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INTRODUCTION

As is well-known, a Pseudo-Newtonian Potential (PNP) is a 
mathematical construction used in theoretical astrophysics to 
approximate the effects of general relativity in the motion of a 
massive particle near a black hole. In other words, most of the 
theoretical analysis of general theory of relativity in astronomy 
are studied by a Newtonian or pseudo-Newtonian method. It is 
called “Pseudo-Newtonian” because it has a form similar to the 
gravitational potential in Newtonian mechanics but it include 
additional terms that account for the curvature of space-time 
in general relativity. PNP’s are commonly used in studying 
the accretion of matter onto black holes and the dynamics of 
relativistic systems. To avoid the complication of full general 
relativistic equations, it is easier to use non-relativistic treatment 
but with the domination of corresponding (pseudo) potential 
which can simulate some relativistic effects consequent to the 
geometry of space-time. Using this potential one can obtain the 
approximate solutions of the hydrodynamical equations. Ghosh 
et al. [1], introduced such a Pseudo-Newtonian potential for a 
rotating Kerr black hole which is useful enough to reproduce 
the scenario of the classical mechanics [2-4]. PNP can replicate 
all the properties of an accretion disk near a black hole [4-7]. 
Chakraborty et al. [8], a few years back, introduced a general 
formalism of the trajectory of test particles around a general 
spherically symmetric non-rotating black hole, and as an example 
they considered non-rotating charged Reissner-Nordstrom black 
hole. It is worth mentioning that the general formulation of the 

trajectory is not only limited to standard general relativity but this 
formulation can also be extendable and applicable for any black 
hole solution in modified gravity theory. They did not extend 
the analysis considering the modified theories of gravity. This 
extended study was carried out by Mandal [9], considering a static 
black hole in f (R) gravity. It is interesting to generalize the results 
to other gravity models like Einstein-Gauss-Bonnet gravity and 
Lee-Wick gravity. Here in the present study, in order to generalize 
the previous result [9], we have extended this analysis considering 
other modified gravity and as an example we have considered 
a static and spherically symmetric 4D AdS Schwarzschild Yang-
Mills Black Hole in Einstein-Gauss-Bonnet gravity.

In theoretical physics, theory of General Relativity (henceforth 
GR) by Einstein is one of the most successful theories. Despite 
its prominent achievements, there are still some unsolved 
challenging problems in the universe such as the cosmological 
constant problem, the hierarchy problem and the late time 
accelerated expansion of the Universe. This gleams that GR is not 
the ultimate theory and require further generalization. Addition 
of the higher curvature terms in the standard Einstein-Hilbert 
action is one of the possible generalization. Lovelock gravities can 
provided the higher curvature corrections of natural candidates 
and are the unique theories that execute generally covariant field 
equations [10]. Gauss-Bonnet gravity, also familiar as Einstein-
Gauss-Bonnet (henceforth EGB), is the normal extension of the 
standard Einstein-Hilbert action to comprise higher curvature 
Lovelock terms. In string theory, a Gauss-Bonnet term arrives 
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naturally in the low energy effective action [11]. Recently, Glavan 
and Lin formulated the EGB gravity in four dimensions as of 
higher dimensional field equation by rescaling the Gauss-Bonnet 
coupling constant α by α/D-4 [12]. Examples of some other 
higher order gravity theory are scalar-tensor theories [13-18], 
Brane world cosmology [19-21] and regular black holes [22-24]. 
Moreover, the charged AdS solution of EGB theory [25] for a 
complete study on 4D GB gravity [26]. Some of the other static 
and spherically symmetric black hole solutions and their phase 
transition, thermodynamics in 4D or higher dimensions EGB 
[27-33].

The consistent theory of 4D EGB gravity was studied in the studies 
of Aoki et al. [34,35]. Singh et al. [36], have studied on 4D AdS 
Einstein-Gauss-Bonnet black hole with Yang-Mills field and its 
thermodynamics. AdS charged black holes in Einstein-Yang-Mills 
gravity’s rainbow: Thermal stability and P-V criticality was studied 
by Hendi et al. [37]. Naeimipour et al. [38], studied on Yang-Mills 
black holes in Quasitopological gravity. Rotating Einstein-Yang-
Mills black holes and black hole solution of Einstein-Born-Infeld-
Yang-Mills theory can be found in the studies of Kleihaus et al. 
[39], and Meng et al. [40]. P-V criticality of a specific black hole in 
f (R) gravity coupled with Yang-Mills field was studied by Ovgun 
[41], and Aounallah et al. [42], have studied five-dimensional 
Yang-Mills black holes in massive gravity’s rainbow.

METHODOLGY

Space-time structure of 4D AdS Schwarzschild Yang-Mills 
black hole for EGB gravity

In this section, we introduce the metric tensor of a static 
spherically symmetric black hole of the EGB gravity with the 
Yang-Mills field. The original theory of EGB gravity by Glavin 
and Lin [12], has been shown to not be self-consistent. The issue 
was resolved by Fernandes et.al. [43], and by Hennigar et.al. [44]. 
The D-dimensional EGB gravity in the presence of the Yang-Mills 
field is given by the following action,

1 2
2 4

D
YMA d x g R G L

D
α = − − Λ + − − ∫  ………. (1)

Where α is the Gauss-Bonnet coupling coefficient α ≥ 0; G is 
the Lagrangian density for EGB gravity (called Gauss-Bonnet 
invariant), given by,

24v v
v vG R R R R Rµ ρσ µ

µ ρσ µ= − +  ………… (2)

and Yang-Mills Lagrangian,
( ) ( )a a v

YM VL F F µ
µ= −  ………. (3)

Which is given in terms of the Faraday–Maxwell tensor or 
electromagnetic field tensor F

µν described by 
( ) ( )a a
v V vF Aµ = ∇ with V∇

representing the covariant derivative, and ( )aAµ , the electromagnetic 
gauge field.

The equation of motion for the metric tensor ( )vgµ  and the 
electromagnetic potential ( )aAµ  are given by respectively,

YM
v v v vG g H Tµ µ µ µ+ Λ + =  ………… (4)

( ) 0a vD F µ
µ = ………… (5)

Where vGµ  and vHµ , are the Einstein tensor and the Lanczos tensor 
with the following expressions:

1
2v v vG R g Rµ µ µ≡ − …………. (6)

( )28 4 4 8 4
2v v v v v vH R R R R RR R R g R R R R Rρσ ρσ λ ρσγδ ρσ

µ µρ σ µ µρ λ µ µλ µ ρσγδ ρσ
α  = − − − + + − + 

… (7)

With R, vRµ  and Rµργδ  represents the D=d+1 dimensional Ricci 
scalar, Ricci tensor and Riemann tensor respectively. On the 
other hand, the energy-momentum tensor due to the effect of 
Yang-Mills field is given by,

( ) ( ) ( ) ( )1 2
2

a a a aYM
v v vT g F F F Fρσ σ

µ µ ρσ ρσ= − +  ……….. (8)

Now in order to get static spherically symmetric black hole 
solution for the EGB gravity with Yang-Mills field, we write the 
line element as,

( ) ( )
2

2 2 2
2D

drds f r dt r d
f r −= + + Ω ………… (9)

Where dΩ
D-2

 denotes the metric of a (D-2)-dimensional sphere. 
The two branch solutions of metric potential for D → 4 has the 
following form [36]:

( )
2 2

3 4 2

2 11 1 1 4
2
r M vf r

r r l
α

α

  
 ± = + ± + − −    ………… (10)

Where naturally adopted Λ in terms of scale length l as, 2

3
l

Λ = −  for 
AdS solution. Since +ve signature of equation 10 is completely 
unphysical as it converted to Reissner-Nordstrom black hole 
having negative mass and imaginary charge. Hence we bound 
ourselves to the -ve branch of solution of equation 10, because 
the -ve signature reduces to the Schwarzschild solution for α → 
0, ν → 0 and l → ∞. Also, from the above solution, in the limit 
of ν → 0 and l → ∞ we can be recovered the solution by Glavan 
and Lin [12]. Finally in α → 0, the metric function for AdS 
Schwarzschild Yang-Mills black hole becomes

( )
2 2

2 2

21 M v rf r
r r l

= − + + ……… (11)

Here, M is an integration constant related to the black hole mass 
and ν is called Yang- Mills charge. However this solution reduces 
to the Schwarzschild black hole solution for ν=0 and l → ∞.

Here, we should note that the Yang-Mills case considered here 
corroborates with the case of an electrically charged black hole 
[45,46], because both yield the same metric function equation 10. 
However, AdS Schwarzschild Yang-Mills black hole corroborates 
with the Reissner-Nordstrom-AdS black hole [46]. Therefore, our 
study will be equally valid for Reissner-Nordstrom-AdS black hole 
case also.

RESULTS AND DISCUSSION

Horizons of spacetime for 4D AdS Schwarzschild Yang-
Mills black hole

The horizon of the AdS Schwarzschild Yang-Mills black hole 
equation 11 is given by setting f (r)=0. Now, we can plot the graph 
to estimate the horizons as shown in Figure 1. Figure 1 depicts 
the profile of metric function f (r) with radial coordinate r for 
five different values of Yang-Mills charge ν, when scale length is 
l=2 (left) and l=4 (right). It is evident from the figure that the 
radius of the outer horizon increases when the Yang-Mills charge 
ν decreases. In particular, all the plots are scaled with ν taking 
values of order 1. By doing elementary analysis of the zeros of f 
(r), Figure 1 shows that it has no zeros for ν>ν

c
, one double zero 

if ν=ν
c
 and two simple zeros for ν<ν

c
. It is evident, from the figure 

that the two horizons coincide at the critical radius,
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Effective potential Veff can be estimated as
2 2 2

2 2 2

21 1eff
M v r hV
r r l r

  
= − + + +  

   ……….. (16)

The nature of V
eff

 versus r by varying h, ν for fixed l is plotted in 
Figure 4. In both plots, V

eff
 increases for increasing ν.

Pseudo-newtonian theory: Potential, energy and angular 
momentum

The basic PNP theory for a general static non-rotating and 
spherically symmetric black hole was studied in Refs [8,9]. The 
PNP and effective potentials, respectively, are,

( )
4 2 2 2

4 2 2 2 2 2

2
2 2

r Mrl v l
r Mrl v l r l

ψ − +
=

− + + ………. (17)

And 2 4 2 2 2 2

2 4 2 2 2 2 2 2

1 2
2 2 2eff
l r Mrl v l lV
r r Mrl v l r l r

ψ
 − +

= + = + − + + ……….. (18)

It can be easily observed by analyzing the boundary behavior of 
PNP ψ that when we approach spatial infinity,

1lim
2r

ψ
→∞

=

This is presented in Figures 5 and 6.

In Figure 5a, we plot PNP ψ for variation of both r and ν with l=1. 
In Figure 5b, the variation of PNP ψ for varying both r and l with 
ν=0.75 is plotted. Moreover, in Figure 6, we present the behavior 
of PNP with r for different values of ν (left figure) and l (right 
figure). Figure 6a shows that for lower values of r, PNP ψ will be 
increased when Yang-Mills charge ν will take larger values. On 
the other hand, from Figure 6b, it is clear that for lower r PNP ψ 
will be decreases for increasing values of scale length l. Both plots 
of Figures 5 and 6 also reveal that in the limit r → ∞, ψ clearly 
approaches to 1/2.

2
2 2

2
121

6c

vl l
lr

+ −
= ……….. (12)

It is also evident that r
c
 depends upon the parameters ν and l.

Relativistic theory: Energy and angular momentum 

The basic relativistic theory of energy, angular momentum, and 
effective potential for a general static non-rotating black hole can 
be found in Refs [8,9]. Now, the energy and relativistic conserved 
angular momentum for circular orbits are respectively

2 2

2 2

2 2

21

3 2

M v rr
r r l

E
r Mr v

 
− + + 

 =
− + ………. (13)

and

2 2 2 4

2 23 2
c

r Mrl v l rL
l r Mr v

− +
=

− + ………… (14)

It is notified that both E
c
 and L

c
 depend on various parameters 

like Yang-Mills charge ν, scale length l, radial coordinate r and 
mass M of the AdS Schwarzschild Yang-Mills black hole. Figure 
2a depicts the variation of relativistic angular momentum L

c
 with 

respect to changing r and ν, for a fixed l and Figure 2b depicts, 
the variation of relativistic angular momentum L

c
 with respect to 

changing r and l for a fixed ν. However, in Figure 3a, the variation 
of energy E

c
 with respect to changing r and ν for a fixed l and in 

Figure 3b, the variation of energy E
c
 with respect to changing r 

and l for a fixed ν are depicted.

Now, relativistic specific angular momentum c
c

c

Ll
E

 
= 
  can be 

calculated as
2 2 2 4

2 2

2 2
21

c
Mrl v l rl

M v rl
r r l

− +
=

 
− + + 

  ………….. (15)

Figure 2: (a) is the variation of relativistic angular momentum Lc with respect to changing r and ν for a fixed l=1, In (b) it is shown, the variation 
of relativistic angular momentum Lc with respect to changing r and l for a fixed ν=0.75, here, M=1.

Figure 1: The behavior of f (r) versus r by changing ν for a fixed l=2, 1(a), In 1(b) the behavior of f (r) versus r by changing ν for a fixed l=4 is shown, 
taking M=1.
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Figure 4: In (a) and (b) the behavior of Veff with r by varying h, ν for constant l=1 is shown, M=1.

Figure 5: In (a) is the variation of PNP ψ with respect to changing r and ν for a fixed l=1, In (b) the variation of PNP ψ with respect to changing 
r and l for a fixed ν=0.75 is plotted, here, M=1.

Figure 6: In (a) the variation of PNP ψ with respect to r for changing ν for a fixed l=1 is shown, In (b) the variation of PNP ψ with respect to r 
for changing l for a fixed ν=0.75 is shown, taking M=1.

Figure 3: In (a) the variation of energy Ec with respect to changing r and ν for a fixed l=1 is shown, In (b) the variation of energy Ec with respect to 
changing r and l for a fixed ν=0.75, taking M=1.
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We obtain pseudo-Newtonian angular momentum as following:
2 2 2 4

2 2

2 2
21

c
Mrl v l rl

M v rl
r r l

− +
=

 
− + + 

  ……….. (19)

Figure 7a shows the variation of l
c
 for the variation of both r 

and ν with fixed l and Figure 7b shows the variation of l
c
 for the 

variation of both r and l with fixed ν.

Now a comparative plot of L
c
 (from equation 14) and l

c
 (from 

equation 18) has been presented in Figures 8-11 for different 
values of ν and l. In Figures 8 and 9, ν and l are taken very 
small (up to the order of unity). On the other hand Figure 10 
is for higher l, lower ν (top panel) and lower l, higher ν (bottom 
panel) while Figure 11 is for both higher l and higher ν. The 

solid curve (red) is for Pseudo-Newtonian angular momentum l
c
 

and the dashed curve (blue) is for General Relativistic angular 
momentum L

c
. From Figures 8 and 9, it is visible that for lower 

values of r, both the curves become asymptotical to L
c
, l

c
 axis and 

for higher values of r the L
c
 curve is increasing whereas l

c
 curve 

become asymptotical to the radial coordinate axis. So it can be 
easily understood that l

c
 and L

c
 curve takes the same form for 

the lower values of r, however, both curve no longer matches for 
higher values of r. Interestingly Figure 10 (top panel) shows that 
for higher scale length l, both curves take the same form for all 
values of r whereas the bottom panel depicts that both curves 
have different behavior i.e., L

c
 curve is an increasing function of r 

while l
c
 curve is asymptotic to r-axis. Both of the curves of Figure 

11, for higher l and higher ν, also take the same form [47-50].

Figure 7: (a) Plot of lc with respect to r and ν for fixed l=1, In (b)  plot of lc with respect to r and l for fixed ν=0.75, taking M=1.

Figure 8: (a), (b) and (c) are the variation of Lc and lc with respect to r for changing l=3, 5, 10 but fixed ν=0.75 while (d), (e) and (f) is the plot 
of the variation of Lc and lc with respect to r for changing l=3, 5, 10 but fixed ν=0.85, here, M=1.
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Figure 9: (a), (b) and (c) are the variation of Lc and lc with respect to r for changing ν=0.65, 0.75, 0.85, but fixed l=20, In (d), (e) and (f), the 
variation of Lc and lc with respect to r for changing ν=0.65, 0.75, 0.85 but fixed l=15 is shown, here, M=1.

Figure 10: (a), (b) and (c), the variation of Lc and lc with respect to r for changing ν=0.65, 0.75, 0.85 but fixed l=600 (high), (d), (e) and (f), the 
variation of Lc and lc with respect to r for changing l=1, 5, 8 but fixed ν=80 (high), here, M=1.

Figure 11: The variation of Lc and lc with r for changing ν=80, l=600 (a); ν=100, l=700 (b) and ν=120, l=800 (c) along with M=1.
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It is worth mentioning that, PNP theory for 4D AdS Schwarzschild 
Yang-Mills black hole can reproduce the scenario of GR theory 
when both the scale length parameter l and Yang-Mills charge ν 
are taken low (valid for low ranges of r, but for higher ranges of r 
it does not reproduce the result any more) and also can simulate 
the GR theory when both of these parameters are taken high (for 
all values of r). However, for higher l and lower ν, we get the case 
of a Schwarzschild black hole. Finally, all results are verified for 
4D AdS Schwarzschild Yang-Mills black hole solution in EGB 
gravity. The above result generalizes that the above analysis is not 
only restricted to Einstein’s gravity but it can also be extendable 
to black hole solution in any modified gravity theory [51-54].

Moreover, the expression for e
c
 is given by [8,9],

( )
( )

8 5 2 6 2 4 2 2 2 2 4 3 4 2 4 4 4

24 2 2 2 2 2

4 2 2 4 41
2 2

c

r Mr l r l r v l M r l Mr l Mrv l v l
e

r Mrl v l r l

− + + + − − +
=

− + + ……… (20)

The positive roots of the following equation give marginally stable 
circular orbits:

( ) ( )
( ) ( )

2 6 2 5 2 2 4 4 2 3

2 2 2 4 2 2 4 2 2 4 4

8 4 3 10 2 3 2

8 13 4 2 0

l r Ml M r v l r Ml Ml r

M l M l r Mv l Mv l r v l

− + + + − +

− + − − = …………. (21)

Finally, to get stable circular orbit we have the following condition:

( ) ( )
( ) ( )

2 6 2 5 2 2 4 4 2 3

2 2 2 4 2 2 4 2 2 4 4

8 4 3 10 2 3 2

8 13 4 2 0

l r Ml M r v l r Ml Ml r

M l M l r Mv l Mv l r v l

− + + + − +

− + − − > ………….. (22)

This analysis can also be applicable and extendable for any 
black hole in higher dimensions. For example, the metric for a 
N-dimensional black hole can be written as,

( ) ( )
2

2 2 2 2
2N

drds f r dt r d
f r −= − + + Ω

……… (23)

Where 2
2Nd −Ω  represents the metric on unit (N-2) sphere, given by,

2
1d dφΩ =  ……… (24)

And
2 2 2 2

1 sink k k kd d dθ θ+Ω = + Ω , 1k ≥  ……….. (25)

In this analysis, the motion of a test particle (massive or photon) 
should be restricted to the equatorial plane (θ

k
=π/2, k ≥ 1), because 

of the fact that we have considered only spherical symmetry of 
the space-time. Therefore, in future work, an extension of the 
above approach for non-spherical system (especially axisymmetric) 
would be interesting.

CONCLUSION

In this paper, we outline space-time structure in EGB gravity and 
to get a deeper insight about the horizon, we plot lapse function 
with respect to the radial coordinate r. Using GR treatment, 
we calculate energy and angular momentum. Here we noticed 
that the energy and angular momentum depend on various 
parameters like scale length, Yang-Mills charge and mass of the 
black hole. To check the dependency of energy and angular 
momentum on these parameters we make a graphical analysis. 
Moreover, we determined the effective potential and graphical 
analysis shows that effective potential increases when Yang-Mills 
charge increases.

Within the context of PN theory, we determined PNP, angular 

momentum, and energy. Here it is also notified that PNP, energy, 
and angular momentum also depend on various parameters like 
scale length, Yang-Mills charge, and mass of the black hole. In this 
framework, we also made a graphical analysis of the energy and 
angular momentum. The graph of PNP for different values of ν 
and l shows that for lower values of r, PNP will be increased when 
Yang-Mills charge will take larger values and PNP will decrease 
for increasing values of scale length. Interestingly, in the limit r 
→ ∞, PNP clearly approaches to 1. More importantly, we have 
presented a comparative plot of relativistic angular momentum 
L

c
 and PN angular momentum lc for different values of scale 

length and Yang-Mills charge. The graph for lower values of 
Yang-Mills charge and scale length demonstrated that in both, 
the GR treatment and PN treatment, the angular momentum 
curve takes the same form only for lower ranges of r while both 
curves no longer match for higher ranges of r. These plots justify 
the PNP theory for 4D Schwarzschild Yang-Mills black hole for 
some lower values of r. The graph for both higher l and higher ν 
can justify the PNP theory for 4D Schwarzschild Yang-Mills black 
hole for the entire ranges of r. While the graph for higher values 
of scale length parameter and lower values of Yang-Mills charge 
demonstrated that both angular momentum curves take the same 
form for all ranges of r. These plots justify the PNP theory for 
Schwarzschild black hole.

We also noticed that a marginally stable circular orbit depends 
on the parameters like scale length, Yang-Mills charge, and 
mass of the black hole. It is important to note that, the general 
formulation of the general gravity theory was used very well to a 
black hole solution in EGB gravity. Our result generalizes that 
this analysis is not only restricted to Einstein’s gravity but it can 
also be extendable and applicable to black hole solution in any 
modified theories of gravity.
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