In these 62 patients, 60 
patients (63% from 95 patients) achieved red blood cell transfusion 
independence. Median time to transfusion independence was 16 
weeks (range 8-33 weeks). Fifteen patients who achieved transfusion 
independence were analyzed for cytogenetic response (20% of 
complete and 40% of partial cytogenetic response). The rest of these 
15 patients (40%) had no cytogenetic response. Six (6.3%) patients 
progressed to AML and 15 patients died, including 6 patients who had 
achieved transfusion independence. In the MDS-003 trial, the primary 
endpoint was hematological response, while in the study of Le Bras 
et al. transfusion independence. The cytogenetic remission rate was 
higher in the MDS-003 trial (73% versus 60% in the study of Le Bras et 
al. [68]). Neutropenia and thrombocytopenia were the most common 
adverse events in both studies [70]. 

A Japanese multiinstitutional study MDS-007 in MDS patients with 
del(5q) treated with lenalidomide has been recently performed [71,72]. 
This study was targeted on morphologic analysis and evaluation of the 
relationship among erythroid response, change of morphologic findings 
and cytogenetic response. MDS-007 trial was a single-arm, open-label 
study. Eleven patients were enrolled in this study, including 5 patients 
with transfusion-dependent anemia and 6 patients with transfusion-
independent symptomatic anemia. Nine patients showed less than 25% 
of bone marrow erythroblasts before therapy with lenalidomide and no 
patient had more than 40% of bone marrow erythroblasts at that time. 
Eight patients showed a rapid increase of bone marrow erythroblasts 
to more than 40% on day 85. All patients except one achieved a major 
erythroid response as defined by either transfusion independence 
or by rapid increase of hemoglobin level in most patients on day 
169 of lenalidomide therapy. One patient without any hematologic 
response by day 169, achieved a major erythroid response on day 
218. Erythroid response could be achieved even without a cytogenetic 
response. No patient in this analysis showed a hematological relapse 
prior to cytogenetic one. These findings suggested that lenalidomide 
can improve anemia by more than one mechanism of action and also 
through mechanism different from del(5q) elimination.

Treatment of del(5q) Patients with Relapse during 
Lenalidomide Exposure 

At the time of relapse of transfusion dependence, bone marrow 
aspiration would be performed in order to evaluate the patient for 
morphological or cytogenetic progression. If there is no progression, 
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the patient is without drug next 3 to 4 monthes. Thereafter, the patient 
is re-exposed to lenalidomide. Second responses are regularly seen, 
probably by epigenetic mechanism [73]. In the case of progressive 
disease, salvage therapies including demethylating agents or allogeneic 
bone marrow transplantation are necessary [74].           

Therapy with Lenalidomide in Combination with 
another Drug in MDS

In order to maximize the potential benefit from lenalidomide 
therapy combination strategies were developed. Lenalidomide in 
attempt to improve outcome of patients can be combined with 
erythropoiesis-stimulating agents (ESA), such as erythropoietin or 
darbepoietin alpha. This therapy is based on preclinical observations 
showing that lenalidomide significantly potentiated erythropoietin 
receptor signaling. The addition of erythropoietin (40,000 U/week) 
for an additional 8-week course had the beneficial effect in low and 
intermediate-1 risk MDS patients who had failed prior treatment with 
lenalidomide monotherapy for 16 weeks [75]. To evaluate the potential 
benefit of the combination of lenalidomide and ESA, Park et al. [76] 
tried the association in three del5q MDS patients, who were resistant 
or partially responding to lenalidomide alone. Lenalidomide had two 
different actions, one on the disapperance of the 5q-clone and the other 
one on the stimulation of the erythroid production in combination 
with ESA. 

In low to intermediate-1 risk non-del(5q) MDS, lenalidomide 
treatment is less effective with a lower response rate (25%) and 
shorter response duration than in the same risk MDS with del(5q) 
[41]. Combination of lenalidomide with another drug could improve 
outcome of patients with low to intermediate-1 risk non-del(5q) 
MDS. Ezatiostat hydrochloride (Telintra, TLK199), a tripeptide 
glutathione analog is a reversible inhibitor of the enzyme glutathione 
S-transferase P1-1 (GSTP1-1) inhibitor [77-83]. This inhibitor was 
developed for the treatment of cytopenias associated with lower risk 
MDS. Ezatiostat activates jun-N-terminal kinase (JNK), promoting the 
growth and maturation of hematopoietic progenitors, while inducing 
apoptosis in human leukemia blasts [77]. The ability of ezatiostat to 
activate the caspase-dependent pathway may help eliminate or inhibit 
the emergence of malignant clones. Alternatively, ezatiostat increases 
reactive oxygen species in dysplastic cells and contibutes by this effect 
also to apoptotic death [77]. Based on these mechanisms of action, 
response rates, non-overlapping toxicities, and tolerability observed in 
a single agent ezatiostat phase 1 and 2 studies in MDS [79-81,84], a 
study of the combination of ezatiostat and lenalidomide was conducted 
to determine the safety and efficacy of ezatiostat with lenalidomide 
in non-del(5q) low to intermediate-1 risk MDS. Eighteen patients 
(median age 73 years; range 57-82; 72% male) were enrolled in the study 
[81]. Thirteen patients (72%) were intermediate-1 risk and 5 patients 
(28%) were low risk. Four patients had abnormal cytogenetics. Twelve 
patients (67%) were red blood cell transfusion-dependent and 2 patients 
(11%) were platelet transfusion-dependent. Three of 8 (38%) patients 
achieved transfusion independence including 1 responder who did not 
respond to prior lenalidomide. Ezatiostat caused clinically significant 
reduction in red blood cell and platelet transfusions. Since ezatiostat 
is non-myelosuppressive, it is a good candidate for combination with 
lenalidomide. The recommended doses of this combination regimen 
for future studies is the ezatiostat. 

Lenalidomide and azacitidine are active in patients with lower- and 
higher-risk MDS. These agents may complement each other by targeting 
both the bone marrow microenvironment and hypomethylating action 

on the malignant clone. Phase I combination trial of lenalidomide and 
azacitidine in patients with higher-risk MDS was a multicenter, single-
arm, open-label study [85]. Twenty five patients were screened and 
enrolled in this therapy and their response was assessed after four and 
seven cycles of the tretment. Azacitidine was administered at 75 mg/
m2 daily for five consecutive days, and lenalidomide 10 mg daily for 21 
days, of a 28-day cycle. Of 18 evaluable patients, 12 (67%) responded to 
therapy; 8 (44%) achieved complex response, 3 (17%) had hematologic 
improvement and one (6%) had bone marrow complex response. Of 
those who responded, eight experienced relapse or disease progression 
at a median 7.5 months from initial response (range, 3 to 17 months). 
Two patients transformed to AML, one patient at 7 and one patient at 11 
months from initial response. Another report from the same research 
group on three MDS patients with normal cytogenetics who relapsed 
on monotherapy and achieved a complete response with combination 
of lenalidomide and azacitidine has been recently published [86]. This 
combination was also studied by the other American, French, German 
and Australian groups [87-90]. The combination of lenalidomide and 
azacitidine is feasible and seems to be effective in lower risk MDS with 
del(5q) [88] and even in a very high risk patient groups with advanced 
MDS or AML and a del(5q) [85-87,89,90]. 

Romiplostim (AMG 531, Nplate) is an Fc-peptide fusion protein 
(peptibody) that acts as a thrombopoietin receptor agonist. It has no 
amino acid sequence homology with endogenous thrombopoietin. 
Romiplostim stimulates megakaryopoiesis and thrombopoiesis by 
binding to and activating the thrombopoietin receptor and downstream 
signaling [91-94]. Romiplostim appeared well tolerated in patients 
with lower risk MDS and thrombocytopenia [95]. Low platelet counts 
in patients with MDS may be due to the underlying disease or due to 
treatment with disease-modifying agents, and platelet transfusions are 
often the only treatment for clinically significant thrombocytopenia or 
bleeding. Randomized phase II study evaluating the efficacy and safety 
of romiplostim treatment of patients with low or intermediate-1 risk 
MDS receiving lenalidomide was performed [96]. This was double-
blind, placebo controlled, dose finding study that evaluated the effect of 
romiplostim on the incidence of clinically significant thrombocytopenia 
events (grade 3 or 4 thrombocytopenia and/or receipt of platelet 
transfusions) and the safety of romiplostim in patients with low or 
intermediate-1 risk MDS receiving lenalidomide. Thirty nine patients 
(median age 74 years; range, 39 to 90) were randomized into treatment 
groups receiving placebo, 500 μg romiplostim, or 750 μg romiplostim 
by weekly subcutaneous injections in combination with lenalidomide 
(one 10 mg capsule by mouth daily for each 28-day cycle). Fifteen 
patients (39%) had platelet counts<50×109/L and 7 (18%) had del(5q). 
Treatment continued for a total of four cycles. Twelve patients (31%) 
discontinued the study. Disease progression to AML was reported in 
1 patient in the romiplostim 500 μg group. Response was 8% for the 
placebo, 36% for 500 μg romiplostim, and 15% for 750 μg romiplostim 
groups. Romiplostim appeared to be well tollerated in low or 
intermediate-1 risk MDS patients receiving lenalidomide.

It is possible that the effect of lenalidomide could be augmented 
by addition of another immunomodulation agent, cyclosporine A. A 
single-arm, open-label study of the efficacy and safety of lenalidomide 
in combination with cyclosporine A in red blood cell transfusion-
dependent both 5q- and non 5q- MDS patients started at Weill Cornell 
Medical College in New York. 

Other drugs are tried and will be probably used in combinations 
with lenalidomide in the treatment MDS patients with del(5q) in the 
future. Dexamethasone and lenalidomide rescue erythropoiesis, alone 
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and in combination, in RPS14- and RPS19- (ribosomal proteins of 
small ribosomal subunit) deficient cells [97]. L-leucine was also studied 
in RPS14- and RPS19- deficient cells [98-101]. The combined use of 
L-leucine and lenalidomide might be considered for therapy in MDS 
patients with the del(5q) since there is evidence to suggest that these 
two drugs act through different mechanism and their effect may be 
synergistic.

Mechanisms of Action of Lenalidomide 
Lenalidomide shares a number of structural and biological 

properties with thalidomide, but it is safer and more potent than 
thalidomide. Both drugs appear to function through four mechanisms: 
immunomodulatory, anti-inflammatory, anti-angiogenic and direct 
neoplastic cells inhibitory [102,103]. Lenalidomide has a direct 
erythropoiesis stimulating effect. Shortly, Wei et al. [104] demonstrated 
that the haplodeficient enzymatic targets of lenalidomide within the 
commonly deleted region are two dual-specificity phosphatases, the cell 
division cycle 25C (Cdc25C) and the protein phosphatase 2A (PP2A). 
These phosphatases are coregulators of G2-M checkpoint in the cell 
cycle and thus, their inhibition by lenalidomide leads to G2 arrest and 
apoptosis of del(5q) specimens. The mechanism of action is different 
in non-del(5q), where lenalidomide restores and promotes effective 
erythropoiesis with no direct cytotoxic effect [104]. Lenalidomide 
promotes erythropoiesis and fetal hemoglobin production in human 
CD34+ cells [105]. The increased fetal hemoglobin expression was 
associated with epigenetic effect on chromatin (an increase in histone 3 
acetylation on the γ-globin gene promoter). 

In MDS patients with del(5q), allelic deletion of the RPS 14 gene 
is a key effector of the hypoplastic anemia. Impairment of ribosomal 
biogenesis liberates free ribosomal proteins to bind to and trigger 
degradation of HDM2 (human homologue of the mouse double 
minute 2 protein /MDM2/) with consequent p53 transactivation in 
response to nucleolar stress independently of DNA damage [106,107]. 
Overexpression of p53 is typical for erythroid precursors of primary 
bone marrow of MDS patients with with del(5q). Lenalidomide 
inhibits the haplodeficient PP2A resulting in hyperphosphorylation of 
inhibitory serine 166 and serine 186 residues on MDM2, and displaces 
binding of RPS14 to suppress MDM2 autoubiquitation whereas PP2A 
overexpression promotes drug resistance. Lenalidomide promotes 
p53 degradation by inhibiting HDM2 autoubiquitination in erythroid 
precursors of MDS patients with with del(5q) bone marrow [108].

The similar epigenetic modulation of gene for p21(CIP1/WAF1) by 
lenalidomide was described in both lymphoma and multiple myeloma 
[109]. A potent cyclin-dependent kinase inhibitor p21(CIP1/WAF1) 
decreases activity of cyclinE-CDK2 or cyclinD-CDK4/6 complexes, and 
thus functions as a regulator of cell cycle progression. The p21 protein 
can mediate cellular senescence and also interact with proliferating 
cell nuclear antigen (PCNA), a DNA polymerase accessory factor, and 
plays a regulatory role in S phase DNA replication and DNA damage 
repair.

Most MDS patients including those with del(5q) become refractory 
to erythropoietin (EPO). EPO is an essential glycoprotein that facilitates 
red blood cell maturation from erythroid progenitors and mediates 
erythropoiesis [110]. EPO acts through EPO-receptor (EPO-R) and the 
signal transducer and activator of transcription 5 (STAT5) [43,111]. 
Disruption of STAT5 results in a variety of cell-specific effects, one 
of which is the impaired erythropoiesis [108]. Lenalidomide relieves 
repression of ligand-dependent activation of the EPO-R/STAT5 
pathway. Ebert et al. [59] showed that target genes of this pathway 

are underexpressed in lenalidomide-responsive MDS patients wihout 
del(5q). Lenalidomide promotes erythropoiesis in MDS by CD45 
protein tyrosine phosphatase inhibition [112]. CD45 phosphatase 
is overactivated in MDS and may inhibit phosphorylation of STAT5 
stimulated by EPO-R. Lenalidomide is able to restore EPO-R/STAT5 
signaling that is essential for hematopoiesis. Lenalidomide restores 
and promotes effective erythropoiesis in non-del(5q) without direct 
cytotoxic effect. 

A deregulated immune system plays the important role in 
pathogenesis of MDS. Deregulation is caused by the alteration of 
cytokines in the bone marrow microenvironment, deffective T-cell 
regulation and diminished natural killer (NK) cell activity. Deficiences 
in T cells, NK cells and interferon-γ (IFN-γ) production were described 
in the bone marrow and peripheral blood of MDS patients [113,114]. 
Lenalidomide exhibits potent T-cell costimulatory properties and 
augmented production of IL-2 and IFN-γ [16,115]. Akt (proteinase 
B) signaling pathway and transcription factor AP1 (activator protein 
1) are involved in T-cell activation [115]. Increased numbers and 
activation of NK and NK T-cell populations were also observed in 
peripheral blood cells cultured with lenalidomide [116,117]. 

Anti-inflammatory effects of lenalidomide is based on inhibition 
of proinflammatory cytokines and chemokines, such as TNF-α, IL-
1β, IL-6, IL-12, monocyte chemotactic protein-1 and macrophage 
inflammatory protein-1α. On the other hand, lenalidomide elevates 
anti-inflammatory cytokine IL-10. Interestingly, haploinsuficiency 
of miR-145 and miR-146a in 5q - syndrome increases IL-6 levels by 
elevation of interleukin-1 receptor-associated kinase 1 (IRAK1), Toll-
interleukin-1 receptor domain-containing adaptor protein (TIRAP), 
tumor necrosis factor receptor-associated factor-6 (TRAF6), and 
NF-κB [118-120]. RPS14, miR-145, and miR-146 were significantly 
increased and TNF-α, IL-1β and IL-10 significantly downregulated 
during the treatment with lenalidomide [121-123]. 

Angiogenesis, the formation of new blood vessels, plays an 
important role in the growth and progression of MDS. The vascular 
endothelial growth factor (VEGF) and to a lesser extent IL-6 are 
cytokines that stimulate the formation of blood vessels. Increased levels 
of these cytokines have been shown in MDS [124]. Anti-angiogenic 
effects of lenalidomide are independent of immunomodulatory effects 
and are mediated through endothelial cell migration inhibition [125-
128]. The mechanism by which lenalidomide inhibited VEGF-induced 
endothelial cell migration may be related to VEGF-induced inhibition 
of Akt phosphorylation. Furthermore, loss of anti-angiogenic effect 
of lenalidomide predicted disease progressionand an increased risk of 
transformation to AML [129]. 

Lenalidomide does not affect DNA synthesis but inhibits 
cytokinesis of MDS cells. Cytokinesis occurs as the final stage of cell 
division after mitosis. A contractile ring, made of non-muscle myosin 
and actin filaments assembles in the middle of the cell adjacent to the 
cell membrane. Formins are Rho-GTPase effector proteins that are 
involved in the polymerization of actin and effects microtubule during 
meiosis, mitosis, the maintenance of cell polarity, vesicular trafficking 
and signaling to the nucleus [130,131]. Diaphanous (mDia)-related 
formin mDia1 is encoded by DIAPH1 located on the long arm of 
chromosome 5 (5q31.3) and lies between the two commonly deleted 
regions in MDS patients with 5q- syndrome. It is not clear whether 
mDia1 plays a role in lenalidomide effect on cytokinesis. Knock-out of 
DIAPH1 in mice has T cell responses and myelodysplastic phenotype 
[132-134].
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The clinical effect of lenalidomide is associated with significant 
increases in the numbers of erythroid, myeloid and megakaryocytic 
colony-forming cells and a substantial improvement in the 
hematopoiesis-supporting capacity of bone marrow stroma. 
Lenalidomide induces significant alterations in the adhesion profile 
of hematopoietic progenitor cells, including over-expression of 
membrane ligands (CXCR4/CD184, CD54/ICAM1, CD11a and 
CD49d where CD is cluster of differentiation) and overproduction 
of soluble stromal cell-derived factor-1 (SDF-1) and of ICAM1 in the 
bone marrow microenvironment. CXC4 is C-X-C chemokine receptor 
type 4 also known as fusin or CD184. ICAM1 (intracellular adhesion 
molecule 1 also known as CD54) is a cell surface glycoprotein. All 
these effects favor the maintenance of CD34+ cells in the bone marrow 
[135]. Lenalidomide-mediated induction of the SLAM antigen CD48 
on patients’ CD34+ cells may be associated with the drug’s apoptosis-
inducing effect through co-stimulatory interactions between CD34+ 
cells and cytotoxic lymphocytes in the bone marrow microenvironment.

Conclusion and Perspectives 
Lenalidomide is currently the treatment of choice for lower risk 

transfusion-dependent del(5q) MDS patients, and remains a treatment 
alternative for the management of anemia in lower risk MDS without 
5q deletion MDS patients with adequate neutrophil and platelet counts 
[136]. Lenalidomide has also activity in higher risk MDS and AML with 
del(5q) and even in non(del5q) MDS.

Though the mechanism of lenalidomide action has not been 
definitively determined, it is clear that there is a difference between 
mechanisms in MDS with del(5q) and MDS with non-del(5q). 

In MDS with del(5q), lenalidomide acts through inhibition of 
phosphatase activity in the commonly deleted region of the long 
arm of chromosome 5. This phosphatases play a key role in cell cycle 
regulation. The inhibition of these phosphatases by lenalidomide 
leads to G2 arrest, followed by apoptosis of del(5q) specimens. The 
direct cytotoxic effects of lenalidomide on the del(5q) clone are also 
very important. Lenalidomide inhibits the malignant clone and up-
regulates the SPARC (secreted protein acidic and rich in cysteine) gene 
mapping to the commonly deleted region in 5q- syndrome patients 
[137]. However, SPARC is dispensable for murine hematopoiesis 
[138]. While haploinsufficiency of the RPS14 gene appears to be a key 
contributor to erythropoietic failure associated with del(5q) MDS, 
the critical genes responsible for clonal dominance in del(5q) high-
risk MDS and AML are less well-defined. It is known that this deleted 
region is different in del(5q) high-risk MDS and AML [139]. The effect 
of lenalidomide in these cases needs to identify further biologic features 
accounting for the response, thereby allowing rational use of this drug, 
both alone and in combination with another agents.

In MDS with non-del(5q), an increased expression of adhesion 
molecules caused by lenalidomide treatment leads to recovery and 
maintenance of the CD34+ cells through interactions between the 
hematopoietic and stromal cells. This effect of lenalidomide on the 
bone marrow microenvironment causes abrogation of the function 
of pro-apoptotic and pro-inflammatory cytokines. Lenalidomide 
is capable to increase red blood cell production independently of 
ribosome dysfunction. Lenalidomide restores and promotes effective 
erythropoiesis without direct cytotoxic effect. Lenalidomide activates 
the EPO-R/STAT5 pathway.

New cytogenetic tools such as fluorescence in situ, hybridization 
(FISH) or single nucleotide polymorphism array (SNP-A)-based 

karyotyping, increased the diagnostic yield over metaphase 
cytogenetics. Sugimoto et al. [140] have recently found with help 
of these new cytogenetic tools that normal karyotype and gain of 
chromosome 8 were predictive of response to lenalidomide in non-
del(5q) patients with myeloid malignancies. 

The presence of multiple cellular and genetic abnormalities in MDS 
is common and suggests that combination therapy targeting different 
mechanisms of action may be beneficial, particularly in higher-
risk disease, for which both microenvironment and cell regulatory 
mechanisms play a role. The optimal dose, schedule and duration of 
treatment is still an area of active investigation, especially in the use of 
lenalidomide combinations with other drugs.
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