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Introduction 
Iron is a fundamental element for sustaining life [1]. It is an essential 

component of many proteins and enzymes that are essential for cell 
growth and replication [2-4], and its depletion causes G1/S arrest and 
apoptosis [5]. Iron exists in two oxidation states, the ferrous (Fe2+) and 
the ferric (Fe3+) forms, and plays key roles during the generation of 
Reactive Oxygen Species (ROS) through the Fenton reaction [6]. The 
formation of ROS including OH- radicals leads to reactions with DNA, 
proteins and lipids, thereby inducing mutations and cellular damages 
[7-9]. Evidence from epidemiological, animal, and cell culture studies 
support the role of iron in carcinogenesis of several tumors [10]. Here 
we review the relationship between iron transport and metabolism and 
leukemia.

Iron Transport
Intestinal epithelial cells have two different iron transporters: one 

in the apical membrane and one in the basolateral membrane. Once 
Dcytb, a ferrireductase, converts Fe3+ to Fe2+, it can be transported 
into the cell through the Divalent Metal Ion Transporters (DMT1) 
that are expressed on the apical pole of enterocytes in the proximal 
duodenum [11,12]. Uptake of Fe through DMT1 is regulated by the 
Iron-Regulatory Proteins 1 and 2 (IRP1 and 2). Both IRP1 and IRP2 are 
able to recognize and bind to Iron-Responsive Element (IRE), a highly 
conserved 28-nucleotide sequence motif in the untranslated region of 
mRNAs encoding proteins involved in the iron metabolism. These IRE-
containing mRNAs include the Transferrin Receptor 1 (TfR1), ferritin, 
and Ferroportin-1 (FPN1) [13,14]. 

After being transported into enterocytes, these forms of Fe are 
consolidated to form the intracellular labile Fe pool (LIP) [15]. From 
the LIP, Fe can be exported into the circulation via FPN1, a major 
transporter involved in cellular Fe release [16]. FPN1 expressions 

are regulated by IRP/IRE interactions and hepcidin, a Fe regulatory 
hormone [17-20].

To avoid high level of free iron, TfR1 binds to free iron and forms a 
di-ferric Tf-TfR1 complex, which is then transported into cells. Fe3+ is
released from Transferrin (Tf) after a decrease in pH in the endosome.
The Fe3+ is reduced to Fe2+ by an endosomal ferrireductase, a Six-
Transmembrane Epithelial Antigen of the Prostate3 (Steap3), and then
transported into the cytoplasm by DMT1 [21, 22]. In the cytoplasm,
Fe enters the LIP and is subsequently stored in ferritin or used in the
production of Fe-containing proteins [23].

Iron in Carcinogenesis
Carcinogenicity of iron-containing compounds has been clearly 

demonstrated in animal experiments [24]. The first supporting evidence 
of iron’s carcinogenic property is the induction of pulmonary tumors 
in mice following exposures of iron oxides [25]. Spindle-cell sarcoma, 
pleural mesothelioma and renal cell carcinoma have also been induced 
in mice/rats by iron-containing compounds [24]. In addition, renal cell 
carcinoma can be induced by intraperitoneal injection of iron chelators 
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Abstract
Iron is an important regulator of cell growth, apoptosis and enzymatic functions. Many cancers, including soft 

tissue sarcoma, mesothelioma, renal cell carcinoma, colorectal cancer, gastric cancer, lung cancer, hepatocellular 
carcinoma, and endometriosis have been associated with iron overload. Iron metabolism is also affected in leukemia, 
and iron chelators can inhibit proliferation of leukemia cells.

Lipocalin 2 (LCN2) is an iron transporter that plays important roles in cellular metabolism, growth and 
differentiation, and host immune response. Siderophores are small iron-binding molecules that facilitate microbial 
and mammalian cells iron transport. Type 2 Hydroxy Butyrate Dehydrogenase (BDH2), a member of the short-chain 
dehydrogenase family, is a rate-limiting factor in the biogenesis of the mammalian siderophores. In our previous 
studies, we reported that LCN2 is a good prognostic marker in patients with Cytogenetically Normal Acute Myeloid 
Leukemia (CN-AML), and BDH2 predicts poor prognosis in CN-AML patients. Expression levels of both LCN2 and 
BDH2 genes are independent from other well-known gene alterations and clinical characteristics of CN-AML patients. 
They may - (pass through does not make sense) induce or inhibit apoptosis during Reactive Oxygen Species (ROS) 
challenges. We have also demonstrated that higher BDH2 expressions are associated with a greater chance of 
leukemic transformation in myelodysplastic Syndrome (MDS) patients. Since the level of BDH2 expression directly 
correlates with the serum ferritin concentration in MDS patients, iron metabolism may have important roles in tumor 
transformation.

In this review, we summarize evidence of how iron metabolism and iron transporters influence the prognosis of 
leukemia.
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[26-28]. In humans, hepatocellular carcinoma, malignant mesothelioma 
(iron in asbestos fibers), colorectal cancer, stomach cancer, lung cancer 
and ovarian endometriosis have been associated with iron overload 
[10,24,29]. Possible mechanisms of iron carcinogenesis include iron-
mediated ROS damage, iron-induced oxidative responsive transcription 
factors like Activator Protein-1 (AP-1), and Nuclear Factor Kappa 
B (NFkB), affecting signal-regulate kinases (ERKs) such as Stress-
Activated Protein Kinases/c-Jun NH2 terminal Kinases (SAPK/JNK), 
and p38 Mitogen-Activated Protein Kinase (MAPK) , cell cycle growth 
and immune system [30-36].

Long-term iron overload are detected in at least 14% of children 
after therapy for acute lymphoblastic leukemia and 15 to 20% of adults 
of acute leukemia based on studies with small sample sizes. In acute 
leukemia and bone marrow transplantation patients, iron overload is 
related to liver dysfunction [37-39]. Acute myeloid leukemia (AML) 
is a heterogeneous disease resulting from unrestrained proliferation 
of undifferentiated myeloblasts [40]. In AML cell lines and primary 
cells studies, iron chelating therapy induces the differentiation of 
leukemia blasts and normal bone marrow precursors into monocytes/
macrophages in a manner involving modulation of ROS expression 
and activation of MAPKs. Iron chelating agents induce expression and 
phosphorylation of the vitamin D3 receptors, and iron deprivation 
and vitamin D3 act synergistically [41]. Iron depletion by chelators 
inhibits the proliferation cancer cells, including leukemia cells [42-
46]. Ohyashiki et al. reported that K562 cells treated with deferasirox, 
an oral iron chelator, revealed up-regulation of Cyclin-Dependent 
Kinase Inhibitor 1A (CDKN1A) encoding p21CIP, genes regulating 
interferon, Growth Differentiation Factor 15 (GDF-15) and Regulated 
in Development and DNA Damage Response (REDD1). REDD1 
functions up-stream of tuberin to down-regulate the mTOR pathway 
and thereby inhibits proliferation of leukemia cells [47]. 

Lipocalin 2 and Leukemia
Lipocalin 2 (LCN2, 24p3) is a 24-kDa secreted glycoprotein 

that serves several functions mediated by environmental, metabolic 
(associated with hyperlipidemia, obesity, and insulin resistance), and 
developmental factors [48]. Increased LCN2 expression can cause a 
widespread immune reaction through activation of the innate immune 
system, while LCN2 knockout mice were significantly more susceptible 
to bacterial infections than control animals [49-54]. LCN2 functions 
as an iron transpoter, and iron-loaded 24p3 increases intracellular 
iron concentration without promoting apoptosis. Iron-lacking 24p3 
decreases intracellular iron concentrations, which induce expression of 
proapoptotic protein Bim and result in apoptosis [55]. In 2012, Correnti 
and coworkers proposed an opposite view that LCN2 does not induce 
cellular iron efflux nor stimulate apoptosis. They showed that stably 
expressed murine LCN2 FL5.12 and 32D.3 cells underwent apoptosis 
in response to the addition of iron chelator, DFO [56]. 

Several studies have shown that LCN2 is also related to cancers 
[57,58]. Yang et al. reported that an increased intensity of LCN2 
staining in either the tumor site or the stroma area correlated with 
advanced stages of breast cancer and the metastatic status. In a Chronic 
Myeloid Leukemia (CML) cell line, BCR-ABL oncoprotein drives 
persistent secretion of LCN2, which targets normal hematopoietic 
cells for apoptosis [59,60]. Leng et al. showed that LCN2 is required 
for leukemia development, as BCR-ABL-positive bone marrow cells 
lacking LCN2 expression failed to cause disease in recipient mice with 
intact bone marrow [61]. The receptor for LCN2 is down-regulated 
in BCR-ABL-positive leukemia cells [55]. Furthermore, 24p3 (mouse 

LCN2)-mediated apoptosis has been shown to play a critical role in 
imatinib-induced cell death [62]. These studies suggest that LCN2 is 
associated with cancer development. 

In our previous study, we found that LCN2 expression is a favorable 
prognostic factor of overall survival in cytogenetic normal de novo 
AML patients, independent of FLT3, NPM1 and CEBPA mutation status 
[63]. The LCN2 expression also increased when patients demonstrated 
complete remission. In a leukemia cell line study using MV4-11 cells 
with FLT3-ITD, LCN2 demonstrated protective role under oxidative 
stress and cytarabine treatment. However, LCN2 overexpression 
resulted in elevated apoptotic rate among THP1 cells under oxidative 
stress and cytarabine treatment compared with empty vector 
transfected control cells. This has also been observed in OCI-AML3, 
a leukemia cell line with NPM1 mutation [63]. A possible explanation 
for this phenomenon is that LCN2 works as a pro-apoptosis factor and 
enhances apoptosis under oxidative stress and cytarabine treatment, as 
evident by leukemia cells without FLT3-ITD. However, leukemia cells 
with FLT3-ITD compensate the pro-apoptosis effect of LCN2, resulting 
in resistance of intensive chemotherapy. When treating with an iron 
chelator, DFO, LCN2 showed protective effect of apoptosis on all of 
these cell lines [63].

BDH2 and Leukemia
Siderophores (2, 5- dihydroxybenzoicacid, 2, 5-DHBA) are small 

iron-binding molecules that facilitate microbial and mammalian cells 
iron transport. Type 2-hydroxybutyrate dehydrogenase, BDH2, a 
member of the short-chain dehydrogenase family of reductases, is a 
rate-limiting factor in the biogenesis of the mammalian siderophore. 
The key physiologic implication of BDH2 is that iron-mediated post-
transcriptional regulation of hBDH2 controls mitochondrial iron 
homeostasis in human cells [64]. Human BDH2 (DHRS6) is also 
an enzyme that participates in the citric acid cycle metabolism and 
ketogenesis, which may play crucial roles in promoting tumorigenesis 
[65-67]. In our previous study, we found that BDH2 is a weak prognostic 
risk factor, independent of other genes alternation, including NPM1, 
FLT3-ITD, CEBPA, IDH1/2, DNMT3A, MLL, ERG, NM1, miR-181a 
and miR-3151 in Cytogenetic Normal AML (CN-AML) patients. A 
lower level of BDH2 expression in leukemia cell lines results in a greater 
sensitivity to ROS induced apoptosis [68]. Wharton et al. reported 
that mitochondrial iron loss from L1210 cells, a mouse lymphocytic 
leukemia cell line, may be injured by activated macrophages [69]. In 
normal human cells, a portion of the cytoplasmic free iron pool is 
composed of the iron-siderophore complex, which is also the form of 
iron imported into mitochondria. Iron-replete conditions destabilize 
hBDH2 mRNA, leading to reduced siderophore levels. As a consequence, 
mitochondrial iron concentrations diminish [64]. Correnti et al. 
proposed an experiment that there was no apoptosis when 2, 3-DHBA 
and 2, 5-DHBA were added to stably expressed murine LCN2 FL5.12 
and 32D.3 cells culture [56]. Siderophores function as iron transport 
modulators that are controlled by cytoplasmic iron concentrations and 
PH levels in cell cytoplasm. It is not known whether they can function 
equally well extracellularly.

Myelodysplastic Syndrome (MDS) is a disorder of hematopoietic 
stem cells. In MDS patients, leukemia progression is associated with 
iron overload. We have shown that MDS patients with a higher level 
of BDH2 expression exhibited a higher leukemia transformation rate 
compared with those with lower BDH2 expression (15% vs 3.18%, 
P=0.017). The BDH2 mRNA expression level also correlated to serum 
ferritin level (P=0.049). In CN-AML patients, BDH2 functions as 
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an anti-apoptosis factor through survivin, and BDH2 knock-down 
leukemia cells showed cell cycle retardant [68,70]. 

Conclusion 
Imbalance of iron metabolism has been associated with several 

cancers including leukemia. LCN2 is an iron transporter and has 
functions related to metabolism and immune response. BDH2 is a 
rate-limiting factor in the biogenesis of the mammalian siderophore. 
Siderophore binding with LCN2 can transport iron between cytoplasm 
and mitochondria. Lower LCN2 and higher BDH2 expressions are 
associated with poor survival in CN-AML patients. In contrast, higher 
rates of leukemia transformation are seen among patients with high 
BDH2 expression, and the BDH2 mRNA expression correlates with 
serum ferritin level. Finally, the function of BDH2 and LCN2 in 
leukemia may depend on intracellular iron concentration.
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