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Introduction
Heart failure (HF) is among the most common causes of morbidity 

and mortality in the so-called Western world [1,2]. It is widely 
recognised that this illness is an important public health problem that 
affects millions of people worldwide, and that is the most frequent 
cause of hospitalization for patients of 65 years and over [1,2]. 

Acute short-term activation of beta-1 adrenergic receptor (β1-AR) 
signaling pathway by elevated circulating catecholamine levels activates 
the membrane- bound isoforms of ACs enzymes with the consequent 
increase in intracellular cAMP. In addition all isoforms of ACs are 
tightly activated by intracellular magnesium. Acute increases of cAMP, 
by its chronotropic, inotropic, and lusitropic effects, significantly 
modulate cardiac function [3]. However, long-term activation of β1-
AR signalling pathway by elevated levels of catecholamine account 
for reduced intracellular cAMP generation and subsequent β1-AR 
desensitization and HF development [4-6]. In chronic HF, not only the 
expression and membrane localization of the β1-AR is diminished (so 
called β1-AR desensitization), but also the balance of receptor coupling 
to inhibitory versus stimulatory G-proteins shifts, and the activation of 
ACs required to transduce receptor agonist to cAMP generation, are 
blunted [4-6]. 

As we comment below, circadian rhythm (CR), the principal 
circadian pacemaker in mammals, may modulate diverse phenomena 
including innate immunity and cell division, and is the endogenous 
timekeeper that interacts with numerous biological systems. The loss 
of CR may per se be a cause of severe diseases, and the rhythmicity of 
suprachiasmatic nucleus, depends on the levels of intracellular calcium 
and cAMP. Given that mammalian ACs, and subsequent cellular cAMP 
production, is strongly activated by Mg2+, and that chronic activation 
of circulating catecholamine can induce a significant reduction in 
intracellular magnesium concentration, it might be suggested that 
magnesium could have an important role in maintaining of CR of the 
hormones involved in HF.

We propose the mechanism by which magnesium could be involved 
in the prevention of genesis and of exacerbations of HF; Continually 
high circulating levels of the stress related hormones, a peculiar feature 
of HF, can induce decreases in intracellular Mg2+, which in turn can 
cause a persistent reduction of cellular cAMP, the loss of CR of the 
hormones involved in HF, β1-AR desensitization and HF development. 
The use of diuretics for the treatment of patients with HF, by increasing 
the loss magnesium, could participate in the exacerbation of chronic 
HF. We suggest the therapeutic implications of this mechanism in the 
prevention of HF.

Cyclic AMP production

In mammals, intracellular concentration of cAMP, a second 
messenger that regulates many important cellular functions, is 
predominantly modulated by the ACs that increase cAMP production, 
and phosphodiesterases that induce its degradation.

Mammalians ACs play a key role in the cellular response to 
extracellular signals [6-10]. All the membrane- bound isoforms of 
ACs enzymes exhibit a basal activity which is enhanced upon binding 
of the stimulatory G protein (Gs) and reduced upon binding of the 
inhibitory G protein (Gi) 3. The mammalian AC gene family contains 
at least 10 members with several AC isoforms, but only the isoforms 
AC5 (detrimental effects), and AC6 (beneficial effects), are found in 
abundance in the heart [7, 8].
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Abstract
Heart failure, characterized by the reduction in left and /or right ventricular function, is the most common cause 

of mortality and morbidity in almost around the world. This syndrome is induced by β1-adrenergic receptor (β1-AR) 
desensitization, which in turn is caused by the reduction in cellular cAMP concentration. Cellular cAMP concentration 
is modulated by adenylyl cyclases (ACs), a family of enzymes that are strongly activated by intracellular magnesium 
and circulating levels of the stress-related hormones.

Short-term activation of β1-AR signalling pathway by increased levels of these hormones induces an increase 
in intracellular Mg2+ and cAMP concentrations, which improves cardiac function. Nevertheless, long-term activation 
of β1-AR signalling pathway by elevated levels of these hormones reduces intracellular Mg2+ and cAMP levels, 
which deteriorates cardiac function. Intracellular cAMP signalling has a circadian rhythm (CR) in mammals, and 
CR may modulate diverse phenomena. The loss of CR may per se be a cause of severe diseases. Magnesium 
can regulate intracellular cAMP production and through this may modulate the CR. Here we propose that long-
term activation of β1-AR signalling pathway, and /or the use of diuretics, can induce a progressive reduction of 
intracellular of magnesium and a subsequent gradual reduction of intracellular cAMP levels. This in turn can cause 
β1-AR desensitization, the loss of CR of the hormones related with HF, and, finally, HF development. We suggest 
the therapeutic implications of this mechanism in the prevention of HF.
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Beta1-ARs and β2 receptors (β2-AR) co-exist in the human heart 
and they are the most powerful physiologic mechanism to increase 
cardiac performance; β1-ARs activate Gs proteins whereas β2-ARs 
use both Gi and Gs proteins. Gs signalling stimulate adenylate cyclase, 
resulting in dissociation of adenosine triphosphate into the second 
messenger cAMP [7,8].

A second independent source of cAMP in mammalian cells is 
soluble AC, which is insensitive to heterotrimeric G protein regulation, 
but is widely modulated by bicarbonate and calcium, and can be found 
throughout the cytoplasm, in mitochondria, and in the nucleus [7-10]. 
Cyclic AMP and phosphokinase activities are differentially stimulated 
in ‘membrane’ and ‘cytosolic’ rabbit cardiomyocytes fractions by 
b-adrenergic and prostaglandin receptor agonists. The β-adrenergic 
agonist isoproterenol has been shown to stimulate cAMP in both 
fractions, while prostaglandin increased cAMP exclusively in the 
cytosolic fraction which is not coupled to positive inotropic response 
[7-10].

The role of intracellular Mg2+ in the activation of mammalian 
ACs 

Intracellular magnesium, the second most abundant intracellular 
cation in the body is vital for life, but the mechanisms regulating the 
transport of this ion into and out of cells remain little known. The 
thermo toga maritima CorA -Mrs2-Alr1 (CorA-Mrs2-Alr1) family of 
magnesium channels represents the most prevalent group of proteins 
enabling magnesium ions to cross membranes [10].

All mammalian ACs are strongly activated by Mg2+,and inhibited 
by low concentrations of intracellular free Ca2+ [10,11]. Despite a 
considerable number of experimental, epidemiological and clinical 
studies suggesting a role of Mg2+ in the etiology of HF, and although 
it is widely known that intracellular magnesium depletion may coexist 
with normomagnesemia [12,13], measurements of intracellular Mg2+ 

concentration in patients with HF are scarce. A previous study showed 
that intracellular concentration of magnesium and cAMP in children 
with HF was significantly lower versus the control group [14]. More 
recently it has been reported that during the median 14.7 year follow-
up, magnesium intake was inversely associated with mortality from 
ischemic strokes, coronary heart disease, and HF in women [15]. In 
chronic HF, increased plasma levels of pro-inflammatory cytokines 
are correlated with both the severity of HF symptoms and clinical 
outcome, and that also the end-stage failing human myocardium is a 
source of pro-inflammatory cytokines [16]. Further, previous results 
showed that intracellular free magnesium is significantly reduced in 
experimental HF, that magnesium strongly activates ACs, that is the 
natural antagonist of calcium is involved in many important enzymatic 
processes, electrolyte balance, skeletal metabolism, arrhythmia, 
inflammation, and has an important role in the regulation of cation 
channels in cardiac and smooth muscle cells [17]. 

Even more importantly, magnesium intracellular concentrations 
may change following stimulation of β-AR and insulin receptors 
or during pathophysiological conditions such as ischemia, HF 
and hypertension [17]. Extrusion of cellular Mg2+ via adrenergic 
stimulation is the most investigated process, and it has been observed 
also in cardiomyocytes; cellular magnesium has per se an important 
influence on myocardial contractility and its mobilization in the heart 
was associated with β- adrenergic stimulation by adrenaline [18].

Previous report showed that β1-ARs stimulation slowly decrease 
the intracellular magnesium concentration, whereas it increases 
serum magnesium level, and that insulin antagonizes the reduction 

of intracellular magnesium induced by β-AR stimulation [19]. 
Finally, it has been published and discussed in depth previously that 
intracellular total and free magnesium are compartmentalized between 
cell organelles and within the cytosol , and also, the percentage of 
magnesium localized in nuclei, mitochondria, ribosomes and cytosol 
has been reported [20]. Future studies will determine which of 
these fractions of intracellular magnesium plays a crucial role in the 
desensitization of β1-ARs and HF development.

Effects of hypercalcemia in the presence of low intracellular 
magnesium 

It is not the purpose of this manuscript to gloss the fundamental 
role of intracellular stores of Ca2+ in mammalian cell’s physiology, and 
its critical role in physiological and pathological functioning of the 
heart, witch has-been discussed in other publications [21,22]. 

Briefly we wish to highlight that cellular free Ca2+ is a critical 
second messenger in G-protein-coupled pathways that induce gene 
transcription, and modulate cardiac cell function. 

Beta-adrenergic stimulation results in increased Ca2+ entry into 
the cell, which leads to increased rates of myofilament contraction and 
relaxation [21,22]. Alterations in Ca2+ handling by the cardiac myocyte 
are likely to contribute to the decreased contractility and negative 
force–frequency relationship seen in HF [21,22]. In addition, calcium 
might also induce cardiac cell hypertrophy, necrosis, or apoptosis, 
and can regulate electrical signals that determine the cardiac rhythm 
via ion currents and exchangers [15,22]. Furthermore, it is know that 
an increase in intracellular calcium is associated with the transition 
from reversible to irreversible cell injury [23]. Also, changes in Ca2+ 
handling often precede the depression of myocardial function [21-
23]. In addition, alterations in Ca2+ handling proteins and intracellular 
kinase have been shown to be involved in the pathogenesis of HF and 
to promote arrhythmias [23]. Finally, it has been reported that HF 
is accompanied by a 40% prevalence of sudden cardiac death due to 
malignant ventricular arrhythmias [21,22].

Magnesium is the natural antagonist of calcium [17], and this ion 
has a powerful anti-calcifying effect; magnesium transport through the 
cell membrane inhibited vascular smooth cell calcification [24]. 

From the above, it might be suggested that a potential reduction 
of intracellular magnesium levels may potentiate the adverse effects of 
calcium in cardiomyocytes of patients with HF, in which calcium levels 
might be already increased by the effect of catecholamine.

Circadian rhythm (CR) and magnesium

Circulating levels of endogenous glucocorticoids and 
catecholamine, hormones closely related to HF, are under the influence 
of the suprachiasmatic nucleus (SCN) of the hypothalamus, the 
principal circadian pacemaker in mammals and coordinating clocks in 
other tissues. The circulating levels of these hormones have a diurnal 
rhythm curve; the zenith of their intracellular concentration is reached 
in the early morning and the nadir at midnight [25,26]. 

In addition, CR modulates the circulating levels of many other 
hormones and diverse phenomena as sleep/wake cycles, glucose 
homoeostasis, innate immunity and cell division etc. [25,26].

Additionally, it has been reported that disruption of CR may have 
significant effects on human health; e.g. long-term shift workers exhibit 
increased susceptibility to type 2 diabetes and various cancers [25,26].

Further, CR is a property inherent to mammalian cells that persist 
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throughout the body in vivo and in isolated tissues/cells for many days 
in vitro under the influence of SCN, whose rhythmicity depends mainly 
on levels of intracellular calcium and cAMP [25,26].

The best known CR is that related to the cortisol secretion, the 
end-hormone of the hypothalamic-pituitary –adrenal (HPA) axis 
[27]. When the inflammatory stimulus persists and the inflammation 
has not been controlled by cortisol, then circulating levels of cortisol 
may remain inappropriately normal [27]. When a molecule whose 
production follows a CR is continuously stimulated, then its production 
can lose its cyclic production and, as a consequence, its concentration 
remains inappropriately normal and this molecule loses its ability to 
exercise the function it normally carries out [27].

Patients with HF are characterized by increased circulating 
catecholamine levels, a peculiar feature of HF [4,6]. Given the role 
of catecholamine in reducing intracellular magnesium concentration 
[18], the role of magnesium in cAMP production [10,11] and the role 
of cAMP in the principal circadian pacemaker function in mammals 
[25,26], it could be suggest that magnesium is essential in normal 
functioning of CR of the hormones involved in HF, and that its 
intracellular reduction, through its role in the disruption of CR and β1-
AR desensitization, might have an important role in HF development 
(Figure 1). 

HPA-axis and heart failure

Various stressful stimuli, intrinsic or extrinsic, can activate the 
HPA axis and simultaneously the sympathetic nervous system (SNS) 
inducing increases in circulating levels of catecholamine and the HPA-
axis related hormones, ACTH and cortisol.

Recently it has been reported that magnesium deficiency induces 
HPA–axis deregulation; magnesium deficiency caused an increase in 
ACTH plasma levels [28].

In patients with HF, besides the increase of catechol amines, 
circulating levels of cortisol were increased; higher serum levels of both 
cortisol and aldosterone were independent predictors of increased 
mortality risk in these patients [29]. Clinical trials have shown that 
β1-AR blockers reduce mortality in HF [30-32], and that cortisol 
can be displaced acutely from the myocardium by mineralocorticoid 
receptor (MR) antagonists, which may contribute to adverse MR 
activation in human heart [29]. Cortisol displacements from the heart 
by mineralocorticoid receptor antagonists have beneficial effects in 
patients with HF [29] (Figure 2). 

The deleterious effects of cortisol on HF could be attributed to the 
fact that cortisol and aldosterone can reduce intracellular magnesium 
and membrane adenylyl cyclase activity, and subsequently can induce 
reduction of intracellular cAMP [29]. In addition, glucocorticoids may 
increase the concentration of calcium in myocytes [33]. 

Final considerations/Therapeutic implications

It is widely known that diuretics are used often and at high 
doses for the treatment of HF. Diuretics can induce, among others, 
elimination of magnesium [34], which might cause depletion of 
intracellular magnesium. In the vast majority of patients with heart 
failure magnesium losses are not restored. 

The biggest challenge of this manuscript is to encourage clinicians 
to measure the intracellular levels of magnesium and cAMP in patients 
with HF and to compare the clinical evolution of the group of patients 
in which the loss of magnesium was treated and fully restored, versus 

the untreated group with this ion. This mainly will enable us to assess 
the effect of magnesium on the prevention of HF exacerbations. 

Our second goal is to animate clinicians to measure intracellular 
magnesium and cAMP concentration in patients with acute HF, 
chronic HF and healthy volunteers.

Statistically significant difference in intracellular concentrations of 

Figure 1: Continually high circulating levels of the stress related hormones, a 
peculiar feature of HF [A], induce decreases in intracellular Mg2+ [B], which 
may induce the progressive loss of ACs activity. The subsequent reduction 
in intracellular cAMP production and loss of circadian rhythm (LCR) [C], will 
lead to desensitization of β1-ARs [D] and heart failure development [E]. The 
treatment of these patients with diuretics increases the loss of magnesium, 
which could contribute significantly to maintaining the vicious circle and 
worsening of heart failure.
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Figure 2: Continually high circulating levels of the stress related hormones, a 
peculiar feature of HF [A], induce decreases in intracellular Mg2+ [B], which 
may induce the progressive loss of ACs activity. The subsequent reduction 
in intracellular cAMP production and loss of circadian rhythm (LCR) [C], will 
lead to desensitization of β1-ARs [D] and heart failure development [E]. The 
treatment of these patients with diuretics increases the loss of magnesium, 
which could contribute significantly to maintaining the vicious circle and 
worsening of heart failure.
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these two parameters between patients with acute versus chronic HF, 
and/or between patients with HF versus healthy subjects, could provide 
valuable information on the role of magnesium in HF. Additionally, 
it could be of great interest to know whether there are statistically 
significant variations in intracellular concentrations of magnesium and 
cAMP in patients with chronic HF before and after HF exacerbation.

Our third aim; it is assumed that the loss of the CR does not always 
lead to the development of HF, being necessary to evaluate in which 
case the loss of the CR release of the hormones involved with HF can 
lead to the HF development.

Finally, in addition to catecholamine, it has been shown that cortisol 
and aldosterone reduce intracellular magnesium and membrane ACs 
activity, and that cortisol and aldosterone have a role in heart failure. 
A particular area of research could be the use of beta blockers and 
mineralocorticoids antagonists with or without employing magnesium. 
This should provide insight into the implications of magnesium as an 
adjuvant in the treatment of HF, and on the short-term and long- term 
evolution of this illness. 

To reach these goals it is necessary to measure the intracellular 
levels of magnesium, and cAMP, and requires evaluating the dose 
of magnesium that must be used in each case to normalize their 
intracellular levels. 

Given the obvious difficulty of using cardiomyocytes to measure 
intracellular cAMP and magnesium content, we would evaluate 
whether peripheral mononuclears or polimorphonuclears or other 
types of cells may reflect more accurately the intracellular magnesium 
and cAMP levels in cardiomyocytes. It is not the objective of our 
manuscript to comment about on how to measure intracellular cAMP 
and magnesium. In our previous works, we describe the procedures 
used by us to measure intracellular magnesium and cAMP levels in 
mononuclears and polymorphonuclears [14,38].

At present, magnesium is not an issue of high interest on HF; 
many clinical trials of positive inotropes have failed in the treatment 
of HF, and now is an “axiom” that agents that increase cAMP are 
deleterious to the failing heart [35]. Several questions and comments 
arise of this negative predisposition; i) Is it necessary to administer 
inotropes in all patients with HF? If not, in what cases inotropes should 
be administered and why? ii) Could it be more appropriate that before 
administering exogenous inotropes, measure the levels of endogenous 
circulating catecholamine? iii) We believe it is a requirement to restore 
and/or block the biochemical parameters that are diminished or are 
in excess in each patient with HF, iv) ifinany patient it was necessary 
to use inotropes, then should we not maintain the circadian cycle 
in their administration?, v) It can be assumed that it is necessary to 
avoid continuous stimulation of the β1-AR, because the continuous 
stimulation of these receptors leads to their desensitization, and induces 
loss of intracellular magnesium and the lack of response of ACs, vi) 
What are the arguments of those who believe that we should not 
maintain the CR in the administration of inotropes? v) We think that 
in the coming years, since the cloning of ACs isoforms, investigators 
will try to find reagents that regulate the activity of this enzyme directly 
in an isoform-dependent manner. The ultimate goal of developing such 
reagents would be to regulate cAMP signal in an organ-dependent 
manner. It seems that AC5 especially and AC6 isoforms are the major 
isoforms in adult cardiomyocytes, and that they can play an important 
role in acute and chronic HF [35]. vi) Finally, although currently new 
inotropic agents which are expected to improve clinical outcomes 

are under evaluation [36], other avenues of research should also be 
explored the management of HF. 

Many years ago we demonstrated polymorphonuclears magnesium 
deficiency in patients with bronchial asthma between attacks [37]. 
On the basis of our results, we proposed the use of magnesium for 
the treatment of bronchial asthma [37]. At that time the interest 
for magnesium in bronchial asthma, both in the pathogenesis of 
the illness and treatment of the crisis of bronchial asthma, was null. 
But, after publication of our work numerous studies were published 
demonstrating the effectiveness of the use of magnesium, especially 
in adults and children who fail to respond to initial bronchodilator 
therapy or where there is life threatening or near fatal asthma [38-40].

If subsequent clinical and experimental researches show that 
magnesium plays an important role in both the genesis of HF as in 
the treatment and prevention of exacerbations of HF, this would 
stimulate the development of devices that will be rechargeable and 
could be placed subcutaneously. This device could, via a sensor and a 
microcomputer, determine the intracellular magnesium levels and if it 
is necessary, would inject by micro needles the amount of magnesium 
that at all times the patient needs.

Conclusion
On the basis of the existing literature, we propose that the constant 

increase of catecholamine and cortisol induces a continuous decrease 
of intracellular magnesium. This causes a progressive decrease in 
intracellular cAMP production, which in turn desensitizes beta1-
AR and induce the loss of CR of the hormones related with HF, with 
the subsequent development of HF. The inevitable use of diuretics 
further increases the loss of magnesium, which could have a role in the 
exacerbations of chronic HF. This hypothesis opens new ways to study 
the factors that influence the progression of HF and to evaluate new 
ways for the prevention and treatment of this illness.
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