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Abstract
The therapeutic potential of adult neural stem cells (aNSCs) has been shown in EAE, an animal model of MS, 

administered by either i.c.v. or i.v. injection. However, i.c.v. is an invasive approach, while the i.v. route of aNSCs 
is associated with a non-specific immune suppression in the periphery. Here we demonstrate that intranasal (i.n.) 
delivery of fluorescently labeled aNSCs resulted in their appearance in the olfactory bulb, cortex, hippocampus, 
striatum, brainstem, and spinal cord. These cells induce functional recovery from ongoing EAE similar to that 
achieved with i.v. injected aNSCs, with comparable anti-inflammatory and remeylination effects in CNS inflammatory 
foci. Importantly, unlike the peripheral immune suppression brought about by i.v. NSCs, intranasal delivery did 
not influence peripheral immune responses. We conclude that aNSCs can be reliably delivered to the CNS via 
the nasal route to induce functional recovery and confer immunomodulation and remyelination in EAE. Intranasal 
administration of NSCs provides a highly promising, noninvasive and CNS-specific alternative to current cell-based 
approaches in treating EAE.
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Introduction 
Although the etiology of multiple sclerosis (MS) remains elusive, 

it is considered an autoimmune disease of the central nervous 
system (CNS), which is characterized by multifocal inflammation, 
demyelination, axonal loss and gliosis in the brain and spinal cord 
[1]. Inflammatory infiltration and demyelination of the CNS are the 
key pathological features of MS and its animal model, EAE [2,3]. 
Transplantation of adult neural stem cells is a promising approach 
for treating CNS diseases. Adult neural stem cells (aNSCs) are a 
specific type of multipotent stem cell in the ependymal cell layers 
of the adult subventricular zone (SVZ), and the cortical and limbic 
regions of the brain. Their capacity for migration into the CNS and 
neural differentiation makes these cells an attractive candidate for 
cell replacement therapy. Indeed, aNSCs have been shown to be 
effective, not only in EAE, but in animal models of other types of 
neurodegenerative diseases [4-7]. Although the exact mechanisms 
underlying symptomatic improvement due to aNSC therapy remain 
to be elucidated, studies have demonstrated the ability of aNSCs to 
differentiate into oligodendrocytes, to repair injured myelin tissue and 
to reduce inflammatory lesions of the brain and spinal cord in EAE 
mice [5]. In a recent open-label clinical trial, patients with secondary 
progressive MS, whose visual pathways were impaired, showed 
improvement following intravenous infusion of autologous bone 
marrow-derived mesenchymal stem cells (MSCs). This study showed 
that cell-based therapy can be safe in MS, with patients showing 
structural, functional, and physiological improvement in several visual 
endpoints after treatment [8].

aNSC administration from the periphery to the CNS is difficult 
due to limitations presented by the blood-brain barrier (BBB). 
Currently, the principal transplantation routes for cellular therapy are 
by intracranial or intravenous (i.v.) injection. While the intracranial 
route is frequently used in animal studies, less invasive approaches 
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are preferred for clinical applications. Other problems with this route 
include the consequences of direct tissue trauma such as inflammation, 
cerebral edema, and reactive gliosis [9]. I.v. administration is a 
less invasive delivery method; however, it may lead to widespread 
systemic distribution and retention of NSCs in peripheral organs 
such as lungs, liver, and spleen [10,11]. The BBB normally prevents 
movement of aNSCs from micro-circulation to brain. Our previous 
work demonstrated that at week 2 post transfer (p.t.), only a few aNSCs 
were found in the brain parenchyma, while most of them remained in 
perivascular areas of the CNS and the peripheral organs [12]. Another 
recent study reported retention of NSCs in lung capillaries post 
injection, leading to inflammation and apoptosis in lung tissue [13].

Intranasal (i.n.) delivery of stem cells is a potential strategy to 
overcome the obstacles created by the BBB and is a promising option 
because of its non-invasiveness. Interestingly, fluorescently labeled rat 
MSC have been detected 1h after i.n. delivery in the olfactory bulb, 
hippocampus, thalamus, cortex, subarachnoid space and spinal cord 
of mice, and 24% of these cells survived at least 4.5 months [14,15]. 
Behavioral analyses of a rat model of Parkinson’s disease showed 
significant improvement in forepaw motor function 40–110 days after 
i.n. delivery of 1×106 stem cells [15]. MSCs delivered i.n. 10 days after
the induction of hypoxia–ischemia led to significant improvement in
sensorimotor function and decreased brain lesion size 18 days after
treatment [16].
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In this study we tested the therapeutic effects of i.n. aNSCs in 
an ongoing chronic-progressive EAE mouse model. Our results 
demonstrate that i.n. delivery of fluorescently labeled aNSCs resulted 
in the appearance of these cells in the olfactory bulb, cortex, and spinal 
cord. I.n. delivery of aNSCs induced earlier functional recovery, and 
exhibited anti-inflammatory and remyelination effects in CNS inflamed 
foci equivalent to those achieved with i.v. injection. Importantly, the 
peripheral immunological response was not affected by i.n. delivery. 
These results illustrate the therapeutic potential of i.n. delivery of NSCs 
for CNS disorders.

Materials and Methods 
EAE induction and aNSC treatment 

Female C57BL/6 mice, 7-9 weeks of age, were injected s.c. with 200 
μg MOG35-55 in CFA containing 5 mg/ml Mycobacterium tuberculosis 
H37Ra (Difco, Detroit, MI) at 2 sites on the back. All mice received 200 
ng pertussis toxin (Campbell, CA) i.p. on days 0 and 2 p.i. Clinical score 
was checked daily by two researchers blindly according to a 0-5 scale 
as follows: 1, limp tail or waddling gait with tail tonicity; 2, waddling 
gait with limp tail (ataxia); 2.5, ataxia with partial limb paralysis; 3, 
full paralysis of one limb; 3.5, full paralysis of one limb with partial 
paralysis of second limb; 4, full paralysis of two limbs; 4.5, moribund; 
and 5, death. All animal protocols were approved by the Institutional 
Animal Care and Use Committee of Thomas Jefferson University 
following NIH guidelines.

GFP-aNSCs were prepared as described [17]. At days 14 and 21 
p.i., GFP-aNSCs or vehicle (PBS) was delivered intranasally (i.v.) or 
intravenously (i.n.) as described previously [14]. Briefly, animals were 
divided into 3 groups (n=7 in each group); the first group received 
GFP-aNSCs via i.n. delivery; the second group received GFP-aNSCs 
via i.v. injection; the third group was treated with vehicle (PBS). 
For i.n. administration, 30 minutes before GFP-aNSCs or vehicle 
administration, two doses of 3 μl hyaluronidase (total 100 U; Sigma-
Aldrich Chemical Co.) in PBS were applied to each nostril and 
spontaneously inhaled. Subsequently, a total of 1×106 GFP-aNSCs in 
12 μl PBS or vehicle were administered as two doses of 3 μl applied to 
each nostril. For i.v., aNSCs were given by injection of single aNSCs 
(1.0×106 cells in 200 μl PBS/each mouse) i.v. via the tail vein. Untreated 
control mice received hyaluronidase nasally, followed by nasal PBS (12 
μl) and i.v. PBS (200 μl) at the same time as the treated mice.

Immunohistochemistry 

Animals were sacrificed at days 1, 7 and 21 p.t. and extensively 
perfused with PBS. Brains and spinal cords were cryoprotected with 
30% sucrose in PBS and embedded in Tissue-Tek O.C.T. compound 
(Sakura Finetek, Zoeterwoude, The Netherlands). In particular, spinal 
cords were carefully excised from the brain stem to the lumbar region. 
The lumbar enlargement was identified and then transected at the exact 
midpoint of the lumbar enlargement to standardize a site along the 
longitudinal axis of the cord, ensuring that the same lumbar spinal cord 
regions were analyzed for all conditions. Transverse sections of brain 
and spinal cord were cut and immunohistochemistry was performed 
using various antibodies.

Anti-myelin basic protein (MBP) antibody staining slices were 
assessed for quantification of demyelination:0, none; 1, rare foci; 2, a 
few areas of demyelination; 3, large (confluent) areas of demyelination. 
Quantification of CNS damage was performed on 6 sections per mouse; 
6-8 mice per group were analyzed.

Immunofluorescence controls were routinely performed with 
incubations in which primary antibodies were not included. Finally, 
slides were covered with mounting medium (Vector Laboratories) 
containing 1 μM DAPI. Results were visualized by fluorescent 
microscopy (Nikon Eclipse 800) or confocal microscopy (Zeiss LSM 
510).

Proliferation assays 

T-cell proliferation was assayed by 3H-thymidine incorporation 
as described previously [18]. Briefly, triplicate aliquots of 5×105 
splenocytes in 96 well plates were stimulated with anti-CD3/CD28 or 
MOG35–55 peptide (10 µg/ml). After 60 hrs of incubation, cells were 
pulsed with 1 µCi 3H-thymidine/well for 18 hrs and then were harvested 
on fiberglass filters. Thymidine incorporation was determined using 
a Wallac 1450 MicroBeta TriLux scintillation counter (PerkinElmer, 
Turku, Finland).

Histopathology 

At the end of experiments (21 days p.t.), H&E for inflammation 
was performed on 7-μm spinal cord sections. Slides were assessed in a 
blinded fashion for inflammation [19]: 0, none; 1, a few inflammatory 
cells; 2, organization of perivascular infiltrates; and 3, increasing 
severity of perivascular cuffing with extension into the adjacent tissue.

Statistical analysis 

Clinical scores were analyzed by calculating the area under the curve 
for each mouse over the clinical period of the experiment. Differences 
between multiple groups were evaluated by the Kruskal-Wallis one-
way analysis of variance (ANOVA). Experiments with two groups were 
tested for statistical significance using unpaired, two-tailed, Student’s t 
tests. Differences were considered significant at a level of p<0.05.

Results 
Effective suppression of EAE by i.n. administration of GFP 
-aNSCs 

aNSCs were isolated and expanded from the SVZ of adult C57BL/6 
mice. After 3-5 days of culture, various sizes of primary neurospheres 
containing 20-200 aNSCs were formed from single aNSCs. Free-floating 
primary neurospheres were collected, dissociated and cultured for the 
next generation. aNSCs at passages of 4-10 were used in all experiments. 
To trace them after transplantation into EAE mice, we infected these 
cells with the bicistronic lentiviral vector Lv.GFP, encoding GFP. At 
day 3 post-infection of NSCs, more than 80% infection efficiency for 
both vectors in aNSCs was observed (data not shown). GFP+ cells were 
then sorted by FACS to reach >99% purity and transferred into growth 
medium (Figure 1A).

To determine the efficacy of i.n. delivery of aNSCs in EAE, these 
cells were dissociated into single cell suspensions, and delivered i.n. at 
1.0×106 cells in 20 μl PBS/per mouse either at disease onset (day 14 post-
immunization, p.i.) or at peak of disease (day 21 p.i.). For comparison, 
a separate group of mice received the same number of NSCs i.v., and 
mice that received PBS i.n. served as untreated controls.

As shown in Figure 1B, untreated mice developed typical EAE, 
while both i.n. and i.v. delivery of GFP-aNSC treatment at onset of 
EAE resulted in significantly decreased disease severity. Significant 
suppression of the progression and severity of EAE was obtained by 
both i.n. and i.v. delivery of GFP-aNSC treatment compared with 
control, 21 days following aNSC application. Mice treated via the i.n. 
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route (day 14 p.i.) displayed significantly lower clinical scores than 
those treated via i.v. injection at 4 days following aNSC application. 
The therapeutic effect of transplantation at day 21 p.i. (peak of EAE) 
was similar to that at day 14 p.i. (Figure 1C).

Engraftment of i.n. aNSCs in the CNS

Mice treated with aNSCs i.n. and i.v. starting from day 21 p.i. were 
extensively perfused. Brain and spinal cords were harvested at days 1, 7 
and 21 p.t. and extensively studied for NSC distribution, and all other 
pathology/immunohistochemistry was focused at standard 500 μm2 
specific fields within the ventral column of the lumbar spinal cord (L3) 
as described [12]. At day 1 p.t., a few i.n. delivered GFP+ cells were found 
in the olfactory bulb, cortex, hippocampus, striatum, and brainstem, 
but not the spinal cord (Figure 2A), similar to a previous observation 
[14]. At day 7 p.t., GFP-aNSCs that had been i.n. delivered, but not those 
delivered via i.v. injection (data not shown), were found in both brain 
(Figure 2B) and spinal cord (Figure 2C). At day 21 p.t., the majority of 
NSCs delivered i.n. or i.v. had migrated into inflammatory foci of the 
CNS parenchyma (including the brain and spinal cord), which were 

identified as tissues within white matter areas (e.g., ventral column of 
spinal cord) (Figures 2D and 2E). A large number of GFP-NSCs were 
detected in the demyelinated foci following i.n. or i.v. delivery (21-25 
cells/mm2 in brains and 15-17 cells/mm2 in spinal cords (Figure 2F).

Anti-inflammatory effect of i.n.-aNSCs in the CNS

Consistent with clinical observations, inflammatory infiltration 
in spinal cords was significantly suppressed by aNSCs i.n. and i.v. 
compared to untreated-EAE. At week 3 p.t., inflammatory infiltration 
was significantly attenuated following i.n. and i.v. injection, as shown 
by H & E staining (Figure 3A). Significantly lower numbers of CD4+ T 
cells (Figure 3B) and F4/80+ macrophages (Figure 3C) were detected in 
i.n. delivery and i.v. injection compared with untreated mice (p<0.05-
0.01, Figure 3D).

Lack of effect of i.n. aNSCs on peripheral immune 
responses

To study the autoantigen-induced immune cell proliferation 
responses of i.n. aNSC-treated mice compared with the other 
treatment groups, splenocytes were harvested 3 weeks p.t. and 
cultured with MOG35-55 peptide and anti-CD3/CD28 for 3 days. Spleen 
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Figure 1: Effective suppression of EAE by i.n. administration of GFP-
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to reach >99% purity, then transferred into growth medium where they became 
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of disease, EAE mice that received the same volume of PBS either i.n. or i.v. 
served as a sham injection control. Symbols represent mean values and SD of 
6-7 mice from each group. (B) NSC-i.n. delivery or NSC-i.v. injection at day 14 
p.i.; (C) NSC-i.n. delivery or i.v. injection at the peak of disease (day 21 p.i.). 
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p.t., and brains and spinal cords were harvested for immunohistology. At day 
21 p.t., all groups were examined in the same region of the corpus callosum 
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(data not shown), while at day 7 p.t. these cells were found in both brain (B) 
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and spinal cord. Nuclei are stained with DAPI (blue). (F) Quantitative analysis 
of GFP-aNSCs that reached the parenchyma of EAE at days 1, 7 and 21 p.t. 
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cell proliferation was significantly lower in i.v. aNSC-injected groups 
(starting from day 14 p.i.) as compared to i.n. and untreated control 
(p<0.05-0.01; Figure 4A). There was no significant difference between 
i.n. delivery and untreated control groups (p>0.1; Figure 4A). The same 
result was obtained in mice that received NSC starting from day 21 p.t. 
(Figure 4B). These results suggest a direct effect of i.n. delivered NSC 
on the CNS, without inhibiting proliferation of immune cells in the 
periphery.

I.n. aNSCs promote remyelination 

To compare the regenerative potential of i.n. and i.v. aNSCs vs. the 
untreated group in EAE mice, the ventral column at L3 in the spinal 
cord (shown in Figure 5A) was examined in all groups at the end of 
the experiment (21 days p.t.). Multi-focal myelin loss in EAE mice was 
also detected, with markedly decreased MBP in the ventral column 
of spinal cord (Figure 5B). Spinal cords of i.n.-aNSC-treated and i.v. 
mice showed rare demyelination foci and a significantly lower score of 
demyelination than untreated EAE mice (Figure 5C).

To characterize the phenotype of demyelinated lesions in mice that 
received i.n. or i.v. aNSCs, spinal cords were harvested at the end of the 
experiment (day 21 p.t.), and triple immunostaining was performed in 
spinal cord sections with cell type-specific antibodies. Co-localization 
of GFP and neural specific markers in the spinal cord revealed that 
some of the transplanted cells differentiated into NG2+ oligodendrocyte 
progenitors (Figure 6A) and GalC+ mature oligodendrocytes (Figure 
6B). While oligodendrocyte-like cells could be observed in all groups, 
i.n. and i.v. aNSC-treated mice exhibited a significantly higher absolute 
number of oligodendrocytes (GalC+) than untreated groups (p<0.01; 
Figure 6C).

Co-localization of GFP and neural specific markers in the spinal 
cord showed that some transplanted cells differentiated into β-III-
tubulin neurons (Figure 7A) and GFAP+ astrocytes (Figure 7B). GFP+ 
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system connecting the nasal passages with brainstem and spinal cord 
regions; 3) entry into the CSF with movement along the surface of 
the cortex followed by entry into the CNS parenchyma [14,20]. Our 
study is the first to deliver NSCs nasally as a therapy for EAE, and to 
confirm that cells can migrate into the brain rapidly, reach distant CNS 
areas, including the spinal cord, and survive there until the animals 
are sacrificed (in our experiments, 3 weeks). In addition, nasal delivery 
of NSCs leads to their more rapid appearance in the CNS than with 
i.v. injection, another advantage in view of possible future application 
in human cell-based therapy. Taken together, these results indicate 
the potential of i.n. NSCs as a novel and efficient approach for NSC 
delivery in EAE/MS therapy.

NSCs have recently emerged as a potential effective therapy in the 
treatment of MS [4,13,21]. The capacity of NSCs for CNS migration and 
neural cell differentiation makes these cells attractive resources for cell-
based therapy, not only in EAE, but also in other types of neurological 
diseases [22,23]. Therapeutic effects of transplanted NSCs mainly 
include cell replacement, neuroprotection, and immunomodulation. 
Systemic and i.c.v. transplantation of NSCs halted EAE progression 
and decreased severity of clinical signs [4,13,21]. These NSCs can 
differentiate into myelin-producing cells that engage in subsequent 
remyelination, resulting in a decrease in net myelin and axonal loss. 
Grafted aNSCs have been reported to survive in the CNS for up to 
15 months, without any sign of deleterious outcomes such as adverse 
immune responses, inappropriate anatomical accumulation, or tumor 

cells retained undifferentiated SOX2+ morphological features (Figure 
7C), consistent with our previously published experimental results 
[12].

Discussion 
This study demonstrates the therapeutic efficacy of i.n.-delivered 

aNSCs to the CNS, especially in the spinal cord, in an animal model 
of EAE. Administration of i.n. aNSCs improved functional outcome 
and attenuated the immunological and pathological features of EAE. 
These results indicate that intranasal delivery could be an efficient route 
for stem cell transplantation in neuroimmunological diseases, such as 
multiple sclerosis. We demonstrate that i.n. aNSCs not only effectively 
suppress CNS inflammation, but also promote remyelination. Of note, 
i.n. administered NSCs had no effect on systemic immunological 
response, except in the CNS. I.n. delivered NSCs had therapeutic effects 
comparable to those delivered i.v. as measured by cell replacement, 
neuroprotection and immunomodulation; however, i.n. aNSCs had the 
significant advantage of not interfering with systemic immunological 
functions.

Neither the precise pathways by which aNSCs travel, nor their 
mechanisms of action, have been fully elucidated. Three routes have 
been proposed for cell migration into the brain and spinal cord after 
nasal delivery: 1) the peripheral olfactory system connecting the nasal 
passages with the olfactory bulb and rostral brain regions (e.g. anterior 
olfactory nucleus and frontal cortex); 2) the peripheral trigeminal 
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Figure 6: I.n.-GFP-aNSCs promote remyelination of demyelinated axons 
in spinal cord. Spinal cords were harvested for immunohistology at day 21 
p.t. All groups were examined in the same region: a specific site on the ventral 
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formation [24]. However, a degree of caution is warranted in future 
studies in particular for the possibility of the latter complication [25,26].

Transplanted NSCs, when injected peripherally, transiently 
colonize systemic organs, e.g., lymph nodes and spleen, and can inhibit 
T-cell activation and proliferation [25,27-29], as well as dendritic 
cell function [30]. Due to their nonspecific properties, a systemic 
immunosuppressive effect may occur when NSCs are present in the 
periphery before migration into the CNS (approx. 18–20 days post i.v. 
injection) [12,21,31]. Nasally administrated NSCs, in contrast, migrate 
into the CNS directly, without systemic distribution, thus minimizing 
the potential peripheral immunosuppression caused by NSCs. 

In MS and EAE, a few autoreactive T cells in an autoimmune 
infiltrate are thought to control a vast population of nonspecific 
cells; therefore, the suppression of autoreactive T cells could lead to 
a significant reduction in other inflammatory infiltrates [32]. Given 
that transplanted NSCs in the inflamed foci of the CNS interact more 
closely with infiltrating, pathogenic immune cells than with those in the 
periphery, suppression of inflammation in the target organ by NSCs is 
likely to be more effective than in the periphery. Consistent with this, it 
has also been found that, while systemic administration of IL-10 failed 
to suppress EAE, local delivery of this cytokine had a significant effect 
[33]. Our current study has shown that, while a comparable therapeutic 
effect was obtained in both i.v. and i.n. administration of NSCs, 
splenocytes from mice that received i.v. NSCs exhibited suppressed 
proliferation after culture of both MOG and anti-CD3/CD28 ex vivo, 
indicating a systemic immunosuppression, which was not observed in 
mice that received i.n. NSCs. These data demonstrate that, in contrast 
to i.v. NSCs, suppression of EAE by i.n. NSCs is CNS-specific and does 
not interfere with systemic immune responses.
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