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Introduction
Diabetes mellitus is a chronic metabolic disease, occurs when the 

pancreas is not producing insulin or produced insulin cannot be used 
by the body, these may lead to raise blood glucose levels. Hyperglycemia 
for the long-term are associated with damage to the various organs and 
tissues. The number of people living with diabetes is expected to rise 
from 366 million in 2011 to 552 million by 2030. IDF also estimates 
that as many as 183 million people are unaware that they have diabetes 
[1]. It can be predicted that by 2030, India, China and United States will 
have the largest number of diabetic patients [2]. There are two types 
diabetes: type 1 diabetes mellitus and type 2 diabetes mellitus. Despite 
the great interest in the development of new drugs to reduce the burden 
of this disease, the scientific community has raised interest to evaluate 
either raw or isolated natural products in experimental studies; few 
were tested clinically in humans [3].

Experimental studies of diabetes in animal models and advanced 
in vitro techniques are essential for the improvement of knowledge and 
clear understanding of the pathology and pathogenesis, and to find 
new therapy. Animal models of diabetes are therefore, greatly useful 
in biomedical studies because they offer the promise of new insights 
into human diabetes. Most of the available models are based on rodents 
because of their small size, shorter generation intervals and economic 
considerations. Experimental diabetes mellitus studied by several 
methods that include: chemical, surgical and genetic manipulations 
[4]. It is also very important to select appropriate animal model for 
the screening of new chemical entities (NCEs) and other therapeutic 
modalities for the treatment of diabetes [5]. The main aim of the 
present review is to being together all various in vivo animal models 
and in vitro techniques for carrying diabetes research.

Chemical Causes of Diabetes
Alloxan induced diabetes

Alloxan is most widely used in experimental diabetic research. 
Alloxan produces selective necrosis of the beta cells of pancreas. 
The alloxan is administered by various routes like intravenous, 

intraperitoneal and subcutaneous. Alloxan is used for induction of 
diabetes in experimental animals such as mice, rats, rabbits and dogs. 
The routes and dose of alloxan required may vary depending upon the 
animal species [6,7].

A First short lived hypoglycemic phase lasting for 30 min from the 
first minutes of alloxan administration. The hypoglycemic stage may 
be due to the stimulation of insulin release and high levels of plasma 
insulin levels. The mechanism at back of the hyperinsulinemia is due to 
the short term increase of ATP availability and glucokinase inhibition 
[8-10]. The second phase is the increase in the blood glucose levels one 
hour after administration of alloxan, the plasma insulin concentration 
decreases. The pronounced hyperglycemia lasts for 2-4 hours is due to 
decrease plasma insulin concentrations. This may be due to inhibition 
of insulin secretion and beta cell toxicity [11,12]. The third phase is 
hypoglycemic phase that long last for 4-8 hrs after administration of 
alloxan [13,14].

Alloxan treatment brings out a sudden rise in insulin secretion in 
the presence and absence of glucose. The insulin release occurs until 
the complete suppression of the islet response to glucose. Alloxan react 
with two sulfhydryl in the glucokinase resulting in disulfide bond and 
inactivation of the enzyme. The alloxan is reduced by GSH. Superoxide 
radicals liberate ferric ions from ferritin and reduce them to ferrous 
ions. Fe3+ can also be reduced by alloxan radicals [15-18]. Another 
mechanism reported is the fragmentation of DNA in the beta cells 
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exposed to alloxan. The disruption in intracellular calcium levels also 
contribute for the diabetogenic action of alloxan [19-21].

Streptozotocin induced diabetes

Streptozotocin (STZ) is a naturally occurring chemical it 
particularly produces toxic to the beta cells of the pancreas. It is used 
in medical research as an animal model for hyperglycemia [22,23]. STZ 
alters the blood insulin and glucose concentrations. Two hours after 
injection, the hyperglycemia is due to the decreased in blood insulin 
levels. Six hours later, hypoglycemia occurs due to the high levels of 
blood insulin. At last hyperglycemia develops and blood insulin levels 
drops. STZ impairs glucose oxidation [24] and decreases insulin 
synthesis and release. It was observed that STZ at first abolished the 
B cell response to glucose. STZ restricts GLUT2 expression. STZ 
changes the DNA in pancreatic B cells [25]. The B cell death is due to 
alkylation of DNA by STZ [26]. STZ-induced DNA damage activates 
poly ADPribosylation [27-29]. The activation of poly ADP-ribosylation 
is of greater importance for the diabetogenicity of STZ than generation 
of free radicals and DNA damage. Calcium, which may also induce 
necrosis [28-30].

Dithizone induced diabetes

Dithizone is an organosulfur compound, it have chelating property. 
Dithizone is used in induction of diabetes in experimental animals. In 
dithizonised diabetic animals, the levels of zinc, iron, and potassium 
in the blood were found to be higher than normal [31]. Dithizone has 
permeates membranes and complex zinc inside liposomes, then release 
of protons, this enhances diabetogenicity [32].

Monosodium glutamate induced diabetes

Monosodium glutamate (MSG) cause increase in plasma glutamate 
concentration. MSG stimulates insulin release. Administration of MSG 
in mice resulted in obesity associated with hyperinsulinemia. After 29 
weeks level of blood glucose, total cholesterol and triglyceride levels 
were increased [33,34].

Insulin antibodies induced diabetes

The insulin antibodies have the affinity and capacity to bind 
insulin. Insulin deficiency mechanism may cause greater postprandial 
hyperglycemia because antibody-bound insulin is unavailable to 
tissues, but the prolongation of postprandial hyperinsulinemia may 
leads to hyperglycemia [35-37].

Ferric nitrilotriacetate induction of diabetes

In experimental animals parenteral administration on of large daily 
dose of ferric nitrilotriacetate for 60 days manifest diabetic symptoms 
such as hyperglycemia, glycosuria, ketonemia and ketonuria [38].

Goldthioglucose obese diabetic mouse model

Gold thioglucose (GTG) is a diabetogenic compound, which 
manifest obesity induced Type -2 diabetes. The intrapertonial 
administration GTG in experimental animal gradually develops 
obesity, hyperinsulinemia, hyperglycemia, insulin resistance for 
a period of 16- 20 weeks. The GTG is transported in particular to 
the cells and causes necrotic lesions, which is responsible for the 
development of hyperphagia and obesity. It also increases body lipid, 
hepatic lipogenesis and triglyceride secretion, increased adipose tissue 
lipogenesis and decreases glucose metabolism [39,40].

Virus Induced Diabetes
Viruses produce diabetes mellitus by destroying and infecting 

pancreatic beta cells. Various human viruses used for inducing diabetes 
include RNA picornoviruses, Coxackie B4, encephalomylocarditis 
(EMC-D and M variants), Mengo-2T, reovirus, and lymphocytic 
choriomeningitis [41,42].

D-Variant Encephalomyocarditis (EMC-D)

EMC- D virus can infect and destroy pancreatic beta cells in mice 
and produce insulin dependent hyperglycemia [43]. EMC-D virus 
known as NDK25. Intraperitoneal injection of NDK25 develops non- 
insulin dependent diabetes mellitus [44].

Coxsackie viruses

Coxsackie viruses also cause diabetes in mice; it can infect 
and destroy pancreatic acinar cells. Coxsackie B4 virus is strongly 
associated with the development of insulin-dependent diabetes 
mellitus in humans. Diabetes induced by Coxsackie virus infection 
release of sequestered islet antigen resulting in the re- stimulation of 
auto reactive T cells [45,46].

Hormone Induced Diabetes 
Growth hormone induced diabetes

Repeated administration of growth hormone in higher 
experimental animals induces diabetes with ketonuria and ketonemia. 
Prolonged administration of growth hormone produced permanent 
diabetes; there was loss of pancreatic islets tissues and of beta cells [47].

Corticosteroid induced diabetes

Corticosteroid induces diabetes, which is called steroid diabetes. 
The prednisolone and dexamethasone, cause steroid diabetes. 
Glucocorticoids stimulate gluconeogenesis, in the liver, resulting 
in increase in hepatic glucose and induce insulin resistance and 
hyperglycemia [48].

Spontaneous Diabetic Obese Rodent Models
Ob/ob mouse

The ob/ob mouse strain, have leptin deficiency because of the 
mutation in leptin gene leading to severe insulin resistance [49,50]. The 
ob/ob mice exhibit rapid gain in body weight, insulin resistance and 
hyperinsulinemia occurs [51]. In the ob/ob model, hyperinsulinemia 
manifests at 3 to 4 weeks of age together with hyperphagia and insulin 
resistance. The symptom of Type 2 DM of ob/ob mice attenuates with 
age, continuous decline of plasma insulin levels in the second year of 
life, glucose tolerance and insulin resistance [52].

db/db mouse

The db gene mutation occurs spontaneously in the leptin-receptor-
deficient C57BL/KsJ mice and is originally derived from mutation 
on chromosome 4 [53]. The db/db mouse becomes hyperphagic, 
hyperinsulinemic, and insulin resistant within 2 weeks of age, obesity 
at the age of 3 to 4 weeks. The hyperglycemia develops at the age of 4 
to 8 weeks. At this age, the mouse exhibits ketosis and body weight 
loss occurs [54]. The db/db mouse was used to study renal and micro 
vascular diabetic complications [55,56].

Kuo Kondo mouse

The Kuo Kondo (KK) mouse is model of obesity and Type 2DM. 
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It has been crossed with the Bar Harbor C57BL/6J mouse [57]. KK 
mouse spontaneously exhibits distinct adiposity, hyperglycemia, and 
hyperinsulinemia [58]. At 2 months of age, the KK mouse manifested 
obesity due to hyperphagic, insulin resistance and compensatory 
hyperinsulinemia. The insulin resistance and hyperinsulinemia reached 
to the peak at 5 months [59].

Zucker Diabetic Fatty (ZDF) rat

The Zucker diabetic fatty (ZDF) rats are less obese, more insulin 
resistant, and rapidly progress to diabetes due to lack of sufficient 
insulin secretion [60]. The male ZDF rat becomes fully diabetic at 12 
weeks. The serum insulin levels of male ZDF rat reach the peak at about 
7 to 10 weeks, but cannot respond to glucose stimulus and the insulin 
levels drops [61].

New Zealand Obese (NZO) mouse

The New Zealand strain of obese mice, gains weight at 10 weeks 
of life as a result of hyperphagia, hyperglycemia and hyperinsulinemia 
[62]. NZO mouse manifests insulin resistance at an early age. With the 
growth of NZO mouse, hyperglycemia and glucose tolerance increase 
and the level of blood glucose reaches 300-400 mg/dL at the age of 20 to 
24 weeks [63]. It is useful model for studying obesity and diabetes [64].

Otsuka Long-Evans Tokushima Fatty (OLETF) rat

The OLETF rat develops hyperglycemia at around 18 to 25 weeks 
age. OLETF rats exhibits obesity, hyperglycemia, hyperinsulinemia, 
hypertriglyceridemia, hypercholesterolemia, and onset of diabetes 
similar to human Type 2DM. Many recessive genes on several 
chromosomes including the X chromosome are involved in the 
induction of diabetes in OLETF rats [65,66].

Nagoya-Shibata-Yasuda (NSY) mouse

The NSY mouse, imitates human Type 2DM with the characteristics 
are mild obesity, impaired insulin secretion and insulin resistance 
contributing to diabetes development in an age dependent manner. 
NSY mice, all males develop diabetes, while females is only about 
30%. The NSY mouse is particularly useful for studying the age-related 
damages and phenotypes of Type 2 DM [67].

Tsumura Suzuki Obese Diabetes (TSOD) mouse

TSOD mouse, exhibits obesity and insulin resistant at 2 months 
old, which contributes for hyperinsulinemia and hyperglycemia [68]. 
In TSOD mouse, pancreatic islets are hypertrophic [69]. The impaired 
GLUT4 translocation in both skeletal muscle and adipocytes of TSOD 
mouse causes reduced insulin sensitivity and insulin resistance [70].

M16 mouse

M16 mice manifest obesity at all ages due to hyperphagia [71]. At 
8 weeks of age, all M16 mice exhibit hyperglycemia, hyperinsulinemia, 
and hypercholesterolemia [72].

Spontaneous Diabetic Non Obese Rodent Models
Goto Kakizaki (GK) rat

The GK rat is a non-obese model of T2DM with hyperglycemia, 
hyperinsulinemia, and insulin resistance. In GK rats a stable fasting 
hyperglycemia was observed at the end of the first 2 weeks. After 8 
weeks, hyperglycemia degenerates and insulin secretion of the islets 
stimulated by glucose. GK rats, develops complications of diabetes like 
peripheral neuropathy, and retinopathy [73-75].

Cohen diabetic rat

Cohen diabetic rat is a genetic model derived from diet-induced 
Type 2 DM model by placing the rat on a synthetic 72% sucrose-
copper-poor diet for 2 months, manifest the human Type 2 DM. The 
manifestations include non-obesity, hyperinsulinemia, and insulin 
resistance. The Cohen diabetic rat expresses genetic susceptibility to a 
carbohydrate-rich diet, a feature of Type 2 DM in human [76].

Spontaneously Diabetic Torii (SDT) rat

SDT rat is a new spontaneously non-obese diabetic strain 
[77]. It has characteristics like glucose intolerance, hyperglycemia, 
hyperinsulinemia, and hypertriglyceridemia [78]. Because of the severe 
hyperglycemia, SDT rats develop diabetic retinopathy [79], diabetic 
neuropathy, and diabetic nephropathy. This model is suitable for 
studying complications of human T2DM  [80,81].

Surgical Model of Diabetes Mellitus
Surgery technique used to induce diabetes, is complete removal 

of the pancreas [82]. Limitation to this technique include high level 
of technical expertise and adequate surgical room environment. 
Pancreatectomy has been employed; large resection is required to 
obtain mild to moderate hyperglycemia [83].

In vitro Techniques
Assay of amylase inhibition

In vitro amylase inhibition can be studied by adding the test sample 
was allowed to react with α- amylase enzyme and Incubated, add starch 
solution. After incubation dinitrosalicylic acid reagent was added to 
both control and test. Keep this mixture in boiling water bath for few 
minutes. The absorbance was taken at 540 nm using spectrophotometer 
and the percentage of inhibition of α-amylase enzyme was calculated [84].

A starch solution was prepared with potato in sodium phosphate 
buffer, sodium chloride and kept in a boiling water batch for few min. 
The α-amylase solution was prepared by mixing α-amylase in the same 
buffer. The colorimetric reagent was prepared by mixing equal volume 
of sodium potassium tartrate tetra hydrate solution and 3,5-dinitro 
salicylic acid (DNS) solution. Starch solution was mixed with test 
sample with various concentration or acarbose and α-amylase solution 
was added and incubated at 25°C to react with the starch solution. 
DNS reagent was added to the above solution, and the contents were 
heated for 15 min on a boiling water bath. The final volume was made 
up with distilled water, and the absorbance was measured at 540 nm 
using spectrophotometer. The percentage inhibition and IC50 value 
was calculated [85].

Inhibition of α-glucosidase activity

The α-glucosidase enzyme inhibition activity was performed by 
incubating α-glucosidase enzyme solution with phosphate buffer 
which contains test samples of different connections at 37°C for 1 hr 
in maltose solution. The reaction mixture was kept in boiling water 
few min and cooled. Glucose reagent was added and its absorbance 
was measured at 540 nm to estimate the amount of liberated glucose 
from maltose by the action of α-glucosidase enzyme. The percentage of 
inhibition and IC50 was calculated [86].

In-vitro studies on insulin secretion and glucose uptake 

The oral antidiabetic agents can affect several pathways of glucose 
metabolism such as insulin secretion, glucose uptake by target organs 
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as well as nutrient absorption. Incretins and transcription factors such 
as peroxisome proliferator activated receptors-PPAR are targets of 
modern therapy. Insulin receptor, glucose transporters, has not been 
focused for antidiabetic therapy [87,88].

Adipose tissue is considered to have a link between obesity and 
Type 2 diabetes, elevated intracellular lipid concentrations and insulin 
resistance [89]. Insulin resistance either at the adipocyte or skeletal 
muscle levels contribute to hyperglycemia. Pathways related to insulin 
resistance may be studied in cell lines of adipocytes such as marine 
3T3-L1 cells [90] and rat L6 muscle engineered to over-express GLUT4 
[91].

Studies using isolated pancreatic islet cell lines

These pathways can be studied with isolated pancreatic cells from 
experimental animals that can be obtained by collagenase digestion 
technique, followed by adequate separation and transference to 
appropriated culture medium [91]. It is known that insulin secretion 
occurs when pancreatic cells utilize glucose to generate adenosine 
triphosphate (ATP) from adenosine diphosphate (ADP). The resulting 
increase in cytoplasmic ATP/ADP ratio closes ATP-sensitive potassium 
channels, causing depolarization of the plasma membrane, which 
activates voltage dependent Ca2+ channels. This results in elevation of 
the intracellular Ca2+ concentration which triggers insulin secretion.

Conclusion
In this review many of the animal models and in vitro techniques 

has been described which share the animal model shave similar 
characteristics and features similar to human diabetics. Various 
experimental animal models have been used in diabetic research. There 
is no single species or animal model which may mimic the human 
diabetes. Each model is essentials tools for investigating endocrine, 
metabolic, genetic changes and underlying mechanism of human 
diabetes. The animal models and in vitro techniques are essentials for 
developing a new drug for the treatment diabetes. More animal models, 
software, advanced techniques have to be developed for advances in 
diabetes research.
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