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Overview
The best pathologic correlate of cognitive impairment in 

Alzheimer’s disease (AD) is loss of synapses, and a growing body of 
evidence suggests that abnormalities of the actin cytoskeleton may 
play a critical role in synaptic degeneration in AD. Hirano bodies, rod 
shaped structures found in CA1 neurons from AD patients, contain 
filamentous actin (F-actin) and ADF/cofilin (AC), a family of actin-
binding proteins [1,2]. Recent studies demonstrate that abnormal 
actin-AC rods form in response to energy depletion, oxidative stress 
and excitotoxicity [3]. Moreover, actin-AC rods affect APP transport in 
neuronal processes and synaptic stability and activity [4-6]. However, 
the mechanisms underlying actin-AC rod formation in AD are unclear. 
The consequences of these rod-like structures in neurodegeneration 
are also needed to be determined.

Biology of Actin and ADF/Cofilin (AC)
The actin cytoskeleton is highly dynamic and an important player in 

growth cone motility, spine development, and synapse formation and 
activity. Actin dynamics are modulated by actin-associated proteins, 
such as the highly conserved family consisting of actin-depolymerizing 
factor (ADF), cofilin-1, and cofilin-2. These proteins function similarly 
and are considered as a single entity (AC) [6,7]. AC is known to be 
a major regulator of actin dynamics, filament turnover, and directed 
cell migration [8-10]. AC increases dissociation of ADP-actin from the 
minus end of actin filaments, promoting depolymerization [11] and 
severing filaments into small fragments [2]. Recent studies indicate 
that AC severing of actin filaments could generate new filament ends, 
promoting nucleation and polymerization of actin filaments, which is 
the force driving membrane protrusion and cell migration [12,13].

Both the amount and the activity of AC may be important in 
determining actin dynamics. Disassembly is favored when AC is at low 
concentrations, but it nucleates actin filaments at high concentrations 
[6]. Degenerative stressors may also affect actin dynamics via the actin-
AC interaction. The pool of intracellular ADP-actin monomers is 
dramatically increased when cells are under stress or ATP levels fall, 
and activated AC has higher affinity with ADP-actin than ATP-actin 
[6].

Regulation of AC Expression
AC protein levels are increased in Tg19959 mouse brain, but 

mRNA levels are unchanged, indicating post-transcriptional regulation 
[14]. Post-transcriptional regulation of gene expression by microRNA 
(mirRNA) has recently attracted great interest in neurodegeneration 
research [15]. Mature mirRNAs are short noncoding RNAs, the first 
6 nucleotides of which interact with the 3’-untranslated region (UTR) 
of target mRNAs, an interaction that generally represses translation. A 
recent study showed that a mirRNA important in dopamine neuron 
maturation and function is deficient in Parkinson’s disease [16]. 
Several mirRNAs that target APP and BACE-1 are also deficient in AD, 
associated with increased levels of these proteins [17-19]. 

We investigate the mechanisms underlying the formation of cofilin 
rods. We show that miR-103 and miR-107 bind to the 3’UTR of cofilin 
mRNA as predicted, and repress translation of cofilin. Decreasing 

miR-107 elevates cofilin protein levels, and overexpression of active 
cofilin induces formation of cofilin-actin rods. Finally, we show in a 
transgenic APP mouse model that brain levels of miR-103 and miR-
107 are decreased, with corresponding increases in brain cofilin protein 
levels, and formation of cofilin-actin rods or aggregates in primary 
neurons and brain sections. Since overexpression of inactive cofilin 
does not induce rod formation, the increased cofilin protein levels seen 
with decreased miR-103/107 in AD must be followed by activation of 
the cofilin, in order to lead to rod formation [14]. 

Regulation of AC Activity 
AC activity is regulated by LIM kinases (LIMK) and Slingshot 

(SSH) phosphatases at serine 3 [20]. Phosphorylation of Ser3 by 
LIMK deactivates AC. LIMK is regulated by Rho GTPase pathways 
(Figure 1), and is activated by phosphorylation at Thr508/505 [21-23]. 
Dephosphorylation of Ser3 by SSH activates AC [21,22]. SSH is in turn 
regulated by calcineurin and PI3 kinase [24,25]. Furthermore, SSH also 
deactivates LIMK to regulate AC [26].

Several recent studies support the idea that alterations in AC 
activity contribute to actin pathology in neurodegeneration. Treating 
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Figure 1: Regulation of ADF/cofilin expression and activity. 
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neurons with azide, H2O2, or glutamate resulted in dephosphorylation 
and activation of AC and formation of actin-AC rods [3]. αβ 
oligomers reduce PAK activity, and PAK defects in AD induce cofilin 
pathology [27], consistent with decreased LIMK and increased AC 
activities (Figure 1). On the other hand, fibrillar αβ increased LIMK 
and decreased AC activities, and this also resulted in abnormal actin 
remodeling [28]. Thus, the situation regarding regulation of AC activity 
in AD is complex, with evidence for both increases and decreases, both 
producing actin cytoskeletal pathology.

Consequences of Actin Cytoskeletal Pathology for 
Transport and Mitochondrial and Synaptic Morphology

Defects in axonal transport occur early and play critical roles in 
AD [29-31]. Recent studies show that actin cytoskeletal pathology may 
be an early cause of transport defects [5,6,32]. Actin-AC rods directly 
damage microtubule bundles and interfere with axonal transport 
[6,33]. The inability to transport important cargos between cell bodies 
and distal processes could then be responsible for neurite degeneration. 
Mitochondria in particular are critical in morphogenesis and plasticity 
of spines and synapses [34]. Transport of mitochondria likely depends 
on interaction between kinesins and dyneins along microtubules 
and myosins along the actin cytoskeleton [35,36] and anchoring 
of mitochondria at synapses is actin-dependent [37]. Moreover, 
mitochondrial morphology is dependent on F-actin, which facilitates 
mitochondrial recruitment of dynamin-related protein 1, a protein 
critical for normal mitochondrial fission [38]. 

Alzheimer disease is the most common form of dementia. There is 
no cure and the disease gets worsen as the age advances. This disease 
was first described by Germen psychiatrist, Alois Alzheimer in 1906 
and then named after him. Early symptoms include difficulty in 
remembering events. As the disease progresses, it manifests itself into 
various forms such as confusion, irritability, personality change and 
memory loss. Amyloid plaques and neurofibrillary tangles are classic 
hallmarks of AD. 

Aggregates of cofilin and actin occur in human AD brains [1,2,14], 
but are less well appreciated than amyloid plaques or neurofibrillary 
tangles. Rod-like structures containing cofilin and actin also form 
in cell [3] and animal [5,39] models of AD. Several lines of evidence 
suggest that such cofilin-actin rods are pathophysiologically important. 
They form under pathologic conditions, such as energy depletion, 
excitotoxicity, oxidative stress, and Aβ exposure [3,6,40]. They have 
functional consequences. We showed that increased cofilin level 
seen with decreased miR-103/107 leads to cofilin rods formation 
in a AD mouse model [14]. Feaney and colleagues showed that 
neurodegeneration in Drosophila and mouse models of tauopathy 
was associated with formation of actin-rich rod-like structures, 
and neurodegeneration could be markedly attenuated by genetic 
manipulations to reduce actin accumulation [5]. Formation of cofilin-
actin rods may also be important in recruitment of phosphorylated 
tau into neuropil threads [39]. Furthermore, disrupted actin structure 
interferes with mitochondrial dynamics as a direct mechanism of tau 
toxicity in neurons [33].
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