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General Overview of VA and its Metabolism in the Liver
Vitamin A (VA, retinol) is an indispensible, lipid-derived 

micronutrient contributing to the general health of an individual. 
Retinoids are VA and its derived metabolites that have profound effects 
on a variety of physiological processes, such as embryogenesis and 
cellular differentiation [1]. More recently, retinoids have been proposed 
to play roles in energy homeostasis such as adaptive thermogenesis and 
adipogenesis [2]. The roles of retinoids in lipid and glucose metabolism 
have been indicated and potentially linked to the development of 
chronic metabolic diseases such as obesity and diabetes [3-7]. Obesity 
and comorbidities are the physiological consequences of a disruption 
in the regulation of body energy storage, which is associated with 
profound changes in hepatic glucose and lipid metabolism. These 
changes are often attributed to the expression levels of hepatic genes 
involved in glucose and lipid metabolism. The active metabolite of VA 
responsible for the regulation of gene expression is retinoic acid (RA), 
which exists in multiple isomeric forms. They activate two families of 
nuclear receptors: retinoic acid receptors (RARα, β, and γ; activated 
by all-trans and 9-cis RA) and retinoid X receptors (RXRα, β, and γ; 
activated by 9-cis RA). RAR/RXR hetero- and RXR/RXR homo-dimer 
bind to RA-responsive elements (RAREs) in the promoters of the RA 
responsive genes, and regulate their expression upon activation [1]. 

The liver plays an essential role in the regulation of energy 
homeostasis. It also serves as the principle site of postprandial 
uptake and storage of VA. The retinol available in hepatic tissues can 
be oxidized to retinal, which is further oxidized into RA [8]. Those 
enzymes facilitating the reversible oxidation/reduction reaction of 
retinol to retinal are termed dehydrogenases and exhibit properties as 
an alcohol dehydrogenase \ or a short-chain dehydrogenase reductase 
[9]. For the irreversible oxidation of retinal to RA, these enzymes are 
classified in the aldehyde dehydrogenase family. This complex network 
of enzymes consists of 17 different isoforms, all proposed to exhibit 
essential properties to retinoid homeostasis which are indicated 
through knock-out and transgenic rodent models [9]. Recently, it has 
been shown that retinoids regulate the expression of genes involved 
in glucose and lipid metabolism, which proposes a link between 
micronutrient actions and the development of metabolic diseases [3]. 

Roles of VA in the Hepatic Glucose Metabolism
For glucose utilization in hepatocytes, it is first phosphorylated 

into glucose 6-phosphate by hexokinase D, also known as glucokinase 
(GK). Insulin induces the expression levels of GK gene (Gck) in the 
liver. It has been shown that all-trans retinol, retinal, and RA are able 
to synergize with insulin to induce Gck expression via the activation 
of RAR/RXR in primary rat hepatocytes [10]. Furthermore, the 
Gck expression level is reduced in the VA deficient (VAD) rats in 
comparison to the VA sufficient (VAS) controls. RA treatment rapidly 
recovered this reduction [10]. 

The liver generates glucose via gluconeogenesis in response to 
nutrient and hormonal status. The first rate limiting enzyme for 
hepatic gluconeogenesis is the cytosolic form of phosphoenolpyruvate 
carboxykinase, whose activity is controlled by the expression of its gene 
(Pck1) [11]. Insulin suppresses the hepatic expression of Pck1 [12] . It 
has been shown that RA stimulates the Pck1 expression in hepatoma 
cells via two RAREs in its promoter [13]. To understand the effects 
of the endogenous lipophilic molecules on the expression of insulin-
regulated hepatic genes, the lipophilic extracts were prepared from 
rats. The lipophilic extracts induced the Pck1 expression levels and 
attenuated insulin-mediated reduction of its expression in primary 
rat hepatocytes [14]. Subsequently, the active molecules in the extract 
were identified as retinol and retinal, and the proximal RARE in the 
Pck1 promoter was found to be responsible for arbitrating retinoids 
effects in primary rat hepatocytes [10,15] . An increase in the hepatic 
VA content has been observed in diabetic patients [16] as well as 
streptozotocin-induced diabetic rats [7] which may contribute to the 
alterations in insulin-regulated gene expression. The retinoids effects 
on the hepatic expression of Pck1 [15] and Gck [10] demonstrate 
the interaction between the insulin and retinoid signaling pathways, 
which deserves further investigation. 

Roles of VA Status and Retinoids in Hepatic FA 
Metabolism

The hepatic fatty acid (FA) biosynthesis is controlled by sterol 
regulatory element–binding protein 1c (SREBP-1c), a transcription 
factor that induces the expression of hepatic lipogenic genes [17] 
. The expression of its gene (Srebp-1c) is induced by insulin, or the 
activations of liver x receptor (LXR) and RXR [18]. The insulin-
responsive elements in the Srebp-1c promoter have been identified as 
two LXR receptor elements (LXRE) and one sterol regulatory element 
(SRE) in its promoter [19]. Later, it was shown that RA was capable 
of inducing Srebp1-c in primary rat hepatocytes and the previously 
identified two LXREs are also RAREs [20]. 

A significant portion of patients with acne receiving isotretinoin 
(13-cis RA) treatment developed hypertriglyceridemia [21]. In 
addition, clinical studies have indicated that the excessive VA 
supplementation resulted in hepatic hypervitaminosis A, which 
exacerbated abnormal lipid storage in the liver [22]. Rats fed multiple 
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isomeric forms of RA all displayed hypertriglyceridemia, consistent 
with human observations [23]. Rats on a VAD diet exhibited a lowered 
plasma lipid profile compared to VAS controls [24]. This may be 
caused by the dual existence of VA deficiency and hypoinsulinemia, 
which may cause the reduction of hepatic lipogenesis [25]. The 
activation of RXR by its specific agonist (LG100268) induced hepatic 
lipogenesis, which interestingly increased insulin sensitivity in obese 
and diabetic rats [26]. Since Srebp1-c is a critical transcription factor 
for lipid homeostasis [27] and RA has been shown to affect the insulin-
mediated expression of Srebp-1-c [20], it is reasonable to conclude that 
VA status and retinoids play roles in hepatic FA homeostasis.

VA Status in Animals and Retinoids affect Insulin 
Secretion from Pancreatic Β-Cells

Insulin controls hepatic glucose and fatty acid metabolism in 
response to macronutrients. Glucose metabolism causes the rise of 
ATP/ADP ratios and subsequently stimulates the release of insulin 
granules in pancreatic β-cells [28]. Glucose stimulated insulin secretion 
(GSIS) is impaired in VAD rats and is recovered by VA repletion [25]. 
Additionally, VAD rats had pancreatic β-cell dysfunction, which may 
be attributed to a reduction in fetal β-cell mass [29]. In isolated rat 
pancreatic islets, retinol either potentiated (0.1µmol/L) or inhibited 
(100 µmol/L) GSIS [30]. RA was capable of potentiating GSIS via 
induction of transglutaminase activity in INS-1 insulin secreting cells 
[31]. Recently, it has been shown that pancreatic β-cells produce 9-cis 
RA which level is elevated in islets of diet-induced obesity, ob/ob and 
db/db mice [32]. When mouse islets were treated with 9-cis RA, GSIS 
was reduced due to a reduction in GLUT2 and GK activities [32]. 
In addition, lipid depletion in pancreatic β-cells caused impairment 
of GSIS, which can be restored in the presence of FAs [33]. RA has 
been reported to induce Srebp-1c mRNA in INS-1 cells [20]. Taken 
together, VA status or retinoid levels can indirectly control hepatic 
glucose and FA metabolism through regulating the insulin secretion 
from pancreatic β-cells. If RA is produced in the islets, it becomes 
essential to learn the mechanism for the production of the various RA 
isoforms to fully understand the roles of the retinoids in pancreatic 
β-cell functions.

Summary and Future Perspectives
Micronutrients play essential roles in various physiological 

processes. Despite the obvious link between nutrition and metabolic 
diseases, the roles of individual micronutrients in their development 
have not yet been revealed. It is safe to say that VA status and retinoids 
affect the hepatic glucose and FA metabolism directly through 
the regulation of the expression of genes involved or indirectly via 
controlling insulin secretion. It is imperative to understand the 
molecular mechanisms that VA employs to regulate hepatic and 
glucose metabolism, the impact of VA status in the development of 
obesity and diabetes, as well as the physiological effects of retinoids on 
hormonal actions leading to metabolic diseases. This understanding 
may provide a novel therapeutic technique for controlling abnormal 
hepatic glucose and lipid metabolism, and thus improving diabetic and 
obese phenotypes. 
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