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Abstract

Histone deacetylases are a class of enzymes that play an important role in protein modification and cellular
function. Ongoing research suggests that HDAC inhibitors may be efficacious in the treatment of a wide range of
diseases from cancer to autoimmune disease. HDACi therapy has shown promising results both in vitro and in vivo
for the treatment of autoimmune disease. To date, 18 isoforms of HDACs have been identified, which exist in four
different classes: class I (HDAC1, 2, 3, and 8), class II (HDAC4, 5, 6, 7, 9, and 10) class III (sirtuins1-7), and class IV
(HDAC11). The mechanism of action through which HDACs function remains to be fully elucidated. However, the
use of isoform-selective HDAC inhibitors has been helpful in determining the physiological role of individual HDACs
as well as in decreasing the toxicity of HDACi therapy. This review will focus on isoform-selective HDACs and how
they may be effective for the treatment of autoimmune disease.
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Introduction
Regulation of the immune system is dependent upon both genetic

and epigenetic factors. Epigenetics control gene packaging and
expression through heritable and stable changes without altering the
DNA sequence [1,2]. These changes can be reversible dependent upon
environmental factors and thus may provide the link between the
environment and genetics that results in autoimmune disease [1].
Epigenetic changes in cellular function include changes in DNA
methylation, microRNA (miRNA), and protein acetylation [3]. Proper
cellular function requires acetylation of both histone and nonhistone
proteins [4]. Abnormal histone acetyl transferase (HAT) and histone
deacetylase (HDAC) expression and activity has been associated with a
number of autoimmune and inflammatory diseases and may therefore
be a potential target to therapeutically modulate disease [5-12].

HATs add an acetyl group to histone proteins allowing for
transcriptional activities. Conversely, histone deacetylases (HDACs)
are a group of enzymes that catalyze the removal of acetyl groups from
lysine residues on histones thereby restricting chromatin availability
for gene transcription [13,14]. Traditionally, HDACs were thought to
function solely through epigenetic regulation of histone proteins;
however, HDACs have more recently been shown to regulate
acetylation of over 50 nonhistone proteins and may be more accurately
described as lysine deacetylases (KDACs) [15,16]. Of particular
interest is the ability of HDACs to regulate transcription factors,
signaling molecules, and structural proteins thereby exhibiting an
immunomodulatory effect [17].

HDACs have been implicated in immune cell regulation and may
therefore be efficacious in the treatment of autoimmune disease
[18,19]. Due to the large number of HDACs that are targeted, pan-
HDAC inhibitors have been associated with deleterious side effects
during clinical trials including fatigue, nausea, thrombocytopenia, and

electrocardiograph abnormalities [20,21]. For this reason, a more
targeted approach is warranted if HDAC inhibitors are to be used in
the treatment of autoimmune disease. This review will discuss the
potential use of isoform-selective HDAC inhibitors as therapeutics for
autoimmune disease. Isoform-selective HDAC inhibitors may allow
researchers to determine not only the biological functions of particular
HDACs, but also provide a more specific target for potential
therapeutics without adversely affecting normal physiological
functions.

HDACs and Autoimmunity
There are 18 known mammalian HDACs, which are grouped into

classes I-IV. The classical HDACs consist of HDACs 1-11, which are
grouped into classes I, II, and IV [22]. Class III HDACs are comprised
of 7 members called seven mammalian silent information regulator
two proteins (sirtuins or Sirt) which differ from classical HDACs in
that they require NAD+ as a cofactor and are not dependent upon
Zn2+ as a catalytic mechanism [23,24]. HDACs are found in both the
nucleus and cytoplasm, with some shuttling between the two and
others confined to a specific compartment [25].

A nuclear localization signal (NLS) allows HDACs to localize within
the nucleus and therefore exert their function on nuclear proteins.
HDAC1 and 2 lack a nuclear export signal (NES) and are unable to
leave the nucleus [22]. HDAC3 has both a NLS and a NES; however, it
is almost always found within the nucleus [22,26]. Conversely, class II
HDACs, particularly HDACs 4, 5, 7, 9, and 10, are known to travel
back in forth between the nucleus and the cytoplasm and are thought
to play an important role in the function of both nuclear and
cytoplasmic proteins [22]. HDAC6 is predominantly found within the
cytoplasm and mainly influences cytosolic proteins [27]. Similarly to
class II HDACs, HDAC11 (class IV), can be found in both the nucleus
and the cytoplasm and has been demonstrated to colocalize with
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HDAC6 in the cytoplasm [28]. Due to the specificity of HDACs,
selective therapeutic targeting may allow for modulation of specific
histones or other non-nuclear proteins.

Autoimmunity is characterized by an abnormal immune response
during which the body perceives a normal substance as foreign leading
to autoantibody production and inflammation [29]. Studies of
monozygotic twins discordant for systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), and dermatomyositis; suggest a role
of non-genetic factors in disease pathogenesis [30,31]. HDAC
inhibitors have been shown to modulate a number of key regulators of
the immune system including B cells, T cells, and APCs [5,32-36].
During autoimmune disease it is thought that HDAC activity is
upregulated leading to increased nuclear translocation and binding of
the transcription factors, particularly STAT3 and NF-κB, which
promote gene expression of pro-inflammatory genes [37]. HDAC
inhibitors have proven to have an anti-inflammatory effect, which may
be helpful in the treatment of autoimmune disease during which
prolonged inflammation results in tissue destruction and organ failure
[36,38].

Due to the anti-proliferative effect that HDAC inhibitors exhibit;
they may be effective agents of immunosuppression for the treatment
of autoimmune disease. Treatment with pan-HDAC inhibitors
including ITF2357, SAHA, and TSA have shown efficacy in treating
autoimmune diseases including SLE, RA, and inflammatory bowel
disease (IBD) in murine models [34,36,39-43]. We have shown that
treatment with ITF2357 is able to reduce disease in lupus-prone mice
while increasing the number of Treg cells and decreasing the number
of CD4+ T cells [34]. SLE is thought to involve aberrant B and T cell
regulation [6,44-47]. Studies showing the regulatory effect of HDAC
inhibitors on both B and T cell populations make selective HDACi
therapy of particular interest in the treatment of SLE [34,40,48].

Selective HDAC inhibitors are able to provide a more targeted
approach to treating autoimmune disease and reduce the risk of
complications from unwanted side effects. Pan-HDAC and class I-
selective inhibitors, currently undergoing clinical trials, alter
physiological functions that require protein deacetylation [20,49].
There are currently two HDAC inhibitors, SAHA (pan-HDACi) and
FK228 (selective-class I HDACi), approved by the FDA for the
treatment of cutaneous T cell lymphoma (CTCL). Both of these drugs
have also been tested for their efficacy in the treatment of autoimmune
diseases. SAHA has shown efficacy in the treatment of lupus-prone
mice; however, long term treatment resulted in unwanted side effects
including possible drug toxicity [41]. SLE is a chronic disease requiring
long-term treatment and these results indicate that inhibition of class I
and II HDACs by a pan-HDACi may not be optimal [41].

Currently undergoing phase III clinical trials are panobinostat
(LBH589) and Valproic acid (VPA) [50,51]. LBH589 is being tested for
its use as a CTCL therapeutic and a number of other cancers [50].
VPA is currently in phase III clinical trials for the treatment of cervical
and ovarian cancer, but it has recently shown therapeutic potential in
the treatment of autoimmune disease [51,52]. HDAC inhibitors
currently undergoing phase II clinical trials include Mocetinostat
(MGCD0103), Entinostat (MS-275), Belinostat (PXD101), and
Givinostat (ITF2357) for the treatment of various cancers [53].
CUDC-101, ACY-1215, CHR-2845, and CG200745 have begun phase
I clinical trials for the treatments of cancer [54,55]. Dokamanovic et al.
provide a more extensive review of specific HDAC inhibitors currently
undergoing clinical trials [15].

Due to the ubiquitous nature of HDACs, not only are the cellular
pathways involved with autoimmunity affected, but HDAC inhibition
also disrupts the pathways involved with normal cellular function [24].
Furthermore, pan-HDAC inhibitors can be cytotoxic, and it may
prove important in clinical treatment for HDAC inhibition to be more
selective [56]. The mechanisms through which HDAC inhibitors
regulate the immune response are not fully understood. Currently
ongoing studies of HDAC inhibitors both in vivo and in vitro are
working to determine the mechanism of both pan-and isoform-
selective HDAC inhibitors.

 

Selective Class I Inhibitors
Class I HDACs (HDACs 1, 2, 3, and 8) play an important role in

cell survival and proliferation [57]. While insight has been gained
about the function of HDACs through various knockout mouse
studies, gene deletion of HDACs 1, 2, and 3, has proven to be
embryonic lethal in mice [24]. HDAC1 has been demonstrated to be
overexpressed in SLE, RA, multiple sclerosis (MS), and juvenile
idiopathic arthritis (JIA) [5]. Furthermore, HDAC3 and HDAC7 have
also been shown to play a role in immune regulation during SLE,
suggesting the potential importance of targeting these HDACs for
treatment of disease [5].

In regard to class I HDACs it is interesting to note that HDAC2 is
able to regulate the binding ability of p53, which controls
transcription. HDAC2 has been shown to increase p53 binding activity
and consequently increase cellular proliferation [58]. HDAC2 was
demonstrated to be involved with an anti-apoptotic function following
HDAC2 knockdown in cancer cells [59]. Furthermore, p53 activation
has been linked to inhibition of autoimmune disease. Studies suggest
that p53 expression is able to induce Treg differentiation leading to
suppression of the autoimmune response [60]. P53 activation is
further thought to inhibit autoimmune disease through
downregulation of STAT1 resulting in decreased proinflammatory
cytokine production [61]. Autoimmune diseases have been shown to
be more severe on a p53-deficient background in mice [60,62]. The
studies explain why targeting HDAC2 may be a viable approach for
treating autoimmune diseases such as lupus in which Treg cell function
may be important to modulate the immune response.

MS-275 is a benzamide-derived selective class I inhibitor currently
undergoing Phase I-II clinical trials that has shown promising anti-
rheumatic activities including prevention of bone erosion and delayed
onset of collagen-induced arthritis (CIA) [24,63]. Studies have
demonstrated MS-275 treatment suppressed LPS-induced pro-
inflammatory cytokine production in monocytic cells. Treatment led
to phase arrest at G0/G1 without increasing apoptosis [64]. Treatment
with MS-275 after the onset of arthritis in rodents has been
demonstrated to halt disease progression suggesting its potential as a
therapeutic. Furthermore, MS-275 may have potential as a therapeutic
in the treatment of other inflammatory autoimmune diseases based off
of its anti-inflammatory effect in vitro and in the CIA induced mouse
model [63,64]. Following treatment with MS-275, E11 cells and
monocytic cells had decreased LPS-induced NF-κB nuclear
translocation, decreased production of IL-6, IL-18, NO, VEGF,
MMP-2, and MMP-9 [64]. Furthermore, MS-275 has been shown to
decrease sera production of pro-inflammatory cytokines IL-6 and
IL-1β, which are overproduced during a number of autoimmune
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diseases including RA, SLE, autoimmune encephalomyelitis, and IBD
[65-71].

The exact mechanism through which MS-275 treatment results in
anti-rheumatic and anti-inflammatory effects remains to be
elucidated. One proposed mechanism suggests MS-275 increases the
stability of histone acetylation associated with the c-Fos promoter
which plays an important role in cellular functions including
proliferation, differentiation and survival [72]. MS-275 has been
shown to increase acetylation of NF-κB p65 leading to decreased
nuclear translocation and inhibition of gene transcription [64]. NF-κB
activation and nuclear translocation is required for c-Fos expression
[72]. These studies suggest that inhibition of NF-κB nuclear
accumulation by MS-275 treatment, results in decreased cellular
proliferation of osteoclasts induced by c-Fos expression [72,73].
Furthermore, MS-275 has been shown to decrease the chaperone
activity of Hsp90 [74]. The ability of MS-275 to inhibit Hsp90 is of
particular interest in the treatment of SLE, which has been found to
have elevated hsp90 sera levels [75]. Furthermore, use of an Hsp90
inhibitor in lupus-prone mice has shown therapeutic potential [76].

VPA is a selective class I HDACi, effective against HDACs 1-5 and
HDAC 7, that has been used as a treatment for seizures and mental
disorders [77]. More recently VPA has been tested for its efficacy in
the treatment of autoimmune disease using the Fas-deficient MRL/
MPJ-Faslpr/J (MRL/lpr-/-) mouse model. MRL/lpr-/- mice injected
intraperitoneally with 500 mg/kg VPA for 8 weeks had decreased
lymphoid organ weight and cellularity, decreased DN T cells in the
spleen, lymph nodes, and blood, and a reduced number of WBCs,
particularly lymphocytes, in the peripheral blood compared to vehicle-
treated control mice. VPA treatment was found to induce caspase-
dependent and independent apoptosis in PBMCs in vitro [52].
Furthermore, treatment of glomerulosclerosis in the adriamycin
nephropathy mouse model with VPA reduced proteinuria in early
phase renal disease [78]. VPA has been demonstrated to inhibit TNF-
α, NF-κB, and IL-6 pathways, which have been shown to be
dysregulated during many autoimmune diseases [78]. The mechanism
of action for VPA in the treatment of autoimmune diseases has yet to
be identified. However, treatment of ADR nephropathy with VPA was
found to increase glomerular H3K9 acetylation and decrease
glomerular apoptosis [78].

MGCD0103 is a selective class I HDAC (HDACs 1, 2, and 3)
inhibitor that has also shown selectivity for HDAC11 and is currently
undergoing phase I/II clinical trials [79]. MGCD0103 has been
demonstrated to have antiproliferative activity in Hodgkin lymphoma
cell lines and B-cell chronic lymphocytic leukemia [79-81]. Previous
studies indicate that MGCD10103 increases caspase-dependent
apoptosis while inhibiting autophagy through the activation of the
PI3K/AKT/mTOR pathway [81,82]. Furthermore, MGD10103
increased NF-κB activation and resulted in increased TNF-α
expression and production [80]. For these reasons, MGCD0103 may
not be optimal for treatment for autoimmune diseases, including SLE
and RA, which are characterized by increased PI3K/AKT/mTOR
signaling and NF-κB activation [83-85].

Selective HDAC3 inhibition has also been explored for its use in
treating inflammatory autoimmune disease. HDAC3 expression has
been shown to be elevated in PBMCs from MS patients when
compared to healthy controls [86]. MI192 is a selective HDAC3i that
has been shown to regulate cytokine production from PBMCs. IL-6
production by PBMCs was decreased in a dose-dependent manner
following treatment with MI192; however, the mechanism remains to

be elucidated [87]. Studies indicate that overexpression of HDAC3
causes apoptotic-resistant autoreactive lymphocytes that contribute to
autoimmune disease [86]. These data suggest that HDAC3 inhibition
may be beneficial in the treatment of autoimmunity.

Romidepsin (Depsipeptide, FK288) is a selective HDACi of HDACs
1, 2, 3, and 4 currently undergoing clinical trials for the treatment of T
cell lymphoma [88]. Treatment of autoantibody-mediated arthritis
(AMA) mice with FK228 reduced inflammation, joint swelling, and
bone destruction. Pro-inflammatory cytokines IL-1β and TNF-α were
reduced following treatment with FK228 [89]. TNF-α is known to play
an important role in the pathogenesis of a number of autoimmune
diseases including SLE, RA, and Crohn’s disease and anti-TNF-α
therapies have proven to be an effective clinical treatment for people
with these diseases [38,90-93]. The molecular mechanism through
which FK288 reduces inflammation has yet to be determined.

 

Class IIa HDAC Inhibitors
Class II HDACS are not as ubiquitous as class I, but they are still

thought to be essential for regulatory functions of the cell. Class IIa
HDACs include HDACs 4, 5, 7, and 9 [24]. Expression of class IIa
HDACs is thought to be somewhat tissue specific with increased
expression in the brain, muscle, and T lymphocytes [94]. While
deletion of HDAC7 is embryonic lethal in mice, deletion of HDACs 4,
5, and 9 produce viable mice, but with defects in cellular hypertrophy,
stress response, cardiovascular function, and bone development [24].
Studies suggest a role for class IIa HDACs (HDAC4, 5, and 7) in pro-
inflammatory gene expression [95]. Given the pro-inflammatory
environment associated with many autoimmune diseases, class IIa
HDACs could serve as promising targets for autoimmune therapies.
While class IIa HDACs are able to move back and forth between the
nucleus and the cytoplasm, they are currently thought to have limited
deacetylase function; rather functioning through the recruitment of
HDAC3 [56,96].

HDAC9 has been found to be overexpressed in T cells from lupus
patients and SLE murine models. HDAC9 deficient MRL/lpr mice had
prolonged survival and decreased lymphproliferation, autoantibody
production, inflammation, and kidney disease [97]. Furthermore,
HDAC9 deficient mice have decreased colitis following dextran
sodium sulfate (DSS) treatment compared to wild type (WT) mice
[48]. HDAC9 deficiency increased site specific lysine histone
acetylation of H3K9, H3K14, and H3K18 localized to IL-4, roquin, and
PPAR-γ, respectively in MRL/lpr mice [97]. These results indicate that
inhibition of HDAC9 may be able to decrease the inflammatory
response through hyperacetylation and stabilization of IL-4 and
PPAR-γ.

Inhibition of HDAC9 has also been associated with an increased
Treg suppressive function, and studies have shown that HDAC9 is
exported from the nucleus upon Treg activation [12,48]. These studies
suggest that when located within the nucleus HDAC9 suppresses
Foxp3 function and HDAC9 nuclear exportation is required for an
effective Treg response [12,48]. SiRNA knockdown of HDAC9 in WT
Tregs resulted in increased Foxp3 expression and enhanced Treg
suppressive function in vitro. HDAC9 knockdown in Treg cells caused
increased HSP70 expression; however, when HDAC9-/- Tregs were
treated with triptolide (an HSP70 inhibitor) suppressive function was
decreased to levels comparable by WT Tregs [48]. Similarly to HDAC9
inhibition, knockdown of HDAC7 increased Treg suppressive ability
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[98]. These data suggest the potential of inhibiting HDACs 7 and 9
with isoform-selective inhibitors to decrease autoimmune disease.
Tregs function to suppress the proliferation of immune cell subsets and
regulate cytokine production and the response to self-Ags.
Furthermore, the maintenance of self-tolerance. Treg deficiency has
been associated with a number of autoimmune diseases including SLE,
MS, RA, and IBD [99-103]. Deletion of Tregs in animals has been
demonstrated to cause autoimmunity [104-107].

 

Class IIb HDAC Inhibitors
Class IIb HDACs (HDAC6 and 10) are found in both the nucleus

and the cytoplasm [24]. The role of HDAC10 has yet to be determined;
however, HDAC6 has been shown to regulate acetylation of
cytoplasmic and nuclear proteins as wells as deacetylase-independent
functions. HDAC6 is thought to play an integral role in a number of
cellular functions including regulation of the cytoskeleton, cell
migration, and degradation of misfolded proteins through
deacetylation of α-tubulin, HSP90, and cortacin [108-110].

During SLE, the number and function of Treg cells is diminished
[111,112]. Pan-HDAC inhibitors have been shown to increase the
number and suppressive effects of Tregs, but treatment with class-I
specific HDAC inhibitors, such as MS-275, have been unable to
produce the same result suggesting a role of class II HDACs [12,109].
Treatment with a specific HDAC6i leads to increased Treg function.
Furthermore, Tregs from HDAC6 deficient mice have been
demonstrated to have increased suppressive Treg function [109]. Treg
cells from HDAC6-/- mice had a Treg effector/memory phenotype with
decreased expression of CD44 and CD62L, but increased expression of
CD103 [109]. Regulatory effector-memory T cells (TREM) are Treg cells

capable of activation, expansion, and memory that function to control
the immune response in inflamed tissues [113]. Furthermore, Tregs
isolated from HDAC6 deficient mice had increased function in vitro
suppressive of CFSE-labeled WT conventional T (Tcon) cells [109].
Similarly, treatment with the HDAC6 specific inhibitors tubacin and
tubastatin A, resulted in increased suppression of in vitro proliferation
of Tcon cells by Treg cells. Although Tubastatin A and tubacin inhibit
HDAC6, tubacin is more selective for HDAC6 and may have greater
efficacy at lower doses [114].

Crohn’s diseases and ulcerative colitis are two forms of IBD and are
modeled by the DSS model of colitis. Similarly to other autoimmune
diseases, IBD requires a genetic susceptibility coupled with
environmental factors leading to an inflammatory response [115].
Studies have demonstrated treatment with tubacin is able to prevent
weight loss and diarrhea in the DSS model of colitis in a Treg
dependent fashion [109].

Another selective HDAC6i, ACY-738, has minimal reactivity
against other class II HDACs and 100-fold less selectivity against class
I HDACs [116]. ACY-738 was tested for its efficacy in the treatment of
SLE in NZB/W mice. We found that HDAC6 inhibition with ACY-738
was able to decrease a number of hallmarks of SLE disease including
splenomegaly, immune complex-mediated glomerulonephritis, and
sera anti-dsDNA levels. ACY-738 treatment altered BM B cell
differentiation by increasing the percentage of cells in the late pro-B
cell and early pre-B cell fractions while decreasing the accumulation of
cells in the late pre-B fraction F. Furthermore, ACY-738 also increased
the percentage of Treg cells with a concomitant decrease in SLE-
associated markers of disease (unpublished data). Studies have shown
that treatment with ACY-738 (1 μM) increased the suppressive
function of Tregs alone and in combination with a sirtuin1 inhibitor,
Ex-527 [117].

Compound Isoform-Specificity Protein/enzyme/gene Cellular response Disease Reference

MS-275 HDACs 1,2,3,9 ↑Foxp3

↓nuclear NFκB p65, VEGF

↑IL-10

↓IL-1β, IFN-γ, IL-17,
IL-18, TNF-α, IL-18, NO

RA [64,122]

MI192 HDAC3 ND ↓TNF, IL-6, IFN-γ RA [87]

MGCD0103 HDACs 1,2,3,11 Jak/STAT

↑NF-κB activation, TNFSF4,
TNFSF9, TNF

↓TNFRSF8

↑TNF-α ND [79,80]

Valproic acid HDACs 1,2,3,8 PI3K/Akt, mTOR, NF-κB ↓TNF-α ALPS, SLE, IBD [52,78]

FK228 HDACs 1,2,3,4 ND ↓IL-1β, TNF-α AMA, RA, diabetes [20,88,89]

ACY-738 HDAC6 Foxp3 ↑TGF-β

↓IL-1β

SLE [117]

Unpublished data

Tubacin HDAC6 α-tubulin, HSp90 Foxp3

↑CTLA-4, PD-1, GITR

↓IL-2, IFN-γ

↑IL-10

RA, IBD [109,123]

Tubastatin A HDAC6 α-tubulin, Foxp3 ↓TNF-α, IL-6 RA, IBD [114,124]

ND: No data

Table 1: Isoform-Selective HDAC Inhibitors and Immune Regulation.
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Class IV HDAC Inhibitors
HDAC11 is the most recently identified member of HDAC proteins

and is the sole member of class IV [24]. The role of HDAC11 in
normal cell function still remains to be fully elucidated and no
isoform-selective HDACi has yet been developed [118]. However,
HDAC11 has been identified as a potential molecular target for the
treatment of autoimmune disease due to its role as a negative
transcriptional regulator of IL10 [119]. Overexpression of HDAC11 in
a mouse macrophage cell line prevented an increase in IL10 mRNA
expression following LPS-stimulation. Furthermore, knocking down
HDAC11 using shRNA in human APCs resulted in an increase in
expression of IL10 mRNA following immune stimulation. Given the
role IL-10 plays in the induction of tolerance, these results suggest
targeting HDAC11 in the treatment of autoimmune disease may be
beneficial. IL-10 is an anti-inflammatory cytokine with wide-ranging
effects from B cell stimulation to limiting the immune response and
action of pro-inflammatory cytokines. Dysregulation of IL-10
production contributes to an increased risk for autoimmune diseases
including SLE, IBD, and allergic asthma [120]. Specifically during SLE,
high sera levels of IL-10 correlate with disease activity [121].

HDAC11 has also been identified as a potential target for regulating
APC- mediated immune activation. Primary mouse macrophages
overexpressing HDAC11 showed enhanced production of IL-2 and
IFN-γ following clonotypic T cell encounter. Conversely, clonotypic T
cells that were introduced to APCs with knocked down HDAC11 had
reduced IL-2 and IFN-γ production [119].

Summary
Previous studies suggest a complex mechanism of action for HDAC

inhibitors; the use of isoform-selective HDAC inhibitors will be
helpful in determining the specific roles of individual HDACs.
Questions remain about the long-term safety of HDAC inhibitor use
for the treatment of chronic diseases. The identification of aberrant
HDAC specific isoforms to each autoimmune disease may be
important in reducing toxicity. Isoform-selective HDAC inhibition
has the potential to correct aberrant immune regulation by altering the
function of components of the inflammatory cascades without the
deleterious side effects associated with traditional pan-HDAC
inhibitors (Table 1).
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