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Abstract

Yamanaka and Takahashi’s astonishing discovery in 2006 revolutionized the world of stem cells. Simplicity and
reproducibility of IPSC’s cells opened doors for extensive therapeutic advancements and potential clinical trials
particularly in the field of Regenerative medicine. In 2012, nobel prize was presented to both researchers for the
breakthrough in reprogramming somatic cells to a pluripotent state with the expression of “Yamanakas cocktail” of
OKSM quartet transcription factors: sex determining region y box2 (sox2), octamer binding transcription factor4
(oct4), krupple like factor (klf4) and myelocymatosis oncogene (c-myc). Rationale of iPS use is attributed to its
unlimited cell source circumventing ethical hindrance. This comprehensive review will summarize mechanisms of
IPS production and cell therapy applications. Moreover, appreciate the improvements and initiatives in iPS
technology, scrutinize the scientific claim of indistinguishable resemblance of iPS and eSC, evaluate the constraints
during iPS manipulation and analyze safety of these pluripotent cells in clinical scenarios.
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Introduction
Genetic manipulation of somatic cells led to the discovery of iPS

which could differentiate into all three primary germ layers
(endoderm, ectoderm and mesoderm) [1,2]. IPS generated by the
OSKM transcription factors appeared morphologically similar to eSC
and exhibited similar gene expression profiles and selfrenewal
characteristics [3-6,]. iPS can be identified by immunohistochemistry,
RT-PCR and expression of immunological cell surface markers such as
stage specific embryonic antigens (SSEA), Tra-1-60 and Tra-181 [1,7]

Benefits of iPS are due to cells being highly proliferative,
biocompatible and universally accessible. iPS have aided in disease
remodeling “disease-in-a-dish”, drug screening and designing tailored
therapies for individual patients [2,8,9]. For therapeutic purposes
disease specific iPS of any lineage can be generated [1,9]. Since IPSC’s
are autogeneically available, both immunological compatibility and
ethical constraints are bypassed [10].

Downside of iPS usage is retention of an epigenetic memory of their
cell of origin which affects the differentiation process [9-12]. Somatic
cell nuclear transfer and transcription factor based reprogramming

methods yield induced pluripotent cells and simultaneously reset
genomic methylation.

Discernible gene expression patterns and DNA methylation patterns
were observed in a study on hiPSC derived from fibroblasts, adipose
tissue and keratinocytes [13]. Low passage induced pluripotent stem
cells derived by factor based reprograming harbor low passage residual
DNA methylation signatures characteristic of their somatic tissue of
origin, which promotes differentiation along lineages related to the cell
of origin, while restricting alternative cell fates. Such an “epigenetic
memory” of the donor tissue could be reset by differentiation and
serial reprogramming, or by treatment of iPSC with chromatin
modifying drugs. Another experiment corroborated this conclusion
that in a given iPS clone DNA methylation patterns could indicate the
origin of the former phenotype [2,14]. Furthermore, undifferentiated
iPS remaining at site of interest expand into a teratoma [2,9,15].
Teratoma has become the gold standard assay to define bona fide
induced pluripotent stem cells capable of generating tumoral
disorganized structures containing tissues representing the three germ
layers. Despite the importance of this assay to prove pluripotency the
underlying mechanism of teratoma transition to teratocarcinoma in
vivo is not yet understood. There is no standard procedure to test/
characterize teratomas to control puripotency. This needs to be further
tested as characterizing teratomas is crucial in a therapeutic patient
based iPS treatment.

Literature Review

Transcriptional regulators
Commencing with a pool of 24 pluripotency associated candidate

genes Yamanaka identified minimally required core set of 4 genes: the
OSKM cocktail to generate iPS from mouse fibroblasts through
retroviral transduction [6,8,10]. However, overexpression of these
regulators exhibited neoplastic potential which has been validated in
various researches. Aberrant expression of oct4 is linked to
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hepatocellular carcinoma and murine epithelial dysplasia [10,16,17].
Sox2 overexpression has been reported in serrated polyps, mucinous
colon carcinoma, human squamous cell lung tumours [18,19]. Elevated
expressions of klf4 is linked to breast cancer and the cmyc oncogene
has strong correlation with various human cancers [19]. This incited
search for less carcinogenic gene set sufficient for reprogramming.
Substitution of klf-4 and cmyc was necessary due to extensive
malignant potential. Yamanakas group also identified that myc is
unnecessary for generation of iPSC’s [20]. Essrb, orphan nuclear
receptor, found in ES cells is reported to replace klf-4 [10,21]. P53
blockade also allowed reprogramming in the absence of klf-4. Yu et al.
utilized Homeobox protein NANOG and RNA binding protein LIN-28
along with oct4 and sox2 to generate IPSC’s from human somatic cells
[15]. NANOG doesn’t trigger reprogramming but is essential for
acquiring state of full pluripotency [22].

Reprogramming enhancers
Frequency of iPS production is typically well below 1% imposing

limitations to mechanistic studies and clinical translation. Myc family
including L-myc and N-myc enhance reprogramming but is
disregarded due to its oncogenetic nature. Use of Glis-1, NANOG and
Sall-4 have shown to promote direct reprogramming of somatic cells
[23,24]. NANOG augments the reprogramming efficiency which is
quantified by NANOG positive colonies in a cell culture [21].

Furthermore, small chemical compounds which either affect
chromatin modifications or transduction pathways enhance
reprogramming or replace transcription regulators include i)
BIX-01294, histone lysine methyltransferase inhibitor [25]. ii) TSA and
SAHA, deacetylase inhibitors [26]. iii) AZA and RG108, DNA
methyltransferase inhibitors [26,27] iv) BayK8644, L-type Calcium
channel agonist [25] v) Dexamethasone, steroid glucocorticoid [26].
vi) PD0325901 and CHIR99021, inhibitors of the MEK and GSK
respectively [28,29]. vii) A-83-01, TGF β inhibitor [30].

Mechanism of iPS Generation
Comprises of integrating vectors, non-integrating vectors, excisable

vectors and vector-free systems. Conventional viral integrating systems
(retroviral transduction) were commonly employed to generate iPS
from mouse fibroblasts or human somatic cells [6,7,10,31]. Retroviral
integration into host genome requires high division cycles which is
observed in a narrow spectrum of cells [10,32]. Retroviral vectors
constitutively express transgenes under the control of promoter
localized in long terminal repeat (LTR) which is terminated once the
somatic cell transforms into its pluripotent state [8,10,32,33]. Partially
reprogrammed cells show increased levels of exogenous pluripotent
transgenes found in the retrovirus though fully reprogrammed cells
exhibit constant retroviral attenuation [34]. Decrease in exogenous
expression of oct4, sox2, klf4 and c-myc is reported in the retroviral
construct as cell approaches pluripotency correlating with a decline in
reprogramming efficiency. Due to above mentioned pitfalls,
lentiviruses have been utilized for iPS generation but they lead to a
differentiation blockade since they are less efficiently silenced in
pluripotent cells than retroviruses [9,13]. Doxycycline-inducible
lentiviral vectors have aided in selection of fully reprogrammed cells
since drug withdrawal halts proliferation of exogenous factor
dependent cells [33,35]. Nevertheless, issues of insertional mutagenesis
and leaky transgene expressions due to retroviruses which precipitate
harmful effects if considered in a therapeutic in vivo setting led to

exploration of non-integrating (viral-free) systems for iPS generation
[6,8,10].

Non-integrating systems
Viral integrating methods of iPS generation are unsuitable in a

clinical setting. With application of adenoviruses, sendai viruses,
expression plasmids, episomal vectors, liposomal magnetofection and
minicircle vectors various virus free iPSC lines have been formed by
passing the risk of insertional mutagenesis. Although non-integrating
systems are safer than conventional use of viruses for delivery of
reprogramming factors this system has limited application due to low
grade efficiency [36-42].

Excisable vectors
Cre-loxP technology: The Cre-loxP system provides an optimized

protocol for generating transgene free human induced pluripotent cells
with retroviral transduction of a single vector consisting of the coding
sequence of transcriptional regulators linked via picornaviral 2A
plasmids [6,9,43]. Once reprogramming is achieved, this cassette is
excised by mRNA transfection with Cre-recombinase. Ease and
efficiency of CreloxP system with minimal genomic modification
facilitates the reprogramming process of transgene free iPS.
Cremediated excision of the provirus eliminates all transgenes but lox-
P remnants are found at each integration site, possibly distressing the
neighboring genes [44].

Piggy bac transposons: This system requires only inverted terminal
repeats flanking transgene and temporary enzymatic expression which
catalyzes introduction and excision of mobile genetic elements from
the host genome [9,45]. Benefitting from the natural propensity of the
piggy-bac systems seamless excision, it is validated that each PG
insertion can be removed from fully reprogrammed iPS cell lines.

Vector free systems
Reprogramming proteins: Genomic manipulation is unavoidable in

DNA-based reprogramming, so alternate systems suggested
application of proteins as delivery tools for the generation of
transgene-free iPS [46]. By delivering Yamanakas cocktail of
transcriptional regulators fused with a cell-penetrating peptide (CPP),
Kim et al. achieved efficient iPS from human fibroblasts [47]. A study
on the midbrain dopaminergic (DA) neurons differentiated mouse
embryonic stem cells and protein based iPS, resulting in a stable DA
neuron-specific marker expression observed in the protein based iPS
[48]. An unsuccessful attempt at outgrowing stem cell like colonies
into iPS by reprograming proteins concluded that partial
reprogramming was a common response to protein-based
reprogramming technique [49]. In contrast use of self-penetrating
proteins and truncated proteins seems an attractive alternative [50]. It’s
unclear whether protein transduction can be used for adult cells [51].
Also, applicability of protein based iPS is restricted due to technical
difficulties in production and reprogramming inefficiency.

mRNA: Warren et al. exploited synthetic mRNAs for
reprogramming which resulted in higher efficiencies than the
established protocol [52]. However, increased workload and the need
of a tissue incubator with 02 controls are drawbacks of this system
[53]. Rosa et al. resolved the issues of interferon-mediated innate
immune response and poor protein yield by modifying the
ribonucleotides used [54].
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MicroRNAs have also shown to control pluripotency, escalating the
reprogramming process [6]. MiRNA 302 is of particular importance
and has been reported in various studies [55-58]. Mouse and human
miR302/367 iPS cells have exhibited similar characteristics to Oct4/
Sox2/Klf4/Myc-iPS cells, including pluripotency marker expression,
teratoma formation, and, for mouse cells, chimera contribution and
germline contribution [59]. MiR-155 has been identified as a key
player for the in vitro differentiation of iPSC toward hematopoietic
progenitors [60].

These improvements in reprogramming system have helped achieve
stable stem cell lines with high efficiencies. However, their potential in
human iPS is still under research and careful monitoring of proteins
and mRNA interaction with each transcription factor in adult iPS still
needs to be evaluated.

Optimized Cell Cultures: Feed Less, Discover More
Since the revolutionary discovery began by the stem cell pioneer

numerous methods were introduced and routinely undertaken to
manufacture stem cell lines. However optimized conditions to achieve
ideal iPS lines for human therapies are yet to be designed. Despite the
tremendous potential of iPS technology, several issues with iPS
manufacturing have been identified. Feeder cells for iPSC maintenance
in culture have impeded the translation of this innovative technology
into clinical therapy because of their xenogeneic constituents. To
overcome these ethical barriers, use of synthetic coatings and
bioreactors that support proliferation of iPS in xenogeneic-free
environment have been suggested [2,61]. Generation of iPS from adult
adipose stem cells in feeder free environment is made possible by
switching to mTeSR1 culture medium [62]. Application of a cost
effective, high quality E8 medium has also supported higher
reprogramming efficiencies for viral and episomal approaches. Freshly
isolated fibroblasts in E8-based fibroblast medium on vitronectin have
consistently reprogrammed at a higher efficiency (60 to ~1,000 iPS cell
colonies per 106 transfected fibroblasts) than the commercially
available established stem cell lines [63]. E8 medium supporting higher
reprogramming efficiencies for both viral and episomal approaches has
been validated [64].

Reprogramming events require mechanical isolation of iPS for
colony expansion with major contamination by unreprogrammed
somatic cells. Colony picking though prone to bacterial contamination
has been routinely used to enrich stem cells but becomes impractical
when numerous lines are considered. Dual advantage of E8 medium
and the EDTA dissociation method has unveiled a faster expansion of
large cell volume cultures. Furthermore, EDTA dissociation has
enabled enrichment of potential iPSC’s in an overcrowded
reprogramming culture in which otherwise a routine secondary
passaging is needed [64,65].

Sigma aldreich’s PluriSTEM and human ES/iPS medium is a
specially formulated defined media utilizing activin-A, tgfB1 and bFGF
which aids in promoting stem cell self-renewal with increased cell
viability and enhanced cell proliferation in single cell passaging. This
feeder-free, serum free culture system requires less cell feeding
lowering down the total cost and culture period [66].

iPS lines need to be strictly generated under GMP (Good
manufacturing practice) system protocols if considered for use in a
clinical setting. GMP system ensures products are continuously
produced and controlled according to quality standards. Thus,
minimizes the risks related to pharmaceutical production that cannot

be eliminated through testing the final product. To date, no fully
cGMP-compliant cell line has been reported where the entire
manufacturing process, from tissue sourcing to cell expansion and
banking processes as well as documentation, raw materials, staff
training, cell therapy facility, and quality control (QC) testing is
validated [67].

Recently a biotech company, Lonza put forth a novel, robust and
reproducible GMP compliant reprogramming guide which could
bypass quality control impediments for efficient iPS production.
Lonzas Nucleofector™ technology for efficient, non-viral delivery of
reprogramming factors to the L7 Culture System for feeder-free, xeno-
free culture of human iPS, is currently being utilized by leading
scientists all over the world [68].

Widespread iPS Applications

Disease remodeling
Researchers worldwide are struggling to understand the mechanism

of action of various debilitating diseases and remedies to fight them.
Previously experimental animal models have been exploited to
understand the underlying mechanism of various human pathologies.
However marked differences in biochemical variation, anatomical
complexity and physiological responses limit the evaluation of new
therapies in humans. Mice have become the gold standard for research
but simply put mice aren’t humans. Stem cells have been employed to
recapitulate pathologies in vitro commonly referred to as “disease-in-a-
dish” [69]. The iPS technology can improve our interpretation of the
combined effect of genetic malfunctioning and environmental changes
on the severity of diseases. Power of iPS technology lies in
understanding mono and polygeneic pathologies through disease
remodeling [70]. iPS allows a deeper insight by capturing the disease in
its early stage and monitoring the cellular events throughout disease
development [9]. Moreover, patient specific iPS can help tailor
individualized therapies.

Numerous iPSC lines have been generated so far from pathological
diseases e.g., Degenerative illnesses like parkinsons disease [71],
alzeihmers [72] and amyotrophic lateral sclerosis [73]. Blood Disorders
such as sickle cell anemia [74], fanconis anemia [75], hemophilia A
[76] and β-thalassemia [77]. Genetic diseases: Downs syndrome [78],
familial dysautonomia [79] and Huntington’s disorder [80].

3D organoids
3D cell clusters depend on extracellular matrix in culture for self-

organization, resembling endogenous tissue architecture and
duplicating organ functionality [81]. These 3D functional organoids
have improvised our understanding of early human development and
improved drug screening methodologies organoids including mini gut,
mini heart (repopulating decellularized mice heart through iPS), mini
brain (developing cortex, central telencephalon and choroid plexus),
small lungs, mini eyes (optic vesicle like structures) have been
formulated for disease remodeling purposes [82-89].

Lack of vascularity, absence of native interactive microenvironment,
limited growth potential due to lack of constant nutrients, rigid nature
of ECM, absence of immune cells limiting the observation of
inflammatory response to drugs are associated pitfalls of these cell
clusters [81,90].
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Spinning bioreactors and shaking culture platforms have been
suggested to provide better nutrient supply and improve the growth of
organoids [91]. Co-culturing with endothelial cells has aided
vasculogenesis in organoids [92]. In vitro Organoids are the biggest
technological breakthrough that might in future overcome the dire
urgency of organ transplants for critically ill patients.

Gene editing implication in disease remodeling
Discovery of site specific nucleases Zinc finger nuclease (ZFN),

transcription activator-like effector nucleases (TALENs) along with
CRISPR-Cas9 system has enhanced gene editing efficiency in iPSCs by
rupturing the DNA double-strand at the site of gene modification
enabling knock to in/knock out of one or more genes [93]. High
system efficiency, ease of use and cheaper costs than predecessors has
made CRISPR-CAS a popular editing tool. Researchers can introduce
specific disease-causing alleles into wildtype iPSC’s with the assistance
of CRISPR-CAS and eliminate genetic defects in patient iPS for
isogenic controls in disease remodeling [94]. Successful progression of
iPS and CRISPR-CAS amalgamation is justified by stable iPS
proliferation and wholesome numbers of modified clones that can be
harvested after genetic modification in culture. Immunodeficiency
centromeric region instability, facial anomalies syndrome (ICF) and
pancreatic cancer models have been generated using the CRISPR-CAS
editing system [95,96]. Seamless gene correction of β-thalassemia
mutations in patient-specific iPSCs has been possible using CRISPR/
Cas9 system [97,98].

Drug screening platform
Drug testing is an enormous challenge faced by pharmaceutical

companies with a 90% failure due to unpredictable adverse effects

unidentified in the preclinical phase [99]. $2billion per drug is an
estimated cost of the entire process of drug screening. The average time
to introduce new drug to the market, from the start of clinical testing
to FDA approval, is 8.5 years, and the clinical success rate is 21.5%
[100]. Researchers can take advantage of recapitulating human
pathologies in vitro to evaluate cellular responses to different
chemicals. Moreover, any effective drug against hiPSC can be
compared with various cell lines of patients with similar pathologies to
validate results. iPS are a powerful platform for drug screening to
understand cellular responses to neurons, cardiocytes and hepatocytes
which are most susceptible to drug toxicity [101].

Drug development employs three main strategies after establishing
disease-specific iPS: high-throughput screening (HTS) of drugs,
candidate drug approach or patient-specific therapy [102]. In HTS,
extensive compounds are tested on differentiated cells, followed by
phenotypic analysis. Making use of large bank of compounds can help
identify therapies in vitro by this approach which is faster and
economically less burdening than conventional drug testing. By
contrast, both candidate drug approach and patient-specific therapy
use small numbers of potential drugs to attenuate the disease. These
approaches are useful when the disease mechanism is known and
potential therapies are available.

However, substantial safety assays are required before drugs
discovered by these methods can be prescribed (Figure 1).

Figure 1: Ongoing drug clinical trials. Reproduced from Nature [102].

Worldwide Banking Initiatives
Tedious large-scale efforts nationally and internationally are taking

place to build an iPS reservoir for therapeutic purposes. Californian
institute of regenerative medicine in San Francisco initiated cell
repository to bank iPS lines for research on childhood degenerative
illness, eye blindness and therapeutic purposes. The first 285 lines were
distributed by CIRM in September 2015. In 2013, CIRM awarded
Cellular Dynamics International Inc. (CDI) $16 million to create iPS
lines for each of 3,000 healthy and diseased volunteer donors across 11
common diseases and disorders to be made available through the
CIRM hiPSC Repository. CDI will expand each iPS line to generate
sufficient aliquots of high quality cryopreserved cells for distribution
via CIRM [103].

IMI is the world's biggest public-private partnership (PPP) in the
life sciences. The (EBiSC) European Bank for induced pluripotent Stem
Cells was a two-year project operated by IMI. EBiSC’s goal is to
establish a centralized facility where academics, biotech companies,
and big pharmaceutical companies can store and access high-quality,
well-characterized iPSC’s covering a range of disease areas as well as
cells from healthy donors. For its part, the bank will provide
standardized protocols for the storage, retrieval, culture, and
differentiation into different cells types, plus a searchable catalogue
where cells can be requested based on specific characteristics or disease
areas [104].

Another IMI project, StemBANCC (Stem cells for biological assays
of novel drugs and predictive toxicology) began in October 2012 and
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aims to generate 1500 iPS lines from 500 people by end of September
2017, characterize them in terms of their genetic makeup and
metabolic profiles. Moreover, make them available to researchers to
study various diseases including dementia and diabetes mellitus, allow
drug testing and efficacy for safer drug development. All cell lines will
undergo rigorous quality checks [105].

In a unique collaboration, both IMI’s EBiSC and Stem-BANCC
team members incited the search to improve understanding of a rare
pathology called inherited erythromelalgia (IEM). IEM is a debilitating
condition without adequate available medical treatment. It involves
patients suffering from extreme pain symptoms made worse by heat.
Underlying etiology is a genetic mutation leading to over activity of the
sodium channels in patients’ sensory neurons. Five subjects were tested
with an experimental drug targeting blockade of sodium channels to
reduce the pain experienced by IEM patients. Study concluded that
drug reduced pain upon exposure to heat in most sufferers. Same
patients allowed scientists to transform their blood cells into iPS,
which were deposited in the EBiSC project stem cell bank. Next, the
StemBANCC scientists transformed stem cells into sensory neurons
and evaluated their characteristics. Prior to drug therapy, neurons
exhibited hyper-excitability and increased response to heat: increased
severity of the disease led to increased number of hyperactive neurons.
Post treatment, hyper-excitability of tested neurons diminished,
mimicking the drug effect that occurred in patients. Rarely is it
possible for drug developers to scrutinize drug responses of the
relevant cells from individual patients involved in clinical trials of the
same experimental drug. These results illustrate the power of stem cell
technology to transform drug development, formulating therapies
tailored to individual patients. This bridges the translational gap
between preclinical models and clinical evaluation [106].

In UK, human induced pluripotent stem cell initiative (hiPSCi)
combines diverse constituents in genomics, proteomics, cell biology
and clinical genetics to form a national high content iPS resource for
interpreting cellular genetics. HiPSCi’s 2017 target is to generate over
500 iPS lines from healthy volunteers and several hundred lines from
individuals with genetic disease to discover the impact of genomic
variation on cell phenotype and identify new disease mechanisms.

Kyoto University’s Center for iPS Research and application (CiRA)
in japan has also invested heavily in developing an iPSC bank. Just 75
iPS lines will cover 80% of the Japanese population by 2020 says
Yamanaka, the leading director of (CiRA), Kyoto University [107].
Prior to clinical therapy, donor iPS can be matched to patients through
human leukocyte antigens haplotyping based on cell surface proteins
regulating immune responses. Yamanaka states that matched cells will
obviate the need of large doses of immunosuppressive drugs causing
cell rejection, the main hurdle faced during embryonic stem cell
therapy for transplantation.

HLA iPS banks will ensure safer therapies since this hybrid model
will select optimally matched cells producing closer to ideal graft
materials, minimizing the risk of immune responses [108]. In japan,
creating an HLA matched iPS bank was faster, cheaper and less tedious
as few as 50 stem cell lines could cater 90% of the Japanese populations
due to narrow genetic diversity [109,110]. In contrast, an iPSC bank
from 150 selected homozygous HLA-typed volunteers could match
93% of the United Kingdom population [108]. Although initial efforts
seem daunting with increased startup costs, HLA matched iPS cells
could reduce use of lifelong immunosuppression and improve patients’
quality of life.

An international collaboration in the form of GAIT (global alliance
for iPS based therapy) aims to formulate a GMP iPS-haplobank in
harmony with mutually recognized iPS banks for maximizing
utilization and offering hope in the future to facilitate iPS therapy
globally [111-113].

These dedicated efforts for developing and improving wide spread
availability of iPSC globally will help in developing innovative
therapies and provide limitless opportunities for scientists to scrutinize
underlying molecular mechanisms of genetic, epigenetic and
environmental pathologies (Figure 2).

Figure 2: A time line of iPS progression over the decade.
Reproduced from Nature Protocol [114].

Figure 3: Various IPSC banking initiatives [102].

Ips and Esc: Strikingly Similar Yet Remarkably
Different

Various researches have undergone to analyze iPS and eSC lines.
Great similarities emerged in histone modications and genome
expressions of these two cell lines [9,115]. Comparative transcriptome
analyses using microarray indicate that hESCs and hiPSCs are highly
alike on global scale, with gene expression patterns clustering together
[116]. Gene expression analysis study in mice revealed that majority
iPS formed low grade chimeras but only cells with an ESC equivalent
expression of the dlk1-dio3 locus exhibited high grade chimeras (the
key indicator of pluripotency) and generated all iPS mice after
blastocyst injection [9,117]. Despite the incomparable origin and
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generation methods, comparison of these cell lines is exceptional. This
could be attributed to the man-made nature of both cell lines. Cells
from the inner cell mass are to some degree manipulated under culture
conditions to generate ESC which are otherwise non- existent in
physiological conditions [118]. However, conflicting studies using
targeted bisulfite sequencing of three human ESC clones and four iPS
lines showed extensive differences in DNA methylation patterns
[118,119]. Expression microarrays have been used to report various
genes being differentially expressed in both stem cell lines [120]. IPS
and ESC debate is still on but the important concern should be
focusing on the functional characteristics of these cells in vivo as they
can be categorized as part of the same big experimental approach i.e.
the therapeutic potential of these cell lines in regenerative medicine in
the future (Figure 3).

Reprogramming Constraints: Fighting the “M Triad”
(Money, Mutations and Manufacturing)
The biggest hurdle in generating commercially available iPS is

extensive culture period and heavy burdening investments in the entire
process. A standardized protocol for cost effective production of iPS
has to be carefully formulated. Complexity of iPS application in field of
regenerative medicine has made manufacturing lengthy and tedious.
Cutting down costs is a problematic task which needs identification of
important factors which can be modified efficiently and those which
are absolutely necessary for iPSC fabrication. Mahendra and Anthony
suggested potential cost-effective strategies which can reduce financial
investments in iPS technology substantially.

• Defining iPS as an input material since it’s not the end product in
iPS therapy and should be regulated as other manufacturing
products.

• Fabricating stem cell lines under Good Manufacturing Practice
Protocols (already discussed).

• Developing a Drug Master File (DMF) accessible to investigators
that will dispense the need of repeated testing and validation of
material suppliers and assays. This would require companies to
share data or permit referencing to a DMF benefitting all involved
parties and cutting down costs effectively.

• Provide kits for iPS generation.
• Use modular manufacturing protocol and manufacture products

from same master cell bank.
• Calibrating material and developing comparability assays by

consensus.
• Widen approved use based on function of particular disease.
• Implement haplobanking.
• Simplification of the approval process already approved in other

areas.
• De-risk development [111].

Other pluripotency pitfalls
Various somatic mutations, copy number variations are associated

with iPS lines [121-123]. These potential complications are a hurdle in
iPS therapeutic applications. Extensive genetic screening would be
required to ensure safety of these cells in clinical scenarios. Genome
sequencing of hiPS cell lines will help screen out cell lines with
increased mutational load or mutations implicated in development,
disease or tumorigenesis. Thorough studies on mutation rates and
distributions during in vitro culturing and reprogramming of hiPS

cells will be vital to aid in establishment of clinical safety standards for
genomic integrity.

Discussion and Conclusion
Prior to commencing the 1st ever human clinical trial with iPSC,

rigorous safety trials (in mouse and monkeys) took place to validate
application of retinal epithelial sheets without subsequent
tumorigenesis [124,125]. The swift journey from skin to eyes started in
September 2014, when ophthalmologist Masayo Takahashi
collaborated with the stem cell pioneer Shinya Yamanaka and
transplanted RPE (retinal pigment epithelium) sheets generated from
patients iPS cells into the right eye of the female suffering from age
related macular degeneration. Takahashi had claimed to stop the
degeneration process and the patient experienced an improvement in
vision [126]. The trial was halted due to unexplained mutations
observed by Yamanaka in the transplanted RPE and the patients’ iPS
[126,127]. This trial proved that several safety assays need to be
established to validate preclinical studies before they are safe to begin
future clinical trials. Each reprogramming stage needs to be carefully
validated and monitored for future approval of any clinical trial with
iPS.

Despite the pitfalls of this system iPS holds great potential for
further improvement in advancing the field of regenerative medicine.
If gmp compliant manufacturing obstacles, financial hurdles,
reprogramming inefficiencies and genetic instabilities are overcome
iPS could be tailored for individualized therapeutic products. This road
to progress has been challenging yet still very promising. This world
has witnessed great revolutionary advancements owing to the massive
potential of these cell lines and will continue to do so in the near
future.
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