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Abstract
This review article discussed application of ionic liquids as matrices (ILMs) for mass spectrometry (MS). ILMs 

were applied for matrix assisted laser desorption/ionization, (ILMALDI-MS), electrospray ionization (ILMs-ESI-MS) and 
desorption corona beam ionization (DCBI-MS). Ionic liquids matrices provided several advantages such as low vapor 
pressure, have high stability for storage and under vacuum, extremely high sensitivity and showed low background or 
interferences. They are non-explosive, non-flammable and are thermally stable. The materials are promising for real 
measurements and require further investigations to improve the current performance. The combination between the 
conventional matrices and organic bases leaded to high ionization performance. The proton transfer efficiency of ILMs 
is higher than conventional matrices as the proton take place from the salt form. They were applied for many analytes 
such as biomarker, protein, peptides, polymers (synthetic and nature), small organic compounds and pharmaceuticals 
drugs.
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Introduction
Room-temperature ionic liquids (RTIL) are molten salts with 

melting point below 100 °C [1]. They have distinctive properties and thus 
they were used for catalysis [1-6], separations [7], mass spectrometry 
[8], and other [9]. They have been applied as ion pairing reagent for 
electrospray ionization mass spectrometry (ESI-MS) [10], solvent for 
liquid-liquid extraction [11], stationary phases for chromatography 
[12] and as solvents in electrochemistry [13]. The materials have
many properties that enhanced and improved the analysis using mass
spectrometry. In general, the typical mass spectrometer is consist of five 
parts; inlet for the sample, ion source, analyzer, detector and vacuum
[14-21]. The main roles of ionic liquids in mass spectrometry are
mainly focused in the improvement of the analyte ionization, as solvent 
[22] and as ion-pairing reagent for ESI-MS [10].

The present review is a tutorial article for researchers who seek about 
the application of ionic liquids for mass spectrometry. The article focus 
mainly on electrospray ionization mass spectrometry (ESI-MS), matrix 
assisted laser desorption/ionization mass spectrometry (MALDI-MS) 
and desorption corona beam ionization (DCBI-MS).

Principle of Mass Spectrometry
Mass spectrometry is analytical technique that is based on the 

ionization of the investigated target. The ionization could take place 
by electron with high energy (Electron impact mass spectrometry, EI-
MS), fast atom (fast atom bombardment mass spectrometry, FAB-MS), 
secondary ion (secondary ion mass spectrometry, SIMS), electrospray 
ionization (ESI-MS), laser desorption/ionization (LDI-MS), plasma 
desorption (PDMS) and matrix assisted laser desorption/ionization 
(MALDI-MS). The hard ionization methods such as EI-MS provided 
useful information for the compound structure elucidation. In contrast, 
soft ionization methods provided better ionization for thermal labile 
compounds such as protein, peptides, biomolecules, DNA, etc. (no 
fragmentations).

Laser desorption/ionization mass spectrometry is promising for 
many aspects. This technique can be used for solid material and for 
the analysis of surface. The latter application is important for direct 
analysis of biochips, thin film and thin liquid chromatography (TLC). 
The direct desorption/ionization using the laser (laser desorption/
ionization mass spectrometry, LDI-MS) produces many drawbacks; 

it is limited to the analyte that have high absorption of the laser 
energy. It caused also fragmentation of the analytes and consumes 
high laser energy. Thus, a small organic molecule (matrix) absorbs the 
laser energy and assist desorption/ionization process were used. The 
matrices offered a proton transfer with the analyte under investigation. 
Thus, the general prerequisites of effective matrices for MALDI are; 1) 
they must dissolve and co-crystallize with the target, 2) have suitable 
chromophoric groups that strongly absorb the laser radiation, 3) are 
stable for storage, 4) are stable under high-vacuum conditions, 5) 
suppress both chemical and thermal degradation of the analyte, and 
6) assist the ionization/desorption process of the sample [22]. The
ions after ionization were separated based on m/z in gas phase [23,24].
Thus, desorption/ionization process depends on the laser wavelength.
The most common laser is UV-MALDI (255 or 337 nm) [25]. It is
important to mention that most of these requirements are absent for
nanoparticles applications (surface assisted laser desorption/ionization
mass spectrometry (SALDI-MS) [26-44]. The organic matrices showed
often low spectra quality due to the number of unwanted adducts. They 
produced poor homogeneous sample spots [45]. Furthermore, some
of these matrices are unstable under vacuum. Benzoic acids matrices
were sublimed and leaved the sample before laser shots. This drawback
showed variation in the sample analysis with the time. Because of these 
drawbacks, a number of ILs was applied [46,47].

Ionic Liquids Matrices
In 2001, Armstrong et al. reported the first ILMs [22]. Almost all 

the requirements of conventional matrices were fulfilled in the ionic 
liquids because these materials were the salts of the common organic 
matrices such as 2,5-dihydroxy benzoic acid (DHB), 3,5-dimethoxy-
4-hydroxy-cinnamic acid (SA) or α-cyano-4-hydroxy cinnamnic acid
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(Figure 1). First, they have a significant absorbance of the laser energy. 
Second, they are able to undergo proton transfer with the investigated 
analyte. Third, they have low vapor pressure. Last but not least, they 
should not cause any fragmentation or form cluster formation. Thus, 
they served as effective matrices for MALDI-MS [22]. However, ILMs 
offered new advantages that absent in conventional matrices; First, the 
pH can be controlled by the selection of suitable organic base (Figure 1). 
The acidity of conventional matrices, 2,5-DHB (pKa=3.0) or α-cyano-4-
hydroxy cinnamnic acid (CHCA, pKa=1.2), may cause protein denature 
and cause fragmentation of the acid labile biomolecules. Absence of 
the acidic groups in ILMs may explain the absence of fragmentation 
using ionic liquid matrices. Second, the absorption of laser energy can 
be also tuned by the base type or concentrations. The addition of base to 
the organic acids caused bathochromic or hypsochromic shifts. These 
shifts depend on the base strength and its concentration [48]. Third, 
the ionic liquids matrices have low vapor pressure and thus they are 
green solvents (green analytical technologies). Fourth, the ion pair 
of ionic liquids matrices implies strong interaction with the desired 
analytes. The main interactions may be electrostatic or hydrogen bonds. 
These interactions offered good ionization of the mixture that contains 
analytes with different ionizability.

Understand the ionic liquids properties are very important and 
further characterization are highly required. The characterization of 
these materials may take place using different analytical tools included 
ultraviolet-visible absorption (UV-vis absorption), Fourier transform 
infrared (FTIR), nuclear magnetic resonance (NMR) and mass 
spectrometry included fast atom bombardment mass spectrometry 
(FAB-MS), laser desorption/ionization mass spectrometry (LDI-
MS), matrix-assisted laser desorption/ionization mass spectrometry 
(MALDI-MS), electrospray ionization mass spectrometry (ESI-MS), 
and field desorption mass spectrometry (FD-MS) [49-52]. These 
techniques are useful and may be used in the future to monitor the 
synthesis procedure [48]. UV-vis absorption characterization is 
important for MALDI-MS applications. The measurement may be used 
as pre-experiment to judge the performance of the ionic liquids before 
the MALDI-MS measurement. The UV-vis absorption may be tuned 
by the base properties (pKb) and its concentrations. The changes of UV 
absorption may be due to the polarization of the carboxylic moieties. It 
is important to keep in our mind that the proton transfer occurs from 
the salt and not from the carboxylic group of the conventional organic 
matrices.

Application of ionic liquids for mass spectrometry

Ionic liquids are used as ion pairing reagents for ESI-MS [10,53] 
and matrices for matrix assisted laser desorption/ionization mass 
spectrometry. 

Application of ionic liquids for MALDI-MS

Ionic liquids were used as effective matrices for MALDI-MS. They 
were applied for wide number of analytes such as lipids [49,54], proteins 
[55], peptides [7], sterols [54], oligonucleotides [56,57], polymers 
[22,23,58], carbohydrates [55], oligosaccharides and glycoconjugates 
[58] intact bacteria [47], and DNA oligomers [57]. 

Application of ionic liquids for proteomics

Analysis of protein is very important for clinical studies, medicine, 
biotechnology, etc. Mass spectrometry shows the fingerprinting (PMF) 
of the protein and offers simple and clear identifications. The protein 
analysis is aimed to achieve high sensitivity (low limit of detection, 
LOD), high signal-to-noise ratios, and prevention of unwanted adducts 
of the analyte proteins/peptides with matrix compounds or alkali ions 
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Figure 1: Formation of Ionic Liquid Matrices.

Figure 2: Photographs of (A) the solid CHCA matrix shows cracks, crystals, 
and numerous incongruities, and (B) the ionic liquid matrix shows homogenous 
spots. Image reprinted with Permission from Ref. [22].
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[58]. Armstrong et al. [22] reported the first application of ionic liquids 
application for bradykinin. ILMs were applied for the identification 
of tryptic digests of six model proteins and for identification of a 
protein extracted from a two-dimensional gel with the proteome of the 
bacterium Corynebacterium glutamicum [59,60]. ILMs were applied for 
wide mass detection range 1000 Da to 270,000 Da. The material offered 
high S/N, low limit of detection, and are soft ionization compared to 
traditional organic matrices. Thus, they are promising for the non-
covalent interactions between the monomers without disruption. The 
signal to noise ratio was varied based on the ionic liquids composition. 
The material offered homogeneous spots that is absent in conventional 
matrices. The formation of sweet spots in conventional matrices caused 
time consumption and cannot used for quantification analysis. Thus, 
ILMs severed for quantitative or semi-quantitative analysis. These 
analyses take place without the need of internal standards [61]. Ionic 
liquids matrices offered high sensitivity compared to the conventional 
matrices. For instance the analysis of sequence coverage of bovine serum 
albumin (BSA digests) explained clearly the high sensitivity of ILMs 
based on CHCA compared to the traditional CHCA crystalline matrix. 
Data showed high performance down to 1 fmol of BSA [62]. The main 
drawbacks of quantitative analysis of conventional matrices are due to 
the lack of homogenous spots that showed variation in the area under 
investigations (Figure 2). These challenges makes the quantitative 
analysis is difficult. However, quantitative or semi-quantitative analyses 
were achieved using ionic liquids. The quantitative analysis of peptide 
and protein were reported by Li and Gross [56] and by Bungert et al. for 
the screening of enzymatic reactions [63].

Ionic liquids matrices offered dual functions; solvent and matrices. 
They were used to improve the sample preparation for microfluidic 
deposition device [64]. Authors observed no solidification of ionic 
liquids matrices that provided a homogenous spots and small 
fluctuation of laser shots-shots (Figure 2). The homogeneous spots are 
not required only for semi-quantitative or quantitative analysis, but it 
is also important for the analysis of mixture. The analysis of protein 
using MALDI-MS is varied based on the molecular weights and the 
ionizability. Mixtures contain high ionizability molecules cause ion-
suppression for molecules with low ionizability.

Ionic liquids matrices based on two different conventional 
matrices (called sinapinic acid (SA) and DHB) were used to analysis 
a set of intact glycoproteins with several degrees of glycosylation [65]. 
Glycoproteins are very sensitive for the analysis using conventional 
matrices and showed fragmentation of these analytes. In contrast, ionic 
liquids showed no fragmentation and improved the reproducibility 
[65]. The efficiency of ionic liquids matrices as solvent improve the 
protein dispersion. The analysis of protein usually takes place from 
mixture. The mixture contains different protein/peptides with different 
miscibility. The conventional matrices (organic acids) usually are 
dissolved in aqueous mixture of acetonitrile or methanol. The difference 
in miscibility among these species showed different interaction and 
leaded to variation in the co-crystallization process. However, the ion 
pair of the ionic liquids and their solvation performance provided 
better homogeneity and produced strong interaction with almost all 
the species.

Ionic liquids for carbohydrates and oligonucleotides

Carbohydrates have the same challenges of MALDI-MS analysis. 
The analysis of carbohydrate is very sensitive compared to proteins. The 
functional groups in carbohydrate are mainly hydroxyl groups. These 
groups could undergo dehydration using the conventional acids. The 
carbohydrates mainly associate with other biomolecules such as proteins, 
peptides, lipids, etc. For instance, the analysis of sulfated and sialylated 

oligosaccharides showed dissociation of sulfate groups and sialic acids, 
thus ion species of intact molecules are hardly detected [66,67]. Ionic 
liquids such as 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic 
acid (CHCA) (3-AQ/CHCA), 1,1,3,3-tetramethylguanidium (TMG, 
G) salt of p-coumaric acid, and 3-AQ /2,5-dihydroxybenzoic acid (2,5-
DHB) were reported. The materials have been used for the analysis of 
carbohydrates or phosphopeptides. Among the different ionic liquids 
matrices, 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric 
acid (CA) (G3CA) suppressed dissociation of sulfated and sialylated 
oligosaccharides (Figure 3) [68]. Another types of ionic liquids such 
as 2,5-dihydroxybenzoic acid butylamine (DHBB), α-cyano-4-
hydroxycinnamic acid butylamine (CHCAB), 3,5-dimethoxycinnamic 
acid triethylamine (SinTri) were also reported [58]. The material 
showed no ion fragmentation (soft ionization), improved the shot-
shot reproducibility, and showed high stability. ILMs showed no 
fragmentation of labile groups [69]. Furthermore, they showed higher 
sensitivity in the positive and negative ion mode and offered high 
sensitivity (10 pmol). It was reported that ILMs (G2CHCA) and ILM: 
TMG salts of p-coumaric acid (G3CA) are promising for the analysis 
of sulfated/sialylated/neutral oligosaccharides in both positive and 
negative ion modes with low limit of detection [70,71].

Carbohydrates are poor ionized analyte compared to proteins. For 
instance, polyanionic oligosaccharides (dermatan sulfate (DS) and 
chondroitin sulfate (CS)) exhibited very poor ionization. Furthermore, 
they undergo thermal fragmentation through the loss of SO3 groups 
[69]. The proton transfer efficiency of the conventional matrices 
is week compared to the proton transfer in ionic liquids matrices. 
Guanidinium salt of α-cyano-4-hydroxycinnamic acid enhanced 
ionizability of these species without loss of its labile groups (SO3). 
Because the poor ionizability, these species are undetectable in 
mixture contains high ionizability species using conventional organic 
matrices. In contrast, ionic liquids matrices enhanced the ionizability 
and improved the detection in mixture (Figure 4) [69]. It was reported 
that N,N-diisopropylethyl ammonium α-cyano-4-hydroxycinnamate 
and N,N diisopropylethyl ammonium ferulate were the best matrices 
for carbohydrates [55]. Two ILMs matrices, 2-(4-hydroxyphenylazo) 
benzoate-1,1,3,3-tetramethylguanidinium and sperminium were 
evaluated for the analysis of heparin oligosaccharides and results 
showed no fragmentation [72].

ILMs were also used for ESI-MS as ion pairing for polysaccharides 
analysis [73]. Ionic liquids matrices assisted electrospray ionization 
mass spectrometry (ILMs-ESI-MS) provided high spectra quality 
compared to the conventional ESI-MS. The improvement is mainly due 
to the powerful solvation of ionic liquids compared to the traditional 
solvent such as methanol, ethanol, etc. The use of these new materials 
as solvent is eco-friendly. Furthermore, the ionic liquids matrices are a 
proton donor/acceptor. The analysis of polysaccharide using ILMs-ESI-
MS is detected as alkali-adducts and not protonated species. However, 
the spectra are very simple and multi-alkali peaks are absent. The 
analysis showed no fragmentation of labile groups and may be useful for 
non-covalent interaction of the carbohydrate and other biomolecules 
such as lipids, protein, etc. Ionic liquids-assisted ESI (ILA-ESI) mass 
spectrometry has significantly improved the detection sensitivity of 
large neutral polysaccharide compounds [73].

The applications of ionic liquids have been extended for other 
species such as oligodeoxynucleotides [57]. Ionic liquids matrices 
of 3-hydroxypicolinic acids (3-HPA) and 2,5-dihydroxybenzoic 
acids (2,5-DHB) were used for the analysis of oligodeoxynucleotides 
(ODNs). ILMs (butyl ammonium 2,5-dihydroxybenzoate (DHBB), 
butyl ammonium α-cyano-4-hydroxycinnamate (CHCAB), and triethyl 
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ammonium sinapinate (SinTri)) were investigated for the analysis 
of oligonucleotides [58]. The analysis provided high spectra quality, 
showed no fragmentation, offered signal-to-noise ratio 10 times higher 
than the conventional matrix and showed small variation in intensity 
(Figure 5) [58].

Ionic liquids for lipids and phospholipids

Analysis of lipids using matrix assisted laser desorption/ionization 
mass spectrometry is very promising for clinical studied. Lipids and 
phospholipids were served as biomarkers for many diseases. These 
species suffer from the previous drawbacks of conventional matrices 
that have been reported for protein, peptides, carbohydrates, or 
oligonucleotides. Furthermore, lipids have small molecular weight. 
The conventional matrices have molecular weight 500 Da and can 
be detected in mass spectrometry. The ions peaks of conventional 
matrices cause ion-suppression of the analyte ions and may cause 
peak submerge with the ion peaks of target analyte. The applications 
of ILMs for phospholipids (PLs) are promising as they provided many 
advantages compared to the traditional matrices. ILMs showed high 
ionization performance, produced no alkali-metal ions adducts, and 
decreased the fragmentation [49]. The adulteration of extra virgin olive 
oil (EVOO) with hazelnut oil (HO) was evaluated using ILMs by the 
analysis of phospholipids (PLs) [74]. Phospholipids (PLs) are usually 
present in seed oils at a concentration range of 10-20 g/kg. In other side, 
PLs in VOOs are 300-400 times lower. Thus, high sensitivity is required 
in order to monitor these adulterations. Phospholipids (PLs) were 
extracted selectively then were analysed using TBA (tributylamine)/
CHCA (α-Cyano-4-hydroxycinnamic acid). Ionic liquids matrices 
were served as dual function (extraction solvent and matrices). 
These extractions improved and increased the phospholipids signal 

 

 
Figure 3: Positive-ion mass spectra of 100 fmol fetuin GP1, 100 fmol NA4 glycan, and 10 fmol β-casein 1-25 using (a, d, g) 3-AQ/CA, (b, e, h) 3-AQ/CHCA, and 
(c, f, i) 2,5-DHB. Figure reprinted with permission from Ref. [68].

 

Figure 4: Positive-ion reflector MALDI mass spectra of purified dermatan 
sulfate tetrasaccharide (DS dp4) acquired with DHB, DHBB and G2CHCA 
under the same experimental conditions. The peak, corresponding to 
the DS dp4, sodium salt ([M + Na]+, m/z 1029) is accompanied by Na/H 
exchange peaks, denoted by closed circles. Peaks corresponding to 
the SO3 loss fragments are denoted by open circles; matrix clusters are 
denoted by diamonds. Figure reprinted with permission from Ref. [69].
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from EVOO and HO samples. At the same time, the pretreatment 
increased the phospholipids signals and decreased the signal of 
triacylglycerols and diacylglycerols. They offered high sensitivity (at 
1% contamination level) [74]. Direct analysis of PLs using ionic liquids 
(2,4-dihydroxybenzoic acid butylamine, α-cyano-4-hydroxycinnamic 
acid butylamine and 3,5-dimethoxycinnamic acid triethylamine, 
2,4-dihydroxybenzoic acid butylamine) were successfully applied and 
showed high sensitivity and low limit of detection [49,58]. The analyses 
of complicated samples were reported. For instance, analysis of a 
complex lipid mixture (i.e., a raw extract of a milk sample) using ILs 
showed high S/N ratio, reduced chemical noise and limited formation 
of matrix-clusters [50]. The reports showed mainly dual function for 
ILMs, i.e., solvent for extraction and matrices. The low percentage of 
PLs is critical and requires further efforts to achieve high sensitivity.

Analysis of Analytes with Small Molecular Weight
Analysis of small molecules such as organic compounds, drugs 

and pharmaceutical is difficult for matrix assisted laser desorption/
ionization mass spectrometry (MALDI-MS). The small molecular 
weight of these species suffer from ion suppression, peak submerge 
and adducts formations with the ions of matrices species. In general, 
the molecular weights of these species are mainly below than 1000 
Da. Ionic liquids matrices showed no interference and offered clear 

backgrounds. Thus, they are promising for the analysis of the analytes 
with small molecular weight. The analysis of small molecular weight 
species is important for organic chemistry, pharmaceutical analysis, 
forensic science and industrial interests. MALDI-MS offered direct 
analysis of the surface samples such as TLC, thin films, etc. Lovejoy 
et al. reported the application of tetraalkylphosphonium-based ILs 
of conventional matrices, such as DHB, CHCA and feluric acid, as 
extraction solvent and matrix for the analysis of different dyes [75]. 
N,N-diisopropylethylammonium α-cyanohydroxy cinnamate was 
used for the analysis of cocaine, lysergic acid diethylamide, levamisole 
and papaverine with low limit detection and excellent correlation 
coefficients ranging from 0.95 to 0.99 [76].

Mass Spectrometry Imaging (MSI)

Analysis of biomolecules using mass spectrometry imaging 
(MSI) is simple, sensitive, are applicable for organs and biological 
important [77]. The image offers clear and useful information about 
the biomolecules distribution in the investigated tissues. MSI was used 
to investigate the analysis of endogenous and exogenous. Homogenous 
formation and well distribution of the matrices over the investigated 
area is very critical and is common limitation for conventional organic 
matrices. The heterogonous distribution of the organic matrices of 
the investigated area showed mis-distribution of the molecules in 
the tissue. The interactions of the matrices with the molecules may 
cause diffusion of the biomolecules on the surface of the organs. This 
phenomenon may lead to misunderstand of MSI. Thus, the sample 
must be carefully prepared to maintain the spatial distribution of the 
biological biomolecules [78].

Room temperature ionic liquids (RTILs) offered many advantages 
that improved the analysis of MSI. They form a homogenous spots 
on the investigated area and co-crystallize faster than conventional 
matrices. These features limit the lateral and spatial distribution. 
ILMs derived from α-cyano-4-hydroxycinnamic acid (CHCA) were 
synthesized and tested for SIMS and MS imaging [54]. In contrast 
to solid matrices such as CHCA and 2,5-DHB, the data showed that 
the ion intensities are uniform across the sample surface. The mass 
spectrometry imaging of onion skin membranes were imaged. ILMs 
offered the ions characteristic peaks of the cell nuclei [54].

Analysis of lipids using an automatic microspotter coupled to 
specific ILMs based on 2,5-DHB matrix (2,5-DHB/ANI, 2,5-DHB/
Pyr, and 2,5-DHB/3-AP) was reported (Figure 6) [79]. Automatic 
microspotter method decrease the time of the sample preparation and 
offered a homogenous layer over the investigated area. The method was 
also validated on human ovarian cancer biopsies [79]. Li et al. reported 
the application of 1-methylimidazolium α-cyano-4-hydroxycinnamate 
ILMs for the MALDI imaging of gangliosides in mouse brain [80]. Three 
different ILMs were prepared and were characterized for synthetic polymer 
[81]. MALDI-MSI using ILMs showed superior sample spot homogeneity, 
small variations in the mass spectra, offered high stability under vacuum, 
and showed negligible fragmentation (soft ionizations) (Figure 7) [82]. The 
properties of CHCA/aniline compared to conventional matrices (CHCA, 
DHB) offered many merits such as; 1) produced high spectral quality i.e., 
high resolution, high sensitivity, high S/N ratio, 2) are applicable for a wide 
number of different analytes, 3) are high tolerance for contaminants, 4) 
offered high crystallization on tissues (coverage capacity, homogenous 
spots, and decrease the time of crystallization), 5) high vacuum stability, 
thus there is no signals variation with the time, 6) high ions yield in negative 
mode, and 7) showed low fragmentation [80,82] (Figures 6 and 7).

Polymers Analysis
The analyses of polymer using matrix assisted laser desorption/

 

Figure 5: (A) Plot of normalized [M + Na]+ ion intensities yielded from 
90 different positions on a MALDI-MS preparation of the oligosaccharide 
maltoheptaose with ionic liquid matrix DHBB (black squares) in comparison 
to traditional DHB matrix (grey circles). (B) Resulting [M+H]+ ion intensities 
from 90 positions on a human angiotensin II preparation with ionic liquid 
matrix CHCAB (black triangles) and alternatively with traditional CHCA 
matrix (grey squares). The relative standard deviations (RSD) of the 
data series are given as bar graphs beneath the normalized ion intensity 
distribution diagrams. Black bars indicate RSD values found using ionic 
liquid matrixes, and gray bars indicate RSD values of the data series 
yielded by the respective traditional MALDI matrixes. Figure reprinted with 
permission from Ref. [58].
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ionization mass spectrometry (MALDI-MS) is promising for industrial 
and environmental interests. The analysis using MALDI-MS is simple, 
requires small amount of the sample, sensitive, can be used for surface 
analysis and to monitor the polymerization process and is sensitive 
to observe the changes of the polymer structure under stimuli effect 
such as temperature, etc. It is very important to differentiate between 
the synthetic polymer and nature polymer. The polymer showed 
fragmentation by the organic acids. The laser irradiation could also 
cause changes of the polymer properties after the interaction and 
may be lead to ion suppression. Ionic liquids matrices (ILMs) for the 
analysis of polymer are promising compared to traditional MALDI-
MS. The characterization of polar biodegradable polymers using N,N-

diisopropyl ethyl ammonium α-cyano-4-hydroxycinnamate (DEA-
CHCA) were reported [83]. DEA-CHCA offered maximum signal 
with minimum laser intensity (small polymer degradation). Ionic 
liquids called N,N-diisopropyl ethyl ammonium 3-oxocoumarate and 
N,N-diisopropyl ethyl ammonium dihydroxymonooxo acetophenoate, 
were used for the analysis of aliphatic biodegradable polymers [84]. 
The ability to identify and differentiate the polymers and additives in 
lubricant residues of condoms were investigated (Figure 8) [85]. The 
data is very useful for condoms analysis in sexual assault cases [85]. 

Pathogenic Bacteria Analysis
Analysis of cells such as pathogenic bacteria is very important 

for biotechnologies and clinical aspects. The advances of the cell 
analysis lead to improvement of the detection of bacterial infections 
at early stage. The advances in MALDI-MS analysis may lead to better 
treatment and increase the change for remediation. The bacterial cells 
are very complicated and contain several biomolecules with different 
molecular weight. Thus, ion suppression is an observable phenomenon. 
Bacteria analysis is quite often to observe very few peaks however 
there are several millions of biomolecules in the cell. Abdelhamid el 
al. reported the first application of ILMs for bacterial analysis [47,48]. 
The data revealed high potential of these materials in bacterial analysis. 
Authors also reported novel ionic matrices based on a new organic 
matrix called mefenamic acid. They proposed a simple method for 
the analysis of the endotoxin ‘lipopolysaccharide’ of the pathogenic 
bacteria [18]. This method is simple, sensitive, accurate and selective 
method for the bacteria identification. The reported approach is very 
useful to detect the pathogenic bacteria without direct analysis of the 
bacteria cells. The analysis of the bacteria cell may be direct (intact cell) 
[47] or by targeting one of the cell biomolecules (Figure 9) [48]. These 
two approaches were reported using ILMs.

 

Figure 6: Analysis of ovarian cancer using MSI, ovarian carcinoma tissue section has been treated with hematoxylin eosin safran after analyzed in MALDI mass 
spectrometry imaging. In this context 5 zones have been detected. Inset of microscopic images of each zone (X5) have been presented as well as the molecular 
images distribution of ions present in each zone. Figure reprinted with permission from Ref. [79].

 

 

Figure 7: MALDI-IMS using MALDI LIFT-TOF in reflector mode at 50-Hz 
repetition rate with ionic matrixes CHCA/ANI and CHCA in positive (a) 
and negative modes (b). MALDI imaging can be compared with rat brain 
anatomy (c). Image reprinted with permission from Ref. [82].
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Figure 8: 3D PCA score plot of seven different condom lubricant types, four of which are easily distinguished. Figure reprinted with permission from Ref. [85].

 
Figure 9: (A) Chemical structure of mefenamic acid (MA) and the prepared ILMs; (B) schematic representation of bacterial toxin analysis; (C) UV-absorption; (D) 
camera picture of ILMs and (E) the material background for a) MA, b) Aniline IL, (c) pyridine IL, (d) dimethylaniniline IL, and 2-picoline IL. Image reprinted with 
permission from Ref. [66].
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Summary and Prospective
Ionic liquids matrices (ILMs) showed a promising and brilliant 

future for wide applications using mass spectrometry. ILMs were used 
as extraction solvent, matrices and for semi-quantitative or quantitative 
analysis. The materials could be used for almost all the molecules 
without any exception. They were applied for many techniques such 
as matrix assisted laser desorption/ionization mass spectrometry, 
electrospray ionization mass spectrometry (ESI-MS), and desorption 
corona beam ionization mass spectrometry (DCBI-MS) [86]. Ionic 
liquids assisted desorption corona beam ionization mass spectrometry 
(ILsA-DCBI-MS) were used for quantitative and analysis of 21 small 
low-polar molecules. The analysis required no internal standards and 
showed a clear discrimination between the different analytes. Ionic 
liquids matrices were applied for small and large molecules. ILsA-
DCBI-MS were recorded by thermal imaging and mass spectrometry 
simultaneously as shown in Figure 10. They have strong solvation power 
of the species with different miscibility [87,88]. They offered higher 
sensitivity to a maximum of 1000-fold [68] with lower limit of detection 
compared to the conventional solid matrices [54]. Ionic liquids matrices 
have higher stability for storage and under vacuum [80,89]. They 
offered homogeneous spots that improved the reproducibility of laser 
shots-shots and decreased the time consuming [50]. The ion-pairing 
charge of ionic liquids implies strong interaction with the analytes [90]. 
Authors observed no background (low interferences) and noticed no 
adduct formation. ILMs have low vapor pressure that improved the 
sample detection and showed no variation with the time under vacuum 
[91,92]. Further efforts should be taken to improve the performance of 
ionic liquids. For instance, additives such as acetic acids derivatives may 
increase the performance of ionic liquids matrices [93]. New sample 
preparation and systematic studies of the effect of base are required.

Organic acid, ILMs and nanoparticles were applied for mass 
spectrometry. ILMs are biocompatible compared to nanoparticles 
[94,95]. However, nanoparticles offered many new functions [96,97], 
and offered soft ionization for noncovalent interactions [98]. ILMs 
assisted MALDI-MS is promising compared to ESI-MS [99,100]. 
ILA-MALDI-MS can facilitate the biological activities of pathogenic 
cells [101]. To shorten the whole story, conjugate ionic liquids with 
mass spectrometry is true marriage and showed promising future for 
analytical chemistry, proteomics, biotechnology, biomedicine, etc. 
[102].
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