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Abstract

Infertility connotes inability to become pregnant after 12 months or more of regular unprotected sexual
intercourse. Male factor is known to be responsible for almost 50% of cases of infertility. There are increasing
evidences of possible association between infertility, especially male infertility and cancer. Higher risk of
subsequently developing testicular cancer and clinically important prostate cancer has been suggested. Hence,
there is possibility of common etiologic factors for male infertility and metastasis of these reproductive organs. The
main circulatory androgen in man, testosterone is known to function as prohormone that is converted to active
steroid, dihydrotestosterone by the enzyme 5α-reductase in the prostatic cells. This hormone and enzyme are not
only important in spermatogenesis and maturation of sperm cells but important in prostatic growth and development
of prostate cancer. The level of 5α-reductase in particular increased in prostatic intraepithelial neoplasia and
prostate cancer and continues to rise as the disease progresses. Mutation and polymorphism of androgen receptor
has been related to both prostate cancer and infertility. Furthermore, protostomes which is a small membrane-bound
vesicle that are produced within the prostate acini are known to fuse with and transfer proteins to spermatozoa,
enhancing their motility and modulating their functions. The corpus function and production of this protostomes in
metastasis will directly affect the quality and function of sperm cells, consequently causing infertility. Cancer of the
testicular germ cells has also been implicated in decline semen quality and infertility. In addition, testicular
dysgenesis syndrome; a theoretical constructs attempted to relate environmental modulators, genetics, and infertility
in the development of testicular cancer. Reactive oxygen species and free radicals damages of DNA and faulty DNA
repair are also common mechanism implicated in both male infertility and cancer. This article reviews the suggested
associations and possible related mechanisms that contribute to cancer of reproductive organs and male infertility.
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Introduction
Infertility is generally defined as failure to conceive after frequent

unprotected sexual intercourse [1]. Clinically, it is defined as inability
to become pregnant after 12 months or more of regular unprotected
sexual intercourse [2,3]. It could also be referred to as the biological
inability of an individual to contribute to conception, or to a female
who is unable to carry a pregnancy to full term. Infertility is a common
medical problem globally, and both male and female factors have been
observed to contribute almost equally to this problem. Several factors
have been implicated to cause infertility, these include
endocrinological [4,5], anatomical [1,5], immunological [5] and
nutritional [6] and genetic [7,8]. Though, possibility of link between
male infertility and cancer has been suggested but not fully elucidated
[9].

Testicular cancer is thought to be higher among men seeking
infertility treatment when compared with general population [9], thus
suggesting that men with male factor infertility have an increased risk
of subsequently developing testicular cancer. Therefore, there is the
possibility of common etiologic factors for infertility and testicular
cancer. Testicular germ cell cancer is the most common cancer among
young men in industrialized country [9]. Subjects with testicular germ
cell cancer have been reported to have decline semen quality and
infertility in industrialized nations [9-11]. Whether a decline in semen

quality and infertility are independently or related to each other
remained to be clearly elucidated.

On the other hand, lower risk of prostate cancer has been reported
in infertile male [12,13]. Interplay between androgen receptor and
ligate binding may play a major role in this relationship. Testosterone,
which is the main circulating androgen in men is essential for both
spermatogenesis and sperm maturation. Low levels of testosterone are
common observation in infertile men [14]. While an increase level of
testosterone is associated with risk of prostate cancer [15]. Association
between infertility and circulating androgen level on one hand and
circulating level of androgens and prostate cancer on the other hand
are not well document [16]. However, there is an increasing
divergence in the outcome of research attempts to link fertility or male
infertility to prostate cancer.

There are other several factors implicated in both male infertility
and cancer such as genetic factors, epigenetic modifications, and
environmental factors. Knowledge and information on these factors
are emerging and is still at the stage of research only. However,
prenatal exposure to some chemicals such as Vinclozolin, are known
to induce transgenerational inheritance of reproductive diseases
including male infertility and prostate cancer [17,18].

Male Infertility and Testicular Cancer
Male reproductive health has declined markedly globally in the

recent year with attendant decrease in the quality of semen produced
and consequently increased rate of infertility in men. Studies have

Ekun et al., Andrology 2015, 4:1
DOI: 10.4172/2167-0250.1000130

Reveiw Article Open Access

Volume 4 • Issue 1 • 1000130

Andrology-Open Access

An
dr

ology: Open Access

ISSN: 2167-0250

Andrology, an open access journal
ISSN: 2167-0250 

mailto:oakinlye@unilag.ng.edu
mailto:oluyemiakinloye@hotmail.com


shown a six-fold increase in developing gonadal tumors among male
with infertility suggesting a possible link between male infertility and
testicular cancer [19]. Previous studies have also shown that men who
developed testicular cancer had fewer children than age-matched men
who do not developed testicular cancer [20]. Petersen et al. [21] Shown
that semen quality in men with unilateral testicular cancer was much
poorer than that of those with normal testis. Also a pre-cancerous
cellular condition (Carcinoma in situ) was reported to be more
frequent in testicular biopsies of men evaluated for infertility or sub
fertility suggesting that this group of individual is at a higher risk of
developing testicular cancer [22]. In addition, studies by Jacobsen et al.
[23] and Raman et al. [24] corroborated the fact that there is increased
risk of testicular cancer in men with infertility.

However, several studies have shown divergent findings in the
association between male infertility and testicular cancer [20,23,24].
While study by Jacobsen et al. [23] on a large Danish Cohort among
men with infertility revealed 1.6 times more likelihood of developing
subsequent testicular cancer, study by Raman et al. [24] in a Cohort of
American men with infertility indicated about 18-fold increased risk of
testicular cancer. These studies suggested a possible link or common
underlying mechanism between male infertility and testicular cancer.
Thus it is evident that male infertility is at crossroads of genetic
determinants and environmental effects with the exact genetic
mechanisms in male infertility still largely unclear. However, with
recent studies it is becoming clearer that male infertility is largely
associated with a host of medical diseases particularly testicular cancer
[25].

Male Infertility and Prostate Cancer
Prostate cancer in the recent time has earned the reputation of one

of the leading causes of cancer-related death in men, second only to
lung cancer [26,27]. In the United States with the estimated cases of
220,000 diagnosed yearly; this is expected to increase with the
expanding geriatric population [28]. Akinloye et al. [29] opined that
prostate cancer has become the most common cancer in Nigeria men.
While two percent of Nigerian men are reported to develop prostate
cancer with 64% mortality after two years of diagnosis [28 now 30], it
remains one of the major cancer-related deaths in the USA [31]. Thus
prostate cancer is an increasingly important public health problem
among men globally. The etiology and pathogenesis of prostate cancer
remains poorly understood [32]. In spite of extensive studies on this
disease, the pathogenesis of prostate cancer still remains unknown as
the biochemical and molecular mechanisms responsible for and
associated specifically with the development and progression of
prostate cancer are largely unidentified [33].

Several studies have linked prostate cancer and male infertility
[34,35]. There are however increasing conflicting results. While there
are increasing evidences of lower risk of prostate cancer in childless
men when compared with fathers [12,13,36], lack of clear relationship
have also been reported [37]. Several lines of evidence support an
association between androgen production, androgen sensitivity, male
reproduction and prostate cancer [35]. Previous study had observed
lower levels of testosterone in infertile men; resulting in reduced
testosterone-to-estradiol ratios in this group when compared to the
fertile men [14]. In addition, androgens have been reported to be
positively associated with the risk of prostate cancer [15]. Study had
shown that growth of the prostate gland depends on circulating
androgens and intracellular steroid signaling pathways. The effects of
androgens are mediated through the androgen receptor (AR), a

nuclear transcription factor encoded by the AR gene. Mutation and
polymorphism in androgen has been reported to precipitate either
male infertility or prostate cancer [29,38-42]. The differences in CAG
and GGN tender repeats in androgen receptor polymorphism have
been implicated in ethnical diversity observed in the risk factors of
prostate cancer [29]. A shorter repeat is said to improve the interaction
between the receptor and ligand resulting in higher activities of
androgen. A shorter repeats associated with black population is
translated to relatively higher risk of prostate cancer and increase
fertility and vice-visa [29,38]. This may explain the report that black
men are disproportionately affected by prostate cancer and their
incidence rate is about 1.6 times greater than the rate for white men
[43]. In addition to this, report from [44] also showed the prevalence
of prostate cancer to be highest among black men. This population is
also associated with high fertility rate with increasing uncontrolled
population growth that further impoverishes Africa population.
Furthermore, It has been shown that male infertility though may not
necessarily increase the risk of prostate cancer; as the number of
prostate cancer cases between infertile and fertile men did not show
any significant difference, but the nature of the prostate cancer
between these two groups did [34]. Hence, these authors [34]
suggested that male infertility may be an early and identifiable risk
factor for the development of clinically significant prostate cancer [37].

Common Underlying Mechanism and Risk Factors of
Male Infertility and Cancer

Observations from various published studies are in support of both
biological and clinical mechanism responsibility for the possible
associations between infertility and testicular cancer. Several studies
provided evidences in support of faulty DNA repair [9,45-47] and
other specifically extend the role of oxygen radicals in DNA damage
and cancer incidence [48]. High level of reactive oxygen species and
reduced antioxidants are common underline mechanism implicated in
spermatogenic failure and male infertility [49,50]. Thus there is an
association between decreased total antioxidant capacity and male
infertility [51]. Environmental toxicants are known to contribute
significantly to both DNA damage and generation of free radical as
exposure to environmental estrogens and pesticides has been linked to
alterations in spermatogenesis. This is also true about the toxic effect
of heavy metals on sperm quality and sperm production [52].
Testicular dysgenesis syndrome; a theoretical construct that attempts
to relate environmental modulators, genetics, and infertility in the
development of testicular cancer are clinical condition that have been
implored to explain relationship between male infertility and cancer of
male reproductive organ [53]. Infection, inflammation and
enlargement of reproductive organs such as benign prostate
hyperplasia (BPH) are other clinical condition that may increase the
risk of both male infertility and prostate cancer.

Hormonal Milieus, Male Infertility and Cancer
It is a general knowledge that testosterone is the main circulating

androgen in men [54]. However in the prostate gland and other
organs, testosterone functions as prohormone that is converted to
Dihyrotestorone (DHT) by 5α-reductase (5AR) (an intracellular
enzyme present in the prostate, skin and liver) in the prostatic stromal
and basal cells [54,55]. In serum the ratio of testosterone to DHT is
about 10:1, while the ratio of testosterone to DHT in the prostate gland
is about 1:10 [56]. 5α-reductase plays an important role in normal
prostate growth and in the development of prostate cancer as its levels
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appear to increase during disease course of prostatic intraepithelial
neoplasia and prostate cancer and continues to rise as the disease
progresses [43].

In addition, protostomes which is a small membrane-bound vesicle
that are produced within the prostate acini play a key role in male
fertility. It fuses with and transfer proteins to the sperm cells thereby
enhancing their motility and modulating their function. This
membrane preserves the integrity of the sperm cells [57]. Study has
proposed prostosomes as an aetiologic factor for prostate cancer.
While the mechanism for this is unclear, opinions are suggesting
potential mechanisms such as promotion of tumor angiogenesis, cell
cycle dysregulation and immunoprotection of cells that are
malignantly transformed [58]. However, there are conflicting report
on linkage of reproductive hormones with male infertility and prostate
cancer. While some studies showed a biological link between
fatherhood status and prostate cancer as that of an association between
infertility and low circulating androgen levels which is in turn would
be associated with a lowered incidence of prostate cancer; association
between infertility and circulating androgen level is however not very
well documented and there is no well documented association between
circulating level of androgens and prostate cancer [16].

Studies by Suomi et al. [59] and Hsieh et al. [60] showed a strong
association between testicular dysgenesis syndrome and reproductive
hormones levels as one of the studies of reproductive hormone levels
in 3 months- old infants found that cryptorchid boys had significantly
elevated FSH and LH serum level and low inhibin B levels when
compared with non-testicular dysgenesis syndrome control. However
among adult men, there was a shift towards lower serum testosterone
levels, testosterone/LH ratio and higher serum LH level in infertile
men [61]. Also men with CIS and testicular cancer have impaired
spermatogenesis, higher levels of LH and FSH as well as a tendency
towards lower testosterone levels [21].

Free Radical-induced Mutagenesis and DNA Base
Modification

Exposures of human cell to free radicals result in permanent
modification to genetic material resulting from oxidative damage. This
oxidative damage is the first step of carcinogenesis involved in
mutagenesis [62]. DNA alterations caused by radicals are removed by
specific and non-specific repair mechanisms. The repair of DNA base
damage is thought to occur mainly by base-excision [63]. In the
process of DNA repair, a mis-repair could occur. When this happens,
mutations such as base substitution and deletion occurs leading to
carcinogenesis [64,65].

Oxygen free radicals damage of DNA produces two common types
of lesions which are group into; strand breaks and base modification
products [66]. Studies have shown that superoxides from xanthine and
xanthine oxidase system cause DNA strand breaks [67]. While on the
other hand, free radicals from hydroxyl group react readily with
nucleic acids to yield different kinds of products including strand
breaks which results from the attack of the hydroxyl free radicals on
the sugar portion, probably carbon 3’and 4’of macromolecule [67].
This strand breaks are of pathological significance since their proper
repair is tantamount to proper functionality of the cell. However
enzymatic repair of DNA strand breaks generally have decreased
fidelity hence there is a higher probability of mis-incorporating the
wrong base in the repaired DNA.

Furthermore, it was also reported that other modified bases; 8-
hydroxy-2-deoxy-guanosine (8-OHdG), 8-hydroxyguanine, 5-
hydroxymethyluracil, and thymine glycol which results from hydroxyl
free radical attack on DNA could have serious consequences in terms
of mutagenesis and carcinogenesis [67]. Valko et al. [48] reported that
mutagenic potential is directly proportional to the number of oxidative
DNA lesions that escape repair and that repair mechanisms decay with
age hence DNA lesions accumulate with age. Men with male factor
infertility have been observed to be slightly older at the time of
infertility evaluation and had longer duration of infertility care than
men without male factor infertility but had the same duration of
follow up [9]. Sixty- seven cases of testicular cancer were observed
among cohort members. On the overall, these authors [9] revealed that
infertility cohort members demonstrated a trend for increased risk of
testicular germ cell cancer compared with men from the general
California population. Thus, observing an association between
infertility in men and subsequent development of testicular cancer.
These authors shows that male partners of infertile couples were 1.3
times more likely to develop a testicular germ cell cancer the California
population regardless of male fertility status. However, among men
with known male factor infertility, the risk of subsequent testicular
cancer was more than twice that such that these men were 2.8 times
more likely to develop testicular cancer relative to the general
population.

Free radicals contribute in a unique ways to carcinogens and the
malignant progression of tumor cells, which enhances their metastatic
potential. Free radicals cause genomic damage leading to genetic
instability; also they participate as intermediaries in mitogenic and
survival signals via growth factor receptors and adhesion molecules,
promoting cell mobility, inducing inflammation/repair and
angiogenesis in the tumor microenvironment [68-77].

As mitogenic signal intermediaries, ROS directly act on antioxidant
enzymes to cause reduction on the mitogenic reponse in which
Mitogen Activated Protein Kinases (MAPKS) and cytokine-mediated
signal participate. de la Cruz-Morcillo [78] documented that MAPKS
participate in intracellular signal transduction pathways this leads to
cell differentiation and survival, arresting growth, apoptosis and
senescence which eventually leads to resistance to radiotherapy and
chemotherapy. In addition ROS could act as a second messenger by
activating the cascade signal that control various cell events like
proliferation, apoptosis and inflammation through inactive receptor
transduction [68].

Oxidative Stress, Faulty DNA Repair, Testicular
Appostosis and Pathogenesis

Oxygen is essential for life; however as important as oxygen is to
life, it can also play a major role in the destruction and disturbance of
the normal function of some cells. In normal or physiological cellular
metabolism, Reactive Oxygen Species (ROS) are formed. Normally cell
generates free radicals and also degrades that which is strictly
necessary to avoid cell and tissue damage; however, in the presence of
various circumstances (intrinsic & extrinsic) and biochemical activity
of the cell can possibly make it to lose control of the formation and
management of free radicals. When this happens, it results into an
imbalance in the formation of free radicals in the tissue and the cell or
tissue antioxidant of these free radicals lead to a situation known as
“oxidative stress” [68,79]. Studies have shown that radical-related
damage of DNA and protein could play a key role in the development
of diseases such as cancer, neurodegenerative disorders, arthritis,
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arteriosclerosis and others [80,81]. This is because all ROS have the
potential to interact with cellular components including DNA bases or
the deoxyribosyl backbone of DNA to produce damaged bases or
strand breaks [82] ROS can also oxidize lipids or proteins to generate
an intermediate which can react with DNA [83]. Oxygen radicals are
derived from many sources but most importantly are the superoxide
radicals which are produced in cells generally by a process of electron
transfer reactions. These reactions could be enzymatically or non-
enzymatically mediated. Normally free radicals are derived from
electron leakage that occurs from electron transport chains, such as
those in the mitochondria and endoplasmic reticulum, to molecular
oxygen, which generates superoxide [84]. Intracellular sources of
superoxide and hydrogen peroxide include mitochondria [85-90],
cytochrome P-450 [91], Cytoplasmic oxidases [48] Xanthine oxidase
[92] Microsomes and peroxisomes [48]. On the other hand,
extracellular source of superoxide includes membrane NADPH
oxidases [93]. The primary site of radical oxygen damage from
superoxide produced in mitochondria is the mitochondrial DNA
(mtDNA). Mammalia spermatozoa are extremely sensitive to oxidative
stress [94]. ROS in some cases causes defective sperm function as a
result of lipid peroxidation of the poly unsaturated fatty acids in the
head and mid-piece of the spermatozoon.

Studies have shown that the testis is sensitive to a variety of
stressors and exposure to such agents induces germ cell apoptosis
[95,96]. Apoptosis is s process by which the body maintains a cellular
balance through regulated cell death. Disturbances in the physiological
process of apoptosis result in diseases [97] including infertility [98] or
cancer [99]. It must be remembered that the principal function of
testicular apoptosis is to help maintain tissue homeostasis during
spermatogenesis [98]. It has been hypothesized that that apoptosis
limit the germ cell population and prevents maturation of aberrant
germ cell [100]. Apoptosis results in chromatin condensation,
resulting in a free –OH group at the 3’end of the deoxyribose sugar of
the condensed DNA [97,101].

Oxidative stress has been associated with a decrease in SOD activity
as a decrease in a germ cell-specific SOD mRNA was observed after
Cryptochidism [102]. The testicular function is primarily controlled by
local and endocrine cells through interrelationships between the
hypothalamus, pituitary and testis in hypothalamic-pituitary-testicular
axis. While normal reproductive function is vital to procreation and
sexual satisfaction in humans, reproductive dysfunctions on the other
hand possess a major health challenge to couples. Studies have
revealed that among male with reproductive dysfunction, oxidative
and nitrosative stress play key roles [103-105]. It has been shown that
oxidative and nitrosative stress has deleterious effect on normal
spermatogenesis and sperm qualities such as motility, capacitation,
acrosome reaction, egg penetration and de-condensation of sperm
head [103-107].

Furthermore, studies have shown that normal and vital sperm
functions require a low level of endogenous ROS activities [108,109].
However, high ROS/RNS compromises the germinal sperm cells
activities. Mammalian spermatozoa are reported to be extremely
sensitive to oxidative stress (a net increase in ROS level within the cell)
[94]. These high levels of ROS therefore adversely affect normal sperm
production and quality by interacting with membrane lipids, proteins
nuclear and mitochondrial DNA [110-112]. The lipid peroxidation
may damage membrane integrity resulting in increased cell membrane
permeability leading to enzyme inactivation, structural damage to
DNA and cell death [113]. Thus it becomes imperative that generation

of Reactive Oxygen Species (ROS), in male reproductive tract has
become a real concern because of their toxic effect, at high levels on
sperm quality and function [114].

Environmental and Chemical Risk Factors of Male
Infertility and Cancer

Environmental contaminant exposure can cause oxidative stress in
the testis, leading to apoptosis in germ, sertoli and Leydig cells.
Toxicants triggers oxidative stress induced testicular apoptosis
through specific pathways [99]. Thus environmental agents can
stimulate or inhibit apoptosis [115]. Environmental agents can cause
elevation in ROS levels and decrease ROS-scavenging antioxidants
causing oxidative imbalance in the testis thereby altering key processes
like apoptosis, spermatogenesis and steroidogenesis. Studies have
indicated common mechanism such as up-or down–regulating
expression of apoptotic related proteins in addition to directly
triggering apoptosis in spermatocytes [116,117]. Loss of normal
programmed cell death is a common mechanism in metastasis.

Studies have suggested important roles of environmental and
lifestyle factors in testicular carcinogenesis [118,119]. Similarly,
maternal lifestyle is known to influence son’s reproductive function.
Particularly, maternal smoking [120] and alcohol consumption during
pregnancy can be harmful to the developing testicles [121].

Environmental compounds including fungicides, plastics,
pesticides, dioxin and hydrocarbons can inflict insults which can
promote the epigenetic transgenerational inheritance of fetal gonadal
sex determination [122]. Many of these chemicals are oncogenic
toxicants which can precipitate cell abnormalities such as epigenetic
changes that are in turn related to increased susceptibility to disease
[123]. Environmental epigenetic transgenerational inheritance
involved toxicants used in agriculture. Agricultural fungicide such as
vinclozolin and pesticide such as methoxychlor were observed to affect
gonadal development and function in the offspring. Increased
spermatogenic cell apoptosis and prostate carcinoma have been
reported after exposure to vinclozlin. Similarly, methoxychlor; a model
environmental endocrine disruptor with estrogenic and anti-
androgenic activity has been used to replace DDT for application on
agricultural crops and livestock [124]. Its estrogenic and anti-
androgenic property will adversely influence androgen sensitive
cancers including prostate and breast cancer. This chemical like other
phytochemicals has been reported to reduce animal’s fertility [124].

Genetic and Epigenetic Modifications of Male
Infertility and Cancer

Recent advances in genomics had validated the earlier believe that
genetic factor contribute to prostate cancer etiology, as genomes of
large numbers of individuals in Genome-Wide Association Studies
(GWASs) can be scanned rapidly. Studies reported to date revealed
that Single-Nucleotide Polymorphisms (SNPs) are scanned across the
genome with a fixed panel of thousands of SNPs, chosen on the basis
of regular intervals or SNPs chosen to represent independent variation
(tag SNPs) [125]. Study by Manolio et.al [126] has shown that GWAS
have discovered over 400 genomic regions in over 75 diseases or
human traits. GWAS of prostate cancer have provided strong evidence
of genome-wide significance [127-131]. Studies have reported an
association with a SNP (rs10993994) on chromosome 10q11.2, in close
proximity to the MSMB gene [127,131], this encode a prostatic
secretory protein 94 (PSP94), which is also referred to as β-
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microseminoprotein. Another gene product of MSMB is secreted in
the epithelial cell of the prostate gland. Both the PSP94 and the gene
product of MSMB, and its binding protein PSPBP, have been reported
to be serum markers for early detection of high-grade prostate cancer
[132,133]. These genes and its products are synthesis in the epithelial
cell of prostate gland and thereafter secreted into the seminal plasma
[134]. Study by Wu et.al [135] reported epidemiologic evidence
supporting the involvement of common genetic polymorphism in
MSMB gene in spermatogenic failure. These results thus suggest that
men carry the variant have increased risk of spermatogenic failure
associated with male infertility.

Clinical Condition that may Promote Infertilty and/or
Cancer

Testicular dysgenesis syndrome; a theoretical construct that
attempts to relate environmental modulators, genetics, and infertility
in the development of testicular cancer are clinical condition that have
been implored to explain relationship between male infertility and
cancer of male reproductive organ [53]. Infection, inflammation and
enlargement of reproductive organs such as benign prostate
hyperplasia (BPH) are other clinical condition that may increase the
risk of both male infertility and prostate cancer. Testicular dysgenesis
syndrome; manifested by conditions such as cryptodhidism, impaired
spermatogenesis, hypospadias and testicular cancer are implicated as
risk factors for either male infertility or testicular cancer.
Cryptorchidism is an established risk factor for infertility and
Testicular Germ Cell Tumor (TGCT) [136]. Studies by Thorup et al.
[137] indicated that between 5-10% of men who develop testicular
cancer were or are cryptorchidism. In addition, Dalgaard et al. [138]
identified an association of subsets of these symptoms to genetic
factors, in particular between cryptorchidism and testicular cancer.
Several studies have supported that fetal origin of two symptoms of
testicular dysgenesis syndrome such as hypospadias and
cryptorchidism and provided evidence that testis cancer is of
developmental origin [139-141]. Some of these studies suggested that
the precursor cells of testis cancer, carcinoma in situ testis (CIS) are
similar to fetal gonocytes. There is however an evidence to suggest that
most cases of testicular dysgenesis syndrome are because of
environmental factors thus supporting the hypothesis that both
environmental and genetic factors can cause dysgenesis of the fetal
testis. Furthermore, decreased functions of sertoli and leydig cells are
assumed to be responsible for both impaired germ cell differentiation
and androgen insufficiency [142]. Thus testicular dysgenesis syndrome
may therefore lead to early symptoms, such as undescended testis and
hypospadias, as well as late effects such as testicular cancer and
infertility [142]. One of the mildest manifestations of testicular
dysgenesis syndrome may probably be impaired spermatogenesis
without other symptoms, however in some cases; low testosterone
levels are also observed [143].

Conclusion
Observations from different studies suggest a link between

infertility and testicular cancer. Studies have shown that both
infertility and testicular cancer are probably the late symptoms of
testicular dysgenesis which is in most cases genetically or/and
environmentally mediated. Although, there is no known direct link
between infertility and risk of prostate cancer, never the less, the
pattern of prostate cancer between these groups has been shown to
differ. Thus, while infertility and testicular cancer goes neck and neck,

it can still not be clearly stated that infertility is a forerunner of cancer
or vice vasa. However, several mechanisms implicated in the etiology
of male infertility are now known to predispose to prostate or
testicular cancer.
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