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Abstract
Vitamin E regulation of disease has been extensively studied but most studies focus on the α-tocopherol isoform 

of vitamin E. These reports indicate contradictory outcomes for anti-inflammatory functions of the α-tocopherol 
isoform of vitamin E with regards to animal and clinical studies. These seemingly disparate results are consistent 
with our recent studies demonstrating that purified natural forms of vitamin E have opposing regulatory functions 
during inflammation. In this review, we discuss that α-tocopherol inhibits whereas γ-tocopherol elevates allergic 
inflammation, airway hyperresponsiveness, leukocyte transendothelial migration, and endothelial cell adhesion 
molecule signaling through protein kinase Cα. Moreover, we have demonstrated that α-tocopherol is an antagonist 
and γ-tocopherol is an agonist of PKCα through direct binding to a regulatory domain of PKCα. In summary, we 
have determined mechanisms for opposing regulatory functions of α-tocopherol and γ-tocopherol on inflammation. 
Information from our studies will have significant impact on the design of clinical studies and on vitamin E consumption.
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Introduction 
During inflammation, several mediators induce the expression 

of adhesion molecules on the endothelium. Mediators that induce 
expression of adhesion molecules include cytokines produced in the 
tissue, high levels of reactive oxygen species, high vascular fluid shear 
stress, or microbial stimulation of endothelial toll-like receptors [1-8]. 
The endothelial adhesion molecules mediate binding of leukocytes and 
then the bound leukocytes are recruited into tissues by chemokines/
chemoattractants. The specificity of leukocyte homing to tissues is 
regulated by the combination of chemokines in the microenvironment, 
adhesion molecules on the endothelium and leukocyte receptors 
for these chemokines and adhesion molecules [9]. Furthermore, 
the combination of vascular adhesion molecules expressed by an 
endothelial cell is dependent on the stimulant(s) for endothelial 
activation [10]. Thus, the microenvironment stimuli regulate the 
specificity of leukocyte recruitment. The binding of leukocytes to 
the endothelium and the specificity of these interactions have been 
reviewed [11-20].

Leukocyte binding to endothelial cell adhesion molecules initiate 
signaling cascades within endothelial cells that induce the opening 
of narrow vascular passageways through which the leukocytes 
migrate [19,21,22]. Leukocyte movement through these passageways 
is stimulated by chemokines that are produced by the endothelium 
and the tissue. If adhesion molecule-stimulated signal transduction 
is inhibited, leukocytes bind to the endothelium but do not complete 
transendothelial migration [23-25]. Such leukocytes often detach from 
the endothelium and start circulating in the blood as demonstrated by 
intravital microscopy. Thus, the endothelial cell adhesion molecules 

and their downstream signaling molecules are important targets for 
inhibiting leukocyte recruitment during inflammation. Two of these 
adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and 
intercellular adhesion molecule-1 (ICAM-1) activate cell signaling 
through low levels of reactive oxygen species (ROS) [21,26,27]. Vitamin 
E isoforms have been found to play an important regulatory role in 
leukocyte recruitment [28].

Vitamin E Isoforms
Vitamin E is a lipid-soluble vitamin that consists of multiple 

natural and synthetic forms. The natural forms of vitamin E include 
α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol as well 
as the tocotrienol forms of each of these [29,30] (Figure 1). The most 
abundant isoforms are α-tocopherol and γ-tocopherol. Plants synthesize 
the lipids tocopherols and tocotrienols from tyrosine and chlorophyll 
[31,32]. Then, these tocols are consumed in the diet from plant lipids. 
Mammals do not interconvert the tocopherol isoforms. Tocols are 
loaded in intestinal-formed chylomicrons. These chylomicrons are 
transported through the lymph to the thoracic duct to the blood and 
then to the liver, where the tocols are transferred to lipid particles. 
In the liver, α-tocopherol transfer protein preferentially transfers 
α-tocopherol to lipid particles, resulting in 10 fold higher α-tocopherol 
in tissues than γ-tocopherol [33]. At equal molar concentrations  

, it is reported that the α-tocopherol and γ-tocopherol isoforms 
and the tocotrienol forms have relatively similar capacity to scavenge 
reactive oxygen species (ROS) during lipid oxidation [29,34,35]. Thus, 
in vivo, there is likely more ROS scavenging by α-tocopherol than 
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γ-tocopherol because it is at a 10 fold higher concentration in the 
tissues. In addition to scavenging ROS, γ-tocopherol, in contrast to 
α-tocopherol, also reacts with nitrogen species such as peroxynitrite 
forming 5-nitro-γ-tocopherol [36-38]. Reactive nitrogen species 
are induced by endotoxin or ozone [39,40]. Therefore, γ-tocopherol 
scavenging of reactive nitrogen species may be consistent with reports 
that supplementation with a mixture of tocopherols enriched for 
γ-tocopherol blocks acute endotoxin-stimulated or ozone-stimulated 
neutrophil inflammation in the lung [41-43]. Oxidized tocopherols 
are recycled by reduction by vitamin C [44-46]. Without reduction of 
vitamin E by vitamin C, vitamin E can act as ROS donor [47]. In mice, 
vitamin C is endogenously synthesized whereas humans must consume 
vitamin C [48]. Thus, some clinical studies have supplemented patients 
with both tocopherols and vitamin C [49-52]. In vivo, tocopherols 
are metabolized to carboxyethyl-hydroxychromans (CEHC) and 
excreted [30,53]. Importantly, besides the antioxidant capacity of the 
tocopherols, it has been reported that tocopherols also have non-
antioxidant functions [28,29,54]. 

Vitamin E Isoforms Regulate Adhesion Molecule 
Signaling Through ROS During Inflammation 

Vitamin E has been used to regulate inflammatory diseases that 
involve VCAM-1- and ICAM-1-mediated leukocyte recruitment. 
VCAM-1 and ICAM-1 signal transduction occurs through ROS and 
protein kinase C, both of which are regulated by vitamin E [28,55]. 
However, there are contradictory outcomes of vitamin E administration 
in patients with asthma and atherosclerosis as well as animal models of 
inflammation. These clinical and experimental studies have primarily 
focused on analysis of one form of vitamin E, α-tocopherol, even 
though multiple forms of vitamin E are present in the studies. We have 

recently demonstrated that vitamin E isoforms have opposing functions 
and that these opposing functions [28] and the reported contradictory 
outcomes of the previous studies are consistent with the combination 
of vitamin E isoforms that were present in these previous studies.

VCAM-1 and ICAM-1 function in disease and infections

VCAM-1 and ICAM-1, which signal through ROS, have a 
regulatory role in peripheral tissue inflammation in several diseases. 
In these diseases, there are different leukocyte cell types that bind to 
VCAM-1 via the leukocyte ligand α4β1-integrin and ICAM-1 via the 
leukocyte ligand αLβ2. This is, at least in part, a result of leukocyte 
specific chemokine activation of integrins to their integrin high 
affinity conformation [11,17,18,20]. Blocking VCAM-1 by intravenous 
injection of anti-VCAM-1 blocking antibodies inhibits eosinophil 
and mast cell precursor recruitment in asthma models [56-63], 
severity and onset of atopic dermatitis [64], T cell infiltration into 
the intestine in inflammatory bowel disease [65], T cell infiltration 
into the brain in an experimental model of multiple sclerosis [66,67], 
CD8+ T cell, monocyte and dendritic cell infiltration into the brain 
during lymphocytic choriomeningitis virus (LCMV) infections 
[68], and monocyte recruitment, carotid neointimal formation and 
inflammation in cardiovascular disease [69-76]. ICAM-1 is important 
for leukocyte recruitment in several diseases including atherosclerosis 
and T cell recruitment in an experimental model of multiple sclerosis 
[77-80]. In summary, VCAM-1 and ICAM-1 function in allergic and 
infection-induced inflammation.

VCAM-1 and ICAM-1 signaling through ROS

VCAM-1 activates intracellular signals in endothelial cells (Figure 
2A). These signals are transient and occur within minutes, consistent 

Figure 1: Natural R,R,R-tocopherols and R,R,R-tocotrienols. The isoforms differ in the number of methyl groups on the chromanol head group. The α-tocopherol 
isoform is the most abundant in tissues. The γ-tocopherol isoform is abundant in the diet but, in tissues, γ-tocopherol is 10 fold less abundant than α-tocopherol 
because of preferential transfer of α-tocopherol in the liver by α-TTP. The other forms of tocopherols and tocotrienols are less abundant in the diet and in tissues than 
α-tocopherol and γ-tocopherol. 
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with the transient, rapid nature of leukocyte transendothelial 
migration. Activation of VCAM-1 stimulates calcium channels, 
intracellular calcium release, and the small molecular weight G protein 
Rac1 for the activation of the NADPH oxidase NOX2 [21,81]. VCAM-
1 does not activate other enzymes that generate reactive oxygen species 
[21]. The activated NOX2 generates superoxide that then dismutates 
to hydrogen peroxide (H2O2), generating approximately 1 µM H2O2 
during VCAM-1 signaling [81,82]. This concentration is relatively 
low as compared to the 50-200 µM H2O2 produced by macrophages or 
neutrophils in tissues [83,84]. It is also much lower than the exogenous 
100-1000 μM H2O2 used in studies on oxidative damage [85-89]. These
differences in H2O2 levels are important in understanding functions of
oxidation as we and others reported that 1 μM H2O2 and >50 μM H2O2
have opposing effects on signal transduction [26,27,90,91]. During
VCAM-1 signaling, the 1 μM H2O2 oxidizes the pro-domain of matrix
metalloproteinases (MMPs), causing autocatalytic cleavage of the pro-
domain and activation of endothelial cell-associated MMPs within
minutes [26] (Figure 2A). During VCAM-1 signaling, the H2O2 also
diffuses through cell membranes at 100 μm/second [92]. In contrast,
superoxide has a relatively low diffusion rate across membranes [92].
During VCAM-1 signal transduction, the 1 μM H2O2 directly oxidizes
and transiently activates intracellular protein kinase Cα (PKCα) in
endothelial cells [27] that then induces phosphorylation and activation
of protein tyrosine phosphatase 1B (PTP1B) [93]. Interestingly, the
PTP1B which has an oxidizable cysteine in its catalytic domain is not
oxidized during VCAM-1 signaling in endothelial cells [93], indicating
specificity of targets for oxidation by the low concentrations of reactive
oxygen species generated during VCAM-1 signaling. Importantly, the
signals in Figure 2A function in regulation of VCAM-1-dependent
leukocyte transendothelial migration in vitro and in vivo [21,23,24,26-
28,81,93,94].

Vitamin E isoform specific regulation of VCAM-1 signaling 
and ICAM-1 signaling 

We reported that, in vitro, natural d-α-tocopherol blocks whereas 
natural d-γ-tocopherol elevates VCAM-1-dependent lymphocyte 
transmigration at physiological concentrations [28]. Moreover, 
treatment with γ-tocopherol ablates the inhibition by α-tocopherol such 
that the lymphocyte transmigration is the same as the vehicle-treated 
control [28]. This occurs at physiological tocopherol concentrations; 
in tissues, γ-tocopherol is at 1/10 the concentration of α-tocopherol 
[28]. Briefly, γ-tocopherol, at 1/10 the concentration of α-tocopherol, 
ablates the effects of α-tocopherol. These regulatory functions of 
the tocopherols on lymphocyte transmigration are through a direct 
effect of the tocopherols on endothelial cells because pretreatment 
of the endothelial cells with α-tocopherol or γ-tocopherol overnight 
inhibits and elevates, respectively, lymphocyte transmigration in 
vitro without affecting lymphocyte-endothelial cell adhesion [28]. 
In contrast, pretreatment of the lymphocytes with physiological 
concentrations of tocopherols has no effect on VCAM-1-dependent 
lymphocyte transmigration [28]. The γ-tocopherol-induced elevation 
of transendothelial migration is VCAM-1-dependent since anti-
VCAM-1 blocking antibodies inhibit lymphocyte transmigration [28]. 
We reported that the tocopherols at physiological levels modulate 
endothelial function during VCAM-1-dependent transmigration by 
altering VCAM-1-induced oxidative activation of endothelial cell 
PKCα [28]. Specifically, the VCAM-1-induced activation of PKCα is 
inhibited by α-tocopherol and this inhibition of PKCα by α-tocopherol 
is ablated by γ-tocopherol [28]. In summary, the α-tocopherol and 
γ-tocopherol have opposing regulatory functions on VCAM-1 
signaling during leukocyte transmigration in vitro.

Given that α-tocopherol and γ-tocopherol have similar anti-oxidant 
capacity but opposing functions in VCAM-1 signaling, it suggests that 
tocopherols also have non-antioxidant functions. We recently reported 
a mechanism by which α-tocopherol and γ-tocopherol have opposing 
functions during regulation of PKCα [98]. Briefly, co-factor-dependent 
activation of recombinant PKCα is increased by γ-tocopherol and 
is inhibited by α-tocopherol [98]. Oxidative activation of PKCα is 
inhibited by α-tocopherol at a 10 fold lower concentration than 
γ-tocopherol [98]. In binding studies, α-tocopherol directly binds to 
full-length PKCα or the C1a regulatory domain of PKCα but does 
not bind the control, DAG cofactor-independent enzyme, PKCζ [98]. 
α-tocopherol binding to PKCα or the PKCα-C1a domain is blocked by 
diacylglycerol and retinol but not by cholesterol or phosphatidylserine 
(PS) [98]. In summary, α-tocopherol and γ-tocopherol bind the 
diacylglycerol binding site on PKCα-C1a. Thus, α-tocopherol can 
function as an antagonist and γ-tocopherol can function as an agonist 
of PKCα.

α-tocopherol and γ-tocopherol have opposing functions during 
ICAM-1 signaling in endothelial cells in vitro. ICAM-1 activates XO, 

Figure 2: VCAM-1 and ICAM-1 signal transduction. A) Crosslinking of 
VCAM-1 activates calcium fluxes and Rac-1 which then activates endothelial 
cell NOX2. NOX2 catalyzes the production of superoxide that then dismutates 
to H2O2. VCAM-1 induces the production of only 1 μM H2O2. Within 
minutes of its production, H2O2 activates endothelial cell-associated matrix 
metalloproteinases (MMPs) that degrade extracellular matrix and endothelial 
cell surface receptors in cell junctions. H2O2 also diffuses through membranes 
at 100 μm/sec to oxidize and transiently activate endothelial cell protein 
kinase C-α (PKCα). PKCα phosphorylates and activates protein tyrosine 
phosphatase 1B (PTP1B). PTP1B is not oxidized. These signals through 
reactive oxygen species (ROS), MMPs, PKCα, and PTP1B are required 
for VCAM-1-dependent leukocyte transendothelial migration. B) ICAM-1 
activates XO, PLC, and ERK1/2 which then activates PKCα. PKCα is not 
oxidized during ICAM-1 signaling in endothelial cells. 

2B) [28,55]. In TNFα- stimulated human microvascular endothelial cells, 
ICAM-1 crosslinking activates xanthine oxidase (XO) which generates 
ROS for the activation of ERK1/2 [55]. ERK1/2 then induces activation of 
PKCα [55]. ICAM-1 crosslinking does not induce oxidative activation 
of PKCα, although it was dependent on ICAM-1-induced XO-
generated ROS in endothelial cells [55]. Thus, in contrast to VCAM-1 
signaling that induces oxidative activation of PKCα, ICAM-1-induced 
ROS do not oxidize PKCα. In summary, ICAM-1 activates XO, PLC, 
and ERK1/2 which then activates PKCα. These signals are required for 
ICAM-1-dependent leukocyte transendothelial migration [95-97].

ICAM-1 activates the generation of ROS and PKCα through a 
mechanism that is different than VCAM-1 signaling in that PKCα 
is not oxidized during ICAM-1 signaling in endothelial cells (Figure 
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PLC, and ERK1/2 which then activates PKCα without oxidation of 
PKCα [55]. ICAM-1 activation of PKCα but not the upstream signal 
ERK1/2 is inhibited by α-tocopherol [55]. The α-tocopherol inhibition 
of PKCα is ablated by the addition of γ-tocopherol [55]. Thus, ICAM-
1 activation of PKCα is inhibited by α-tocopherol and this inhibition 
is ablated by γ-tocopherol. These data are consistent with PKCα 
antagonist and agonist functions of α-tocopherol and γ-tocopherol, 
respectively, during ICAM-1 signaling in endothelial cells. Thus, 
α-tocopherol and γ-tocopherol can function as a PKCα antagonist 
and agonist, respectively, during VCAM-1-activated and ICAM-1-
activated signals. This emphasizes that tocopherols regulate multiple 
signal transduction pathways that activate PKCα during leukocyte 
recruitment.

Vitamin E Isoform Specific Regulation of Leukocyte 
Recruitment In Vivo

We reported that, in vivo, supplemental doses of α-tocopherol 
and γ-tocopherol, that result in physiological tissue levels of these 
tocopherols, have opposing regulatory functions on recruitment of 
leukocytes to the lung during allergic inflammation [28]. In a model 
of allergic inflammation, animals are sensitized by intraperitoneal 
administration of chicken egg ovalbumin (OVA) in adjuvant and 
then the lung is challenged with OVA in saline [28]. During allergic 
inflammation in the lung, eosinophil migration is dependent on 
VCAM-1 whereas the other leukocytes can migrate on the adhesion 
molecule ICAM-1 [57,58]. However, both VCAM-1 and ICAM-1 
signal through PKCα [27,99] and PKCα can be regulated by tocopherols 
[100,101]. In our studies in vivo, we focused on supplementation with 
tocopherols after OVA antigen sensitization to determine whether 
tocopherols modulate the OVA antigen-challenge phase [28]. This is 
important because patients are already sensitized. Supplementation 
with tocopherols after OVA-sensitization and during OVA-challenge 
raised tissue tocopherols 5-7 fold higher than mice consuming control 
rodent chow; this does not affect body weight or lung weight [28,102]. 
Consistent with the in vitro studies with tocopherol regulation of 
leukocyte migration, d-γ-tocopherol supplementation elevates 
leukocyte accumulation in the bronchoalveolar lavage and lung 
tissue in response to OVA challenge [28]. In contrast, d-α-tocopherol 
supplementation inhibits OVA-induced lung inflammation. Moreover, 
in vivo, this physiological level of d-γ-tocopherol, at only 10% the 
tissue concentration of d-α-tocopherol, ablates the anti-inflammatory 
benefit of the d-α-tocopherol isoform in response to OVA challenge 
[28]. Furthermore, the levels of tocopherols in this study do not 
alter numbers of blood eosinophils, indicating that eosinophils were 
available for recruitment. The opposing functions of purified d-α-
tocopherol or d-γ-tocopherol in vivo is not through modulation of 
expression of several cytokines, chemokines, or vascular adhesion 
molecules which regulate inflammation because these were not altered 
by tocopherol supplementation [28]. This modulation of leukocyte 
infiltration in allergic inflammation, without alteration of adhesion 
molecules, cytokines or chemokines, is similar to several previous 
reports of in vivo inhibition of lung inflammation by inhibition of 
intracellular signals in endothelial cells [23,24,94]. In summary, 
α-tocopherol and γ-tocopherol supplementation in vivo have opposing 
regulatory function on allergic inflammation that is, at least in part, 
by regulation of VCAM-1 and ICAM-1 activation of PKCα [28]. The 
opposing functions of tocopherol isoforms have important implications 
for the interpretation of clinical studies and animal studies of vitamin E 
regulation of inflammation. 

In our report that supplemental doses of the α-tocopherol and 

γ-tocopherol isoforms of vitamin E decrease and increase, respectively, 
lung inflammation [28], the supplemental doses of tocopherol raised 
plasma tocopherol 5 fold [28]. However, in this previous study, the 
reported 2mg/day dose for tocopherols were suspended for only a 
couple of minutes before administration to the animals [28]. We 
then found that with only a couple of minutes of suspension time, the 
final tocopherol suspension is actually at a 0.2 mg/day dose because 
complete suspension of tocopherols in the vehicle ethoxylated 
castor oil requires at least 20 minutes as determined by HPLC [103]. 
Moreover, we recently reported that the completely suspended 0.2 mg 
tocopherol/day (as determined by HPLC) raises the plasma tocopherol 
5 fold and is comparable to the 5 fold increase in plasma tocopherol 
in our previous report [28]. Furthermore, the 0.2 mg dose of 
tocopherols subcutaneously administered daily during OVA challenge 
demonstrated the anti-inflammatory and pro-inflammatory regulatory 
functions of α-tocopherol and γ-tocopherol, respectively [103] as in our 
previous report [28]. In summary, we define completely suspended 0.2 
mg tocopherol treatment/day as “supplemental tocopherol treatment” 
since it raises plasma tocopherols 5 fold. Importantly, this information 
on suspension of tocopherol affects interpretations of reports on 
vitamin E in which tocopherols were suspended in oil vehicles 
because incomplete suspension can result in different dose-dependent 
experimental outcomes [103]. We have reported that tocopherol 
regulation of inflammation is partially reversible by supplemental 
levels of tocopherols but fully reversible by highly-elevated levels (10 
x supplemental levels) of tocopherols [103]. In summary, natural 
d-α-tocopherol and natural d-γ-tocopherol differ in structure by only 
one methyl group but, at physiological tissue concentrations, these 
tocopherols have opposing regulatory effects on leukocyte recruitment, 
VCAM-1 signal transduction and ICAM-1 signal transduction [28].

New Interpretations for Reports on Tocopherol Regulation 
of Inflammation in Experimental Models

Our data on regulation of inflammation by supplementation 
of tocopherol isoforms alter interpretations of animal studies with 
tocopherol modulation of inflammation. Many reports with animal 
studies indicate that vitamin E was administered to animals but the form, 
source, and purity of tocopherols are often not reported. Furthermore, 
the tissue levels of tocopherol isoforms after administration are 
sometimes not determined. Another source of confounding factors 
in studies is the lack of consideration for tocopherol isoforms that 
are present in the oils in animal and human diets or in the oil vehicles 
used for delivery of the tocopherols. We and others have determined 
the levels of α-tocopherol and γ-tocopherol in dietary oils (Figure 3) 
[28,53,104]. In rodent studies, rodent chow contains α-tocopherol 
but low to no γ-tocopherol. However, in some reports for allergic 
inflammation, α-tocopherol is administered in oil vehicles that contain 
other tocopherol isoforms [105] and our interpretation of this study is 
that γ-tocopherol in the soy oil vehicle antagonized the function of the 
α-tocopherol that was administered. In another report, γ-tocopherol in 
tocopherol-stripped corn oil was administered daily by gavage to rats 
two weeks after one OVA sensitization and then the rats received two 
OVA challenges but there were predominantly neutrophils in the lung 
tissue rather than the expected predominant eosinophil infiltration 
after several OVA challenges [106]. It has also been reported by 
Okamoto et al. [107] that in mice fed α-tocopherol starting 2 weeks 
before sensitization with OVA, there is a reduction in the number of 
eosinophils in the bronchoalveolar lavage. In addition, Mabalirajan 
et al. [108] reported that oral administration of 0.4 mg α-tocopherol/
mouse/day in ethanol after sensitization blocked OVA-induced lung 
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the dietary contribution of tocopherol isoforms because γ-tocopherol 
is more abundant in western diets. The average plasma concentration 
of α-tocopherol is the same among many countries [104]. However, 
the American diet is rich in γ-tocopherol found in soy oil, the major 
form of vegetable oil in the United States. In contrast, γ-tocopherol 
is low in other oils (sunflower and olive oil) commonly used in 
some of the European countries (Figure 3) [28,53,104]. However, as 
countries assume western lifestyles, diets change including increased 
consumption of soybean oil [112]. Consistent with this, in the United 
States and the Netherlands, the average plasma γ-tocopherol level is 
2-6 times higher than that reported for 6 European countries including 
Italy (Table 1) [104]. This fold increase in plasma γ-tocopherol is similar 
to fold increase in plasma γ-tocopherol in the animal studies [28] in 
which γ-tocopherol elevated allergic inflammation and γ-tocopherol 
opposed the anti-inflammatory functions of α-tocopherol, even at 1/10 
the concentration of α-tocopherol.

In clinical studies involving asthma patients, it is reported that 
α-tocopherol supplementation of asthmatic patients is beneficial in 
Italy and Finland but disappointingly not beneficial for asthmatic 
patients in studies in the United States or the Netherlands [113-
117]. These clinical outcomes are consistent with an interpretation 
that there is little benefit of α-tocopherol for inflammation in the 
presence of 2-6 fold elevation in plasma γ-tocopherol in people in the 
United States and the Netherlands (Table 1). Therefore, differences in 
outcome of the clinical reports on vitamin E modulation of asthma 
in European countries and the United States may, in part, reflect 
the opposing regulatory functions of α- and γ-tocopherol forms of 
vitamin E consumed in diets and supplements. In Israel, it is reported 
that vitamin E supplementation reduces nasal symptoms of seasonal 
ragweed allergic rhinitis, although the form and purity of vitamin E and 
the contents of the placebo were not indicated [118]. Although there 
are many other differences regarding the environment and genetics of 
the people in these countries, the clinical data are consistent with the 
animal studies demonstrating opposing functions of the tocopherol 
isoforms on leukocyte recruitment [28]. 

It has also been suggested that changes in environmental factors 
including vitamin E consumption may contribute to the increased 
incidence of asthma. The incidence of asthma in several countries 
including the United States and the Netherlands has dramatically 
increased in the last 40 years [119-121]. It is thought that there are 
environmental factors contributing to this increase since it is too 
rapid for genetic changes. The prevalence of asthma is higher in the 
United States than Western Europe or Mediterranean countries [122]. 
The World Health Organization has reported that the prevalence of 
asthma from 1950 to the present has increased in many countries 
including countries with high rates of asthma, intermediate rates of 
asthma or low rates of asthma [123]. The increases in prevalence occur 
as countries assume western lifestyles [123]. The dietary changes in 
the United States in the last 40 years with increased consumption of 
γ-tocopherol in vegetable oil may, in part, be a contributing factor to 
changes in asthma prevalence. In addition, in a Scottish cohort, it is 
reported that reduced maternal intake of vitamin E (likely referring 
to α-tocopherol) is associated with increased asthma and wheezing 
in children up to 5 years old [124]. Then in this same report, it was 
discussed that from 1967 to 2004, there was a significant increase in 
vegetable oil intake by Scottish [124], which we interpret as indicative 
of an increase in dietary γ-tocopherol since vegetable oil (soybean oil) 
is rich in γ-tocopherol (Figure 3). In a study in the United Kingdom, 
α-tocopherol administration in soybean oil to asthmatics did not have 
benefit for asthmatics [125]. This is consistent with the interpretation 

inflammation [108]. Thus, conflicting reports of tocopherol regulation 
of OVA-induced inflammation are likely outcomes of differences in 
isoforms of tocopherols present in the studies from diet, administration, 
and oil vehicles.

Clinical Implications for Vitamin E Regulation of Lung 
Inflammation

It is reported that patients with mild asthma have reduced 
α-tocopherol, reduced ascorbic acid, and increased glutathione in 
airway fluid but these patients have normal blood levels of tocopherol 
and ascorbic acid (vitamin C) [109]. In other studies, asthmatic 
patients had reduced sera α-tocopherol and ascorbic acid even during 
the asymptomatic periods of asthma [110]. In animal studies, the 
α-tocopherol and ascorbic acid are decreased in broncoalveolar lavage 
of guinea pigs sensitized with OVA [111]. Therefore, it has been 
suggested that supplementation with vitamins E and C may regulate 
lung inflammation.

Reports of clinical studies on vitamin E primarily focus on the 
α-tocopherol isoform without adjustment for the dietary contribution 
of γ-tocopherol to the outcomes of these studies. For interpretation of 
the clinical studies, it is especially important to take into consideration 

Figure 3: α-tocopherol and γ-tocopherol in dietary oils. Adapted from [28]. 
Tocopherols were extracted from dietary oils and measured by HPLC with an 
electrochemical detector.

Human Plasma: γT (µM) αT (µM)
USA (4 reports) 2.5 22

5.4 22
5.2 27
7 20

Netherlands 2.3 25
France 1.2 26

Italy 1.2 24
Austria 1.4 21
Ireland 1.8 26

Spain (2 reports) 1.7 27
1.7 27

Lithuania 1.6 22
China (3 reports) 1.4 19

2.4 19
22

Japan (2 reports) 1.7 23
2.0 23

Table 1: Human Plasma Tocopherol [139,140].
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that the γ-tocopherol in soybean oil ablates the benefit of α-tocopherol 
supplementation. In addition, the isoforms of vitamin E in the 
patients are not indicated in these studies [125]. In summary, since 
α-tocopherol levels and other antioxidants are low in asthmatics [109-
111,126-128] and since α-tocopherol can reduce inflammation, an 
increase in physiological levels of α-tocopherol in the presence of low 
γ-tocopherol may be necessary to promote optimal health in asthmatics 
in combination with other regimens to treat inflammation. In addition, 
the opposing tocopherol isoforms are also consistent with outcomes of 
vitamin E studies in osteoarthritis and atherosclerosis [69,72,129-138] 
as we previously reviewed [139,140].

Concluding Remarks
Vitamin E regulation of disease has been extensively studied in 

humans, animal models and cell systems. Most of these studies focus 
on the α-tocopherol isoform of vitamin E. These reports indicate 
contradictory outcomes for anti-inflammatory functions of the 
α-tocopherol isoform of vitamin E, especially with regards to clinical 
studies of asthma and atherosclerosis. These seemingly disparate 
clinical results are consistent with our recently reported unrecognized 
properties of isoforms of vitamin E. Specifically, we reported that 
supplementation with physiological levels of purified natural forms of 
the vitamin E isoforms α-tocopherol and γ-tocopherol has opposing 
regulatory functions during inflammation such that α-tocopherol is 
anti-inflammatory and γ-tocopherol is pro-inflammatory. During 
leukocyte recruitment, PKCα is activated by VCAM-1 and ICAM-1, 
albeit through different mechanisms. VCAM-1 and ICAM-1-activated 
PKCα is inhibited by α-tocopherol and increased by γ-tocopherol. 
Moreover, α-tocopherol and γ-tocopherol directly bind to PKCα 
and function as an antagonist and agonist, respectively. In summary, 
the differential regulation of inflammation by isoforms of vitamin E 
provide a basis towards designing drugs and diets that more effectively 
modulate inflammatory pathways and improve health.
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