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Lung growth and development during fetal life are critical for 
extrauterine survival. Pulmonary hypoplasia secondary to congenital 
diaphragmatic hernia, oligohydramnios, etc, is an important cause of 
neonatal morbidity and mortality. In fact, pulmonary hypoplasia is the 
most common finding in neonatal autopsies [1]. In addition, more than 
20,000 babies are born every year in the United States before 27 weeks 
of gestation (canalicular stage of lung development). These disorders 
have in common an incomplete development of the lungs. Despite 
the improvement in neonatal care, these conditions can cause serious 
short-term and long-term morbidities [2]. Currently, the management 
is primarily supportive and there is not specific treatment to stimulate 
the growth and development of the lungs. 

Mechanical forces are a major determinant of fetal lung 
development [3-7]. Throughout gestation, the lung epithelium actively 
secretes fluid creating a constant distension pressure of around 2.5 
mmHg in the potential airspaces [8]. In addition, the fetus makes 
Episodic Breathing Movements (FBM) starting in the first trimester and 
increasing in frequency up to 30% of the time by birth [9] (Figure 1). It 
is clear from experimental animals that drainage of lung fluid volume 
[10] or abolition of FBM [11,12] lead to lung hypoplasia. Therefore, 
both tonic hydrostatic distension and cyclic mechanical deformation 
provide physical signals necessary for normal fetal lung development. 
However, the mechanisms by which lung cells sense these mechanical 
signals and convert them into biochemical responses to promote lung 
development are not well-defined. 

Tracheal ligation to stimulate lung growth and to correct pulmonary 
hypoplasia in utero has been used not only experimentally [13] but also 
in humans affected by congenital diaphragmatic hernia with some 
success [14]. However, and due to the high rate of complications [15], 
this treatment is only considered in severe cases of diaphragmatic 
hernia. Furthermore, this method has not been used in other forms 
of pulmonary hypoplasia, such as severe oligohydramnios secondary 
to prolonged rupture of membranes for example. Therefore, a different 
way to approach this problem is to investigate how mechanical forces 
promote lung development and use that information to stimulate lung 
development. 

Past investigations in fetal lambs have shown that lung fluid 
composition after tracheal ligation was critical to promote lung 
development, since acceleration of growth and differentiation was not 
observed when lung fluids were replaced with normal saline [16,17]. 
The authors suggested that the increase of intra tracheal pressure after 
tracheal ligation releases soluble factors critical for lung maturation. This 
hypothesis is supported by previous in vitro studies from our laboratory 
in which fetal type II cells were isolated during the canalicular stage of 
lung development and exposed to stretch to mimic mechanical forces 
in lung development. Our data showed that differentiation of type 
II cells is mediated via release of Epidermal Growth Factor Receptor 
(EGFR) ligands. Specifically, mechanical stretch promotes cleavage and 
release of the soluble, mature forms of HB-EGF and TGF-α [18,19]. 
These growth factors induce differentiation by binding to the EGFR 
and subsequent phosphorylation of this receptor and activation of the 
ERK signaling pathway (Figure 2).

The identification of growth factors released by mechanical 

forces that are important for normal lung development could lead 
to novel treatments to accelerate lung development. For instance, 
growth factors could be administered prenatally to fetuses affected by 
pulmonary hypoplasia secondary to congenital diaphragmatic hernia 
or oligohydramnios. Other potential candidates for this therapy are 
fetuses at borderline viability (22-24 weeks) and at risk for delivery. 
These growth factors could also be administered postnatally via 
endotracheal tube. This is just an example on how the information 
obtained from these in vitro mechanistic studies could have the 
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Figure 1: Mechanical forces are essential for   normal lung development.
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Figure 2: Mechanistic model to show how mechanical stretch promotes 
differentiation of type II epithelial cells via release of growth factors.
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potential for clinical applicability. However, before considering their 
use in humans, rigorous experiments in animal models are required 
first to demonstrate the effectiveness of this therapy and the lack of 
side effects.
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