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Abstract
The use of a new small aryl azido-N-Hydroxysuccinimidyl heterobifunctional crosslinker for crosslinking of αA- 

crystallin and lysozyme is described here. The crosslinker is based on the small molecule, 3-hydroxy anthranilic 
acid (3HAA) a part of the kynurenine pathway in Tryptophan metabolism. Enhanced amounts of 3HAA are found in 
disease states in the human body. The new crosslinker contains a photo labile azido group and an amine reactive, 
N-hydroxy succinimide (NHS) group. Small crosslinkers capture interacting protein interfaces better, while the larger 
ones are more useful for identifying interacting partners. Our earlier work has shown that aryl azides in this series 
lead to ‘long lived’ transients allowing for increased intermolecular reaction rates, otherwise difficult to achieve. 
Using this crosslinker, successful crosslinking of αA-Crystallin & lysozyme has been demonstrated in two steps i. 
e. incubation followed by photolysis (366 nm, 6W UV lamp). Previous studies on αA- Crystallin have mostly used 
only homobifunctional crosslinkers. As hypothesized by us, the use of a heterobifunctional crosslinker has indeed 
led to more efficient crosslinking.  This has been confirmed using SDS-PAGE, ESI-MS/MS (following trypsinization 
of the homo and hetero ‘dimer’ bands) and use of StavroX 3.6.0.1, the bioinformatics software especially suited for 
analyzing intermolecular crosslinking. These investigations are expected to lead to a better understanding of the role 
of αA-Crystallin in chaperoning mechanism and in cataractogenesis.

Keywords: 3-Hydroxyanthranilic acid; Kynurenine; ESI-MS; 
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Introduction
Alpha-Crystallin the transparent, heat stable, water soluble protein 

of the human eye lens has been studied earlier exhaustively [1]. 
α-Crystallin consists of αA (173 amino acids; Mw; 19909) and αB (175 
amino acids; Mw; 20159), “in a molar ratio which is variable among 
species”. αA-Crystallin and αB-Crystallin play a very important role 
in keeping the human eye lens transparent and to prevent aggregation 
of these water soluble proteins leading to opaqueness and cataract. 
However, only very recently their role as therapeutics, for treating not 
only eye diseases, but also other major diseases has been demonstrated 
[2-9]. It is pertinent to note that even in cases of concussion of the 
brain, treatment with Crystallins has helped in recovery from the 
neurodegenerative injuries [10]. However,  since Crystallins also cause 
diseases, it is a trade-off between their activity as possible therapeutics 
and simultaneously as disease causing agents, makes it necessary to 
tread the path with great caution. It is also known that metabolites 
of the alternative Kynurenine pathway (Supplementary Figure 1) of 
the Tryptophan catabolism have an important role in disease states. 
These include Huntington’s disease, Parkinson’s disease, HIV-AIDS,  
and cerebral malaria. Thus, the ratio of 3-Hydroxyanthranilic acid 
(3HAA) to Anthranilic acid (AA) in the human brain differentiates 
a patient from a normal person [11]. 3-Hydroxykynurenine (3HK) 
and 3HAA oxidize α A-Crystallin, which leads to the production 
of hydrogen peroxide in the human eye and has been implicated in 
cataractogensis [12]. Earlier work has shown that 3HK and 3HAA 
reduce Cu (II) and Fe (III) and generate superoxide and H2O2, 

when the kynurenine pathway is activated, which could be relevant 
in Cataractogenesis. These workers [13] even carried out cyclic 
voltammetry studies showing loss of Cu (II) by complexation and/
reduction with 3HAA being the most effective. Srivastava et al. [14,15] 
have carried out mass spectral studies of the proteins of human eye 
lens and correlated it with age; larger number of proteins being found 
with increasing age. The D. Balasubramanian group at the L.V Prasad 
Eye Hospital, Hyderabad, India [16,17] has done pioneering work on 
crystallins. For example, these workers showed that transglutaminase 
mediated dimerization of alpha Crystallin decreases its chaperone  like 
activity with considerable loss of tertiary structure and decrease in its 
secondary structure based fluorescence. The effect of alpha Crystallin 
on the refolding of the denatured-disulphide intact and denatured-
lysozyme was  studied. However, "no refolding of disulphide intact 
enzyme occurred but alpha crystallin inhibited the aggregation and  
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oxidative  renaturation  of  denatured-reduced  lysozyme”  [18,19].  
“Crystallin  is  known  to  prevent  the  heat induced aggregation of the 
protein by forming a stable complex” These workers chose Lysozyme 
as it “is one of the most extensively studied enzyme for its refolding 
properties”. Peschek et al. [20] (a) demonstrated the chaperoning 
function of αA-Crystallin in binding with lysozyme, leading to soluble 
and insoluble proteins. These workers “studied the chaperoning 
activity of αA-Crystallin in aggregation assays using Lysozyme as a 
substrate”. Saῗd Abgar et al. [20] (b) studied the chaperoning function 
with αA-Crystallin and Lysozyme and they also stated that “we have 
chosen Lysozyme because many aspects of its structure have been 
extensively studied”. Krishna Sharma’s [21-24] group reported the 
differences between αA-WT and mutant-G98R Crystallins. Using the 
homobifunctional crosslinker d0/d4(1:1) deuterium labeled BS2G and 
used the GPMAW software to show that majority of inter subunit 
crosslinking was clustered in K88 region in αA-WT Crystallin, while in 
the mutant-G98R Crystallin, crosslinking was seen in the K99 region 
of the protein. Thus, in the wild type protein, crosslinking is at K88 and 
in the mutant it shifts to K99. This one difference, according to them 
reflects the different oligomerization and conformational changes in 
the mutant that contribute to its aggregation, making the mutant αA-
Crystallin more prone to cataract formation. Their studies have helped 
identify the Alpha Crystallin Domain (ACD), which is common to 
most known HSPs. The ACD of αA-Crystallin is now referred to as 
the ‘Mini Alpha crystallin Chaperons’ (‘MACs’), which is represented 
by the 70“KFVIFLDVKHFSP”82 sequence [25-27]. 3-D representation 
of MACs using protein Swiss server in αA-Crystallin where MAC 
(represented as a mesh shadow is shown in Supplementary Figure 
2. Chaperons may work as “holdase”, “foldase” and “unfoldase” 
functions for stabilizing the non-native/ native state to prevent protein 
aggregation and to make misfolded state conformations by to regain 
the original conformation [28].

Many crosslinkers are known in literature and are commercially 
available [29,30]. Thus one has moved away from the days when 
formaldehyde and glutaraldehyde were used as crosslinkers which 
brought about indiscriminate crosslinking. Nowadays, zero length, 
isotope labeled, MS cleavable, homo and heterobifunctional crosslinkers 
are known. The difficulty is how to differentiate and separate the 
uncrosslinked peptides from the crosslinked ones, especially when the 
latter are found only in low abundance. This is referred to as “a needle in 
the hay stack” problem. This has been overcome in recent years, by the use 
of strong cation exchange (SCX) chromatography which help separate 
or enrich the croslinked fragments (which are invariably charged) 
from the uncross linked fragments which are neutral. It is also known 
that smaller crosslinkers give better information about interacting 
interfaces while the larger crosslinkers give better information about 
the interacting sites. Progress in this field has also been possible due 
to great advances in the field of mass spectrometry like MALDI-MS, 
MS/MS, ESI-MS [31- 35], which allow detailed investigations even 
when the amount of sample available is very small. Similarly, great 
advances have happened in Bioinformatics tools like the MS3D Links, 
GPMAW, Xlink, Kojac, CLMS vaults,  pLink, StavroX & MeroX [36-
39]; the latter being especially suitable for cleavable MS. Hagan Bayley 
[40], had predicted that intermediates during thermolysis/photolysis 
of pentafluro phenyl azide could lead to efficient photo affinity labeling 
agents, as these involve “long- lived” transients. This was subsequently 
shown to be true by M S Platz et al. [41,42]. Tomioka [43] showed that 
such ‘long-lived’ transients involve “slippery potential energy surfaces” 
and could lead to increase intermolecular crosslinking. Computational 
studies by Borden et al. [44] provided the much needed theoretical 

basis that there is an increase in the singlet-triplet gap. We have also 
similarly prepared   Aryl   Azido-N-hydroxy   succinimidyl   (NHS)   
heterobifunctional   crosslinkers   based   on ‘long-lived’ transients, 
which do not require any ortho-flanking fluorine atoms [45-51]. The 
latter is a great advantage as fluorination is both hazardous and toxic 
and preparation of our new crosslinker does not involve any such 
hazardous steps. It may be noted that aryl azides are now referred to 
as “green reagents” [52]. Earlier crosslinking studies on αA-Crystallin 
have mostly used homobifunctional crosslinkers. In the current study, 
a new small aryl-azido-NHS- heterobifunctional crosslinker based 
on 3HAA, a catabolite of Tryptophan in the Kynurenine pathway 
has been employed. The new crosslinker is based on ‘long-lived’ 
transients, which could promote efficient intermolecular crosslinking. 
Crosslinking has been done here using a two-step protocol. The 
first step involves incubation which is followed by photolysis (366 
nm, 6W UV lamp) to crosslink αA-crystallin (19kDa) and lysozyme 
(14kDa). From the intermolecularly crosslinked (33kDa) band thus 
obtained, we have identified sites of crosslinking and characterized  
a previously unidentified and a most significant intermolecularly 
crosslinked fragment, with a very precise m/ z value. This fragment 
which contains fragments from both αA-Crystallin and Lysozyme 
provides a positive, confirmatory evidence for the binding of the 
two proteins. These investigations are expected to lead to a better 
understanding of the role of αA-Crystallin in chaperoning mechanism 
and cataractogenesis and for studies on other diseases, as well. This 
technique of chemical crosslinking-mass-spectrometry-bioinformatics 
is useful in proteomics, systems and structural biology, antibody drug 
conjugates (ADCs) and even for refining structures based on cryo– EM 
[53-64]. It is hoped that this new technique would be amenable to High 
Throughput Screening (HTS) of large number of patient samples in a 
rapid, reliable and routine manner.

Materials and Methods

Synthesis of the new crosslinker

The new heterobifunctional crosslinker, 2-Azido-3-Hydroxy-
benzoic acid-2, 5-dioxo-pyrrolidin-1-yl ester (135 mg), (II) was 
prepared from 2-Amino-3-Hydroxy-benzoic acid (I) 200 mg (1.19 
mmol) was taken and dissolved in 8 ml of concentrated hydrochloric 
acid and 2 ml of water and cooled at 0°C, this was diazotized by slow 
addition of sodium nitrate (140 mg, 1.2mmol) in minimum amount of 
water required. A solution of sodium azide NaN3 (120  mg, 2mmol.) 
and sodium acetate (3.36 g, 40mmol) in minimum water was taken and 
slowly added to the diazotized solution, when an off white solid settled 
down on the bottom of the vessel. This compound was filtered and thus 
compound (II) was obtained (yield, 175 mg). 175 mg of compound 
(II) was dissolved in 10 ml of dichloromethane (DCM) and then 
N-hydroxy sucinimide (NHS), (59.8 mg, 0. 52 mmol) and dicyclohexyl 
carbodiimide (DCC) (107 mg,0.52 mmol) were added and the reaction 
mixture was stirred at room temperature overnight. The solution was 
filtered to separate the urea side product. The filtrate was distilled and 
put in a desiccator with P2O5 when pale white compound (III) was 
obtained Supplementary Figure 3; M.P. 182OC; MS, M+H+  277.1 
(Supplementary Figure 4).

Chemical crosslinking

Materials required:

• Freshly prepared 1M Lysozyme solution
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• αA-Crystallin 1 mg/mL

• 200 M Crosslinker solution

• PBS Buffer

SDS-PAGE and in-gel digestion

The FASTA sequence for Lysozyme (Supplementary Figure 
5), αA-Crystallin (Supplementary Figure 6) and for 1: 1 mixture of 
lysozyme and αA-Crystallin Supplementary Figure 7 are given in the 
supplementary material. The SDS- PAGE standard protocol used for 
this studies is given in Supplementary Figure 8. 10 micrograms of 
proteins were incubated with the crosslinker (overnight) and then 
photolyzed at (366 nm, 6W UVlamp, 30 mins.) and then resolved by 
SDS-PAGE (Lysozyme, αA-Crystallin and 1:1 mixture of lysozyme 
and αA-Crystallin Supplementary Figures 9 and 10. The gels were 
stained with Commassie blue and destained with water. Gel pieces 
were excised  and in-gel digestion was carried out [65]. The excised 
bands were destained with 40 mM ammonium bicarbonate (ABC) in 
40% acetonitrile (ACN). The gel bands were subjected to reduction 
and alkylation using 5 mM dithiothreitol (DTT) (60°C for 45 min) and 
alkylation using 10 mM iodoacetamide (IAA). The gel sections were 
dehydrated with 100% ACN, followed by digestion with trypsin (Gold 
mass-spectrometry trypsin; Promega, Madison, WI) at 37°C for 10-12 
h. The peptides were removed from the gel pieces with 0.4% formic 
acid in 50% ACN solution and finally with 100% ACN. The extracted 
peptides were vacuum-dried and stored at – 80°C until LC-MS/MS 
analysis was undertaken.

LC-MS/MS analysis

The digested samples were acquired by 5600 Triple-TOF mass 
spectrometer which is directly connected to reverse- phase high-
pressure liquid chromatography Ekspert-nanoLC 415 system (Eksigent; 
Dublin, CA). The trap column (200 μm × 0.5 mm) and the analytical 
column (75 μm × 15 cm) were both from Eksigent, packed with 3 μm 
ChromXP C-18 (120 Å) used for reverse phase elution by Ekspert-nano 
LC 415 system. 0.1% formic acid in water was used as mobile phase 
A and mobile phase B is 0.1% formic acid in ACN. All fractions were 
eluted from the analytical column at a flow rate of 250 nL/ min using an 
initial gradient elution of 10% B from 0 to 5 min, transitioned to 40% 
over 15 min, ramping up to 90% B for 3 min, holding 90% B for 2 min, 
followed by re- equilibration of 5% B at 5 min with a total run time of 
30 min. Peptides were injected into the mass spectrometer using 10 μm 
SilicaTip electrospray PicoTip emitter (New Objective Cat. No. FS360-
20-10-N-5-C7-CT). Mass spectra (MS) and tandem mass spectra (MS/
MS) were recorded in positive-ion and high-sensitivity mode with a 
resolution of ~35,000 full-width half-maximum. The collected raw files 
spectra were stored in (dot) .wiff format.

Data analysis

All raw mass spectrometry files were searched in Protein Pilot 
software v. 5.0.1 (SCIEX) with the  Paragon algorithm for relative 
protein identification. For Paragon searches, the following settings 
were used: Sample type:

Identification; Cysteine Alkylation: Iodoacetamide, Digestion: 
Trypsin; Instrument: TripleTOF5600; Species: homosapiens; maximum 
allowed missed cleavages 1, Search effort: Thorough ID; Results Quality: 
Correction was automatically applied. The search was conducted using 
a through identification effort of a Ref-seq database from the National 

Center for Biotechnology Information (NCBI) website (https://www.
ncbi.nlm.nih.gov/refseq/). False discovery rate analysis was also 
performed through decoy database. Carbamidomethylation (C) was 
used as a fixed modification. The peptide and product ion tolerance 
of 0.05 Da was used for searches. The output of this search is a group 
file and this file contains the following information that is required for 
targeted data extraction: protein name and accession, cleaved peptide 
sequence, modified peptide sequence, relative intensity, precursor 
charge, unused Protscore, confidence, and decoy result.

StavroX 3.6.0.1 analysis

StavroX 3.6.0.1 was chosen as the bioinformatics software [66], as 
this software is particularly suited for the  analysis of intermolecularly 
crosslinked fragments.

Results and Discussion

Crosslinking details of the 28 kDa ‘homodimer’ band 
of lysozyme (14kDa), with the new heterobifunctional 
crosslinker based on 3HAA

The mass spectral data thus obtained for 28 kDa ‘homodimer’ 
band was fed into the StavroX.3.6.0.1 software as a dot (.) .mgf file. 
As a result, 6784 of 7539 spectra were compared to 166544 theoretical 
candidates out of which 40135 possible crosslinks were identified 
within 1 minute and 07 seconds of the run. Major fragments identified 
by StavroX 3.6.0.1 are shown in Supplementary Figure 11. The software 
also provided the decoy analysis (Figure 1). “Blue bars represent the 
number of candidates from the real experimental set, while red bars 
represent the positive false candidates from the inverted sequence 
of the FASTA file. More enriched real data set candidates indicate 
toward better crosslinking”. The top ten crosslinked peptide fragments, 
the intensity of intermolecular crosslinking and efficiency of the 
crosslinking is shown in Supplementary Figure 12. The highest score 
for fragment peaks was observed as 116. Figure 2 shows the annotation 
with the extent of deviation and the identified ‘b’ and ‘y’ ions for the 
fragment m/z 1802.862. “Less deviation in the annotation points 
toward better crosslinking”. The analysis of this peak with the score 
105 is shown in Figure 2. Some of the most intense intermolecularly 
crosslinked peptides according to observed mass as well as specified 
sequences identified by StavroX 3.6.0.1 are shown in Table 1. For 
the fragment m/z 1802.862 with the score of 105, “K-6” of Peptide 1 
(“LAAAmK”) crosslinks via “N-2” of Peptide 2 (“mNAWVAWR”), the 
major crosslinking site thus being suggested as a link between “K-6” 
and “N-2”. The cross-linked candidate spectrum gives us details about 
the peptides that are involved in the process of cross-linking also and 
shows the annotation with the extent of deviation and the identified 
‘b’ and ‘y’ ions. “Less deviation in the annotation points toward better 
crosslinking” [The modified fragment ions along with ‘b’ and ‘y’ ions, 
for the highest score 105 with the peak value of m/z 1802.862 is shown 
in Supplementary Figures 13 and 14].

Crosslinking details of the 38 kDa ‘homodimer’ band of 
αA Crystallin (19kDa), with the new heterobifunctional 
crosslinker based on 3HAA

The mass spectral data thus obtained for 38 kDa ‘homodimer’ 
band was fed into the StavroX.3.6.0.1 software as a dot (.) mgf file. As 
a result, 2935 of 3541 spectra were compared to 157302 theoretical 
candidates out of which, 35037 possible crosslinks were identified 
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Figure 1: Screen shot of the decoy Analysis for the 28 kDa ‘homodimer’ band of Lysozyme fragment m/z 1146.540 obtained from StavroX 3.6.0.1. (“Blue bars 
represent the number of candidates from the real experimental set, while red bars represent the positive false candidates from the inverted sequence of the 
FASTA file. More enriched real data set candidates indicate toward better crosslinking.”).

 
Figure 2: The annotation spectrum with the extent of deviation and identified peaks for the fragment m/z 1802.862 for 28kDa ‘homodimer’ band obtained from 
StavroX 3.6.0.1 “Less deviation in the annotation points toward better crosslinking”.

Lysozyme with the new heterobifuntional crosslinker  m/z Peptide 1 Peptide 2 Score Sequence
Intermolecular cross-linking 1146.540 [KVFG] [BELAA] 116 K1-A5+CXL

1802.862 [LAAAmK] [mNAWVAWR] 105 K6-N2+CXL
1854.860 [TPGSRN] [GMNAWVAWR]] 77 S4-W5+CXL
1655.821 [ELAAAMK] [KIVSDGNG] 74 E1-S4+CXL

Table 1: The intermolecularly crosslinked fragments with high scores identified by the software.
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within 1 minute and 16 seconds of the run. Major fragments identified 
by StavroX 3.6.0.1 is shown in Supplementary Figure 15. The software 
also provided the decoy analysis (Figure 3). As stated above, “Blue bars 
represent the number of candidates from the real experimental set, 
while red bars represent the positive false candidates from the inverted 
sequence of the FASTA file. More enriched real data set candidates 
indicate toward better crosslinking”. The top ten crosslinked peptide 
fragments, the intensity of intermolecular crosslinking and efficiency 
of the crosslinking is shown in Supplementary Figure 16. The highest 
score for fragment peaks was observed as 66. Figure 4 shows the 
annotation with the extent of deviation and the identified ‘b’ and ‘y’ ion 
for the fragment m/z 1286.540. “Less deviation in the annotation points 
toward better crosslinking”  The  analysis of this peak with the score 
66 is shown in Figure 4. Some of the most intense intermolecularly 
crosslinked peptides according to observed mass as well as specified 
sequences identified by StavroX 3.6.0.1 are shown in Table 2. For the 
fragment m/z 1286.640 with the score of 66, “S-1” of Peptide 1 (“SAPSS”) 
crosslinks via “D-5” of Peptide 2 (“VIFLDV”), the major crosslinking 
site thus being suggested as a link between “S-1” and “D-5”. The cross-
linked candidate spectrum gives us details about the peptides that are 
involved in the process of cross-linking, the annotation with the extent 
of deviation and the identified ‘b’ and ‘y’ ions. The modified fragment 
ions along  with ‘b’ and ‘y’ ions, for the highest score 66 with the peak 
value of m/z 1286.640 is shown in Supplementary Figure 17.

Crosslinking details of the 33 kDa ‘heterodimer’ band of 
αA-Crystallin (19kDa) and lysozyme (14kDa), with the new 
heterobifunctional crosslinker based on 3HAA

The mass spectral data thus obtained for 33 kDa ‘heterodimer’ 
band was fed into the StavroX.3.0.6.1 software as a dot (.) mgf 
file. As a result, 2011 of 2012 spectra were compared to 14460479 
theoretical candidates out of which, 1759 possible crosslinks were 

identified within 1 minute and 02 seconds of the run. Major fragments 
identified by StavroX3.6.0.1 are shown in Supplementary Figure 18. 
The software also provided the decoy analysis (Figure 5). As stated 
above, “Blue bars represent the number of candidates from the real 
experimental set, while red bars represent the positive false candidates 
from the inverted sequence of the FASTA file. More enriched real 
data set candidates indicate toward better crosslinking”. The top 
ten crosslinked peptide fragments, the intensity of intermolecular 
crosslinking and efficiency of the crosslinking is shown in Table 3. The 
highest score for fragment peaks was observed as 86. Figure 6 shows 
the annotation with the extent of deviation and the identified ‘b’ and 
‘y’ ion for the fragment m/z1290.597. “Less deviation in the annotation 
points toward better crosslinking”. The analysis of this peak with the 
score 86 is shown Figure 6. Some of the most intense intermolecularly 
crosslinked peptides according to observed mass as well specified 
sequence identified by StavroX 3.6.0.1 are shown in Table 4. A most 
significant intermolecularly crosslinked fragment with a peptide each 
from αA-Crystallin and from Lysozyme was observed with the value 
of m/z 1290.597. For this fragment with m/z 1290.597 and the score 
of 86, “S-1” of Peptide 1 (“SALSB”) crosslinks via “L-1” of Peptide 2 
(“LAAAmK”), the major crosslinking site thus being suggested as a 
link between “S-1” and “L-1”. The cross-linked candidate spectrum. 
Figure 7 gives the details about the peptides that are involved in the 
process of cross-linking and also shows the annotation with the extent 
of deviation and the identified ‘b’ and ‘y’ ions. The modified fragment 
ions along with ‘b’ and ‘y’ ions, for the highest score 86 with the peak 
value of m/z 1290.597 is shown in Supplementary Figure 19. Additional 
experiments done, using reduced lysozyme, mutant αA-Crystallin and 
with lysozyme and αA-Crystallin using the crosslinker (ATFB, SE) 
are included in Supplementary Figures 19-22 as these did not give 
significant results.

 
Figure 3: Screen shot of the decoy Analysis for the 38 kDa ‘homodimer’ band of αA-Crystallin fragment m/z 1286.540 obtained from StavroX 3.6.0.1. (“Blue 
bars represent the number of candidates from the real experimental set, while red bars represent the positive false candidates from the inverted sequence of the 
FASTA file. More enriched real data set candidates indicate toward better crosslinking.”).
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Figure 4: The annotation spectrum with the extent of deviation and identified peaks for the fragment m/z 1286.640 of 38kDa ‘homodimer’ band of αA-Crystallin 
obtained from StavroX 3.6.0.1. “Less deviation in the annotation points toward better crosslinking”.

αA-Crystallin with the new heterobifunctional crosslinker m/z Peptide 1 Peptide 2 Score Sequence
 Intermolecular Cross-linking 1286.640 [SAPSS] [VIFLDV] 66 S1-D5+CXL

1286.640 [VLDSG] [LPFLSS] 63 L2-S6+CXL
2173.153 [RRYRLP] [DATHAERAIPV] 61 Y3-L2+CXL
1417.692 [GKHNE] [IPVSRE] 56 K2-P2+CXL
2173.153 [VIFLDV] LTFBGPKIQT] 54 D5-K7+CXL

Table 2: The intermolecularly crosslinked fragments with high scores identified by the software.

 
Figure 5: Screen shot of the decoy Analysis for the 33 kDa ‘heterodimer’ band of αA-Crystallin and lysozyme fragment m/z 1290.597 obtained from StavroX 
3.6.0.1. (“Blue bars represent the number of candidates from the real experimental set, while red bars represent the positive false candidates from the inverted 
sequence of the FASTA file. More enriched real data set candidates indicate toward better crosslinking.”).



Citation: Thakur SK, Pal S, Kumar A, Goel R, Eswaran SV (2018) “ESI-MS-Bioinformatics Studies on Crosslinking of αA-Crystallin and Lysozyme 
using a New Small Aryl Azido-N-HydroxySuccinimidyl Heterobifunctional Crosslinker based on a Metabolite of the Alternative Kynurenine 
Pathway”. J Proteomics Bioinform 11: 192-200. doi: 10.4172/0974-276X.1000486

Volume 11(10) 192-200 (2018) - 198 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

Nr. Score m/z z M+H+ calc. Dev(… Peptide(1) Protein (1) From(… To(1) Peptide(2) Protein (2) From(… To(2) Site(1) Site(2) Rank Scan RT

1 86 645.802 2 1290.597 1290.594 2.22 [SALSB] SALLSSDITAS…. 67 71 [LAAAmK] >5K70:A|PDBI…. 8 13 S1 L1 1 Locus:1.1….. 1328

2 68 410.518 3 1229.539 1229.541 -1.2 [SLSAD] SALLSSDITAS…. 72 76 [KVQDD] SALLSSDITAS…. 28 32 S3 Q3 1 Locus:1.1….. 1362

3 67 410.518 3 1229.539 1229.541 -1.2 [SLSAD] SALLSSDITAS…. 72 76 [IVSDGN] SALLSSDITAS…. 116 121 S3 V2 2 Locus:1.1….. 1362

4 67 410.518 3 1229.539 1229.541 -1.2 [SLSAD] SALLSSDITAS…. 72 76 [QTDLGA] SALLSSDITAS…. 87 92 S3 T2 3 Locus:1.1….. 1362

5 42 410.518 3 1229.539 1229.541 -1.2 [TGLDA] SALLSSDITAS…. 88 92 [DQSALS] SALLSSDITAS…. 65 70 L3 S3 4 Locus:1.1….. 1362

6 42 681.34 3 2042.006 2042.008 -0.88 [NGMNAW] SALLSSDITAS…. 121 127 [VIFLDVKHF] SALLSSDITAS…. 12 20 V7 K7 1 Locus:1.1….. 1516

7 37 410.518 3 1229.539 1229.541 -1.2 [GLDAT] SALLSSDITAS…. 89 93 [DQSALS] SALLSSDITAS…. 65 70 T5 D1 5 Locus:1.1….. 1362

8 32 737.708 3 2211.11 2211.11 -0.49 [ELAAAmKR] >5K70:A|PDBI…. 7 14 [NAWVAWRNR] SALLSSDITAS…. 124 132 K7 N8  Locus:1.1….. 1626

9 30 645.802 2 1290.597 1290.594 2.22 [ALSBS] SALLSSDITAS…. 68 72 [LAAAmK] >5K70:A|PDBI…. 8 13 A1 K6 2 Locus:1.1….. 1328

10 30 410.518 3 1229.539 1229.541 -1.2 [SLSAD] SALLSSDITAS…. 72 76 [IVSDGN] SALLSSDITAS…. 116 121 S3 |1 1 Locus:1.1….. 1369

Table 3: Top ten intermolecularly crosslinked fragments as given by software StavroX 3.6.0.1. 

 
Figure 6: The annotation spectrum with the extent of deviation and identified peaks for the fragment m/z 1290.597 of the 33 kDa ‘heterodimer’ band of αA-
Crystallin and lysozyme obtained from StavroX 3.6.0.1. “Less deviation in the annotation points toward better crosslinking”.

αA-Crystallin and Lysozyme with new heterobifunctional crosslinker m/z Peptide 1 Peptide 2 Score Sequence
Intermolecular Crosslinking 1290.597 [SALSB] [LAAAmK] 86 S1-L1+CXL

1229.539 [SLSAD] [IVSDNG] 67 S3-V2+CXL
2042.006 [NGMNAWV] [VIFLDVKHF] 42 A5-K7+CXL
1290.597 [ALSCS] [ LAAAmK] 30 A1-K6+CXL
1229.539 [SLSAD] [IVSDGN] 30 S3-I1+CXL

Table 4: The intermolecularly crosslinked fragments with high scores identified by the software.

Figure 7: The intermolecular crosslinking sites in the peptide fragments 
m/z 1290.597 along with the ‘b’ and ‘y’ ions obtained from StavroX 
3.6.0.1 Software. This most significant intermolecularly crosslinked 
fragment contains a peptide fragment each from αA-Crystallin and from 
Lysozyme. The peptide fragments identified are in the ACD region and 
thus could be important for understanding the chaperoning mechanism 
of αA-Crystallin and cataractogensis.

Conclusion
α-Crystallins have become important not only for understanding 

diseases of the human eye but are also being considered as therapeutics 
for treatment of other diseases. Instead of the whole protein the 
Alpha Crystallin Domain (ACD) or Mini Alpha-crystallin Chaperons 
(MACs) could themselves serve as therapeutics. These ACDs are 
conserved across most HSPs. It is thus important to understand the 
role of Crystallins in chaperoning mechanism  and treatment/ cure 
and onset of other diseases. Crosslinking studies on αA-Crystallin 
have been carried out previously. However, most of these studies were 
restricted to use of homobifunctional crosslinkers, which could not 
elicit as much information about intermolecular crosslinking. The 
work described here deals with crosslinking of lysozyme, αA-Crystallin, 
and a 1:1 mixture of αA-Crsytallin and lysozyme, using a small Aryl 
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Azido-N-hydroxy succinimide (NHS) heterobifunctional crosslinker. 
Using a two-step protocol, i. e. an initial incubation step followed by 
photolysis (366 nm, 6W UV lamp), SDS-PAGE, excision of ‘homo and 
hetero Dimer’ bands, trypsinization, ESI- MS, MS/MS investigations 
and analysis of the MS data using StavroX 3.6.0.1, a bioinformatics 
software especially suited for identifying intermolecular crosslinking. 
Our results have identified many significant intermolecular crosslinks 
not previously identified. Many of these are in the ACD region and thus 
could be important for understanding the chaperoning mechanism of 
αA-Crystallin and cataractogensis. The new crosslinker could also  find 
application for treating keratoconus, a disease affecting the human 
cornea [67].
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