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Abstract
Dysfunctional intracellular signaling involving deregulated activation of the Janus Kinase/Signal Transducers 

and Activators of Transcription (JAK/STAT) and “cross-talk” between JAK/STAT and the stress-activated protein 
kinase/mitogen-activated protein kinase (SAPK/MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian 
Target of Rapamycin (PI-3K/AKT/mTOR) pathways play a critical role in rheumatoid arthritis. This is exemplified 
by immune-mediated chronic inflammation, up-regulated matrix metalloproteinase gene expression, induction of 
articular chondrocyte apoptosis and “apoptosis-resistance” in rheumatoid synovial tissue. An important consideration 
in the development of novel therapeutics for rheumatoid arthritis will be the extent to which inhibiting these signal 
transduction pathways will sufficiently suppress immune cell-mediated inflammation to produce a lasting clinical 
remission and halt the progression of rheumatoid arthritis pathology. In that regard, the majority of the evidence 
accumulated over the past decade indicated that merely suppressing pro-inflammatory cytokine-mediated JAK/
STAT, SAPK/MAPK or PI-3K/AKT/mTOR activation in RA patients may be necessary but not sufficient to result in 
clinical improvement. Thus, targeting aberrant enzyme activities of spleen tyrosine kinase, sphingosine kinases-1, 
-2, transforming growth factor β-activated kinase-1, bone marrow kinase, and nuclear factor-κB-inducing kinase for
intervention may also have to be considered.
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Introduction
The concept was so elegant in its simplicity that it was surprising 

that directly targeting intracellular signaling pathways in arthritis to 
restore normalcy to dysfunctional immune-mediated inflammation 
took so long to have finally reached the clinic. Now that the novel small 
molecule Janus Kinase-1, -3 (JAK1/3) inhibitor, tofacitinib, which 
was recently approved by the US Food & Drug Administration for 
the treatment of moderate-to-severe rheumatoid arthritis (RA) [1] is 
available for treating RA patients in the general population, it is likely 
that this monumental achievement in the development of an inhibitor 
that targets a specific class of protein kinases will further revolutionize 
the medical therapy of RA.

Drugs Employed in the Medical Therapy of RA 
Presently tofacitinib is essentially restricted for use in RA patients 

who are unresponsive or have become refractory to therapy with 
conventional disease-modifying anti-rheumatic drugs (DMARDs) or 
to treatment with anti-rheumatic biological agents. The conventional 
DMARDs included in the pharmaceutical armamentarium for RA 
are corticosteroids, salicylates and non-steroidal anti-inflammatory 
drugs [2], anti-malarial drugs [3] methotrexate [2], and leflunomide 
[4]. Depending on whether or not RA patients demonstrate a clinically 
significant response to conventional DMARDs, RA patients may then 
also be treated with anti-rheumatic biological drugs. Included in this 
group are tumor necrosis factor (TNF) inhibitor monotherapy [5,6], 
TNF inhibitor in combination with methotrexate [4] or leflunomide 
[7], anti-IL-6-receptor binding inhibitor [8-11] or anti-IL-6 receptor 
binding inhibitor in combination with methotrexate [10,11], anti-IL-1 
inhibitor [12,13], anti-T-cell [14,15] or anti-B-cell [16,17] biologicals. 
RA patients treated with tofactinib plus methotrexate has also recently 
been reported [18]. 

The “Standard of Care” for RA Indicates that the Use of 
Multiple Biological Drugs is Prohibited

At the present time, employing multiple biological drugs in a single 
RA patient is prohibited [19]. In addition, serious concerns continue 
to exist regarding long-term monotherapy with these biological drugs. 
RA patients are already known to be at higher risk for co-morbid 
conditions associated with their disease. Moreover, developing these 
co-morbidities appears to be independent of the defined risk factors 
for these conditions in the general population. Thus, long-term therapy 
with biological drugs may increase the relative risk to RA patients for 
developing serious infections [20-22], malignancies [20,23] as well as 
a worsening of cardiovascular disease, especially in those RA patients 
with pre-existing congestive heart failure [24]; the latter condition 
wherein therapy with biological drugs is contraindicated [25]. 

Future Drug Therapies for RA
An important concern in developing novel RA therapeutics going 

forward will be the extent to which inhibition of the JAK/Signal 
Transducers and Activators of Transcription (STAT) pathway alone will 
sufficiently suppress immune cell-mediated inflammation to produce a 
lasting clinical remission. In that regard, the majority of the evidence 
now having been accumulated over the past decade indicated that 
merely suppressing pro-inflammatory cytokine-mediated JAK/STAT 
activation in RA patients may be necessary but not sufficient to result 
in clinical remission.
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“Personalized Molecular Medicine”
 Consistent with this view, we predict that the most efficient way 

for future RA drug development will be to focus on producing orally-
administered SMIs with high selectivity and specificity for individual 
protein kinases. This paradigm could prove even more fruitful if a 
“personalized molecular medicine” approach was developed whereby 
the repertoire of elevated pro-inflammatory cytokines in both the 
serum and synovial fluid of individual RA patients was completely 
defined prior to beginning drug therapy and a specific protein kinase 
SMI chosen on the basis of which cytokine and/or signaling pathway 
repertoire was involved. 

In light of this contention, we recently suggested that dysfunctional 
intracellular signaling involving protein kinase pathways other than 
JAK/STAT as well as “cross-talk” between JAK/STAT and the stress-
activated protein kinase/mitogen-activated protein kinase (SAPK/
MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian Target 
of Rapamycin (PI-3K/AKT/mTOR) pathways is likely be required to 
completely dampen immune-mediated inflammation and cartilage 
destruction in RA [26-28]. Supporting this viewpoint are the results of 
an analysis involving the therapy of active RA with the anti-IL-6 receptor 
inhibitor, tocilizumab [29]. Thus, in a random 90% sample of data from 
the ‘Tocilizumab Safety and the Prevention of Structural Joint Damage 
Study’ (LITHE) clinical trial of patients with active RA treated with 
methotrexate, the results revealed a surprisingly clear-cut dissociation 
between suppression of inflammation induced by tocilizumab as 
measured by ‘The Genant-modified Sharp Score’ (‘TGSS’), simplified 
disease activity score index, swollen joint count and C-reactive protein 
levels which were all reduced from baseline in the tocilizumab-treated 
group, and evidence of synovial joint cartilage destruction, as measured 
by changes in joint space narrowing by X-ray analysis. These results also 
showed that RA patients achieving clinical remission by both objective 
and subjective criteria in the placebo or tocilizumab arm who had initial 
low disease scores, low ‘TGSS’, minimal bone erosion and near-normal 
joint space narrowing benefited more from treatment with tocilizumab 
or placebo than RA patients with higher initial disease activity scores 
in either the placebo or tocilizumab arm of this clinical trial. Therefore, 
when all of the data from clinical trials such as this one are combined 
with previously reported basic and clinical research data [26,27,30]. The 
results suggest that multiple drug treatment strategies may have to be 
considered in order to suppress the progression of articular cartilage 
damage in RA, which appears to result from a mechanism quite distinct 
from the one that regulates changes in biomarkers of inflammation, 
bone erosion and cell survival. 

Intracellular Signaling Regulates Immune-cell, 
Synoviocyte Survival, and Cartilage Apoptosis in RA

In addition to these above considerations, there is now mounting 
evidence that several protein kinases are deregulated in RA as well as 
in autoimmune disorders in general. Thus, dysfunctional intracellular 
signaling induced by pro-inflammatory cytokines was shown to 
be responsible for aberrant immune-cell survival [31-33], articular 
chondrocyte apoptosis [33,34] and/or “apoptosis-resistance” of cells in 
RA synovial tissue [35-38]. Abnormalities in the aforementioned JAK/
STAT, SAPK/MAPK and PI-3K/AKT/mTOR pathways [26,27,39-41] as 
well as aberrant activities in spleen tyrosine kinase (Syk) [42-46], the 
sphingosine kinases, SphK1 and SphK2 [47-52], transforming growth 
factor β-activated kinase-1 (TAK1) [53], bone marrow kinase (BMX) 
[54] and nuclear factor-κB-inducing kinase (NIK) [55] have all been 
found in patients with active RA. To illustrate this point, Gottar-Guillier 

et al. [54] showed that BMX activity was a requirement for p38 kinase 
and JNK phosphorylation as well as for the activation of NF-κB [55]. 
Therefore BMX may be responsible for regulating the activation of p38, 
JNK and NF-κB, all of which are critical to the inflammatory response 
cell survival and apoptosis.

Thus, over-expression of protein kinase genes or changes in protein 
kinase activity would result in, or promote exuberant cell survival and/
or resistance to apoptosis, or both. Of note, SMIs for a few of these 
protein kinases are already in development for the therapy of RA 
[51,56,57]. 

Which Pro-Inflammatory Cytokines are Elevated in the 
Sera and Synovial Fluids of RA Patients? 

There is now persuasive evidence that the level of a particular pro-
inflammatory cytokine in sera and synovial fluid reflects their role in 
the pathogenesis and progression of RA. Thus, TNF-α and several of the 
interleukins (IL), including, IL-1, -6, -7, -8, -12/23, -15, -17, -18, -32, -35 
and proteins of the interferon (INF) family were found to be elevated in 
RA sera [58-64] with a matching elevated repertoire of these cytokines 
in RA synovial fluid [28,65-69]. Of note, the cytokines produced by the 
Th2 subset, identified by the expression of the GATA-3 transcription 
factor, which drives production of the anti-inflammatory cytokines, 
IL-4, -5 and -13, were found at reduced levels in RA [70]. Therefore, 
based on these results it is tempting to design experimental strategies 
to rigorously define which of several possible intracellular signaling 
pathways are activated or suppressed by the biological activities of 
these elevated levels of pro-inflammatory cytokines. Likewise we 
can envision developing experimental systems to test the hypothesis 
that production of anti-inflammatory cytokines can be potentially 
increased by targeting activation of signaling cascades responsible for 
the expression of IL-4, -5, -13 and IL-10 genes.

Activation of the JAK/STAT Pathway
Activation of STAT proteins occurs after the interaction of pro-

inflammatory, anti-inflammatory cytokines or growth factors with 
specific membrane-bound receptors on cells which results in JAK 
phosphorylation [71]. In this regard, STAT-responsive gene transcription 
is pertinent to perpetuating inflammation and progression of RA joint 
destruction [71]. To summarize, the principal effects of JAK/STAT 
pathway activation by those pro-inflammatory cytokines which are 
present in elevated amounts in RA sera and synovial fluid, and including, 
IL-2, IL-3, and IL-19/IL-20, is to increase the gene expression of IL-2R, 
-3, -4, -6, gp130 (a component of the IL-6 trans-signaling complex), 
IL-10, -18R1, INF-γ, Oncostatin M (OSM) and TNF-α. Recent analyses 
have shown that IL-17A [72-74], IL-19 [75,76], and IL-20 also play an 
influential role in the context of JAK/STAT pathway activation [72,76] 
and in the progression of RA pathology which make these findings 
particularly noteworthy. In particular, Moran et al. [74] showed that 
IL-17A increased matrix metalloproteinase (MMP)-1, -2, -9, and -13 
by RA synovial tissue explants, RA synovial fibroblast cultures, articular 
cartilage and cultured chondrocytes. This MMP repertoire was shown 
to be significant in driving the degradation of articular cartilage 
extracellular matrix (ECM) proteins in RA [77]. Moreover, together 
with OSM and TNF-α, treatment with IL-17A resulted in a skewing 
of the ratio of MMPs to tissue inhibitor of matrix metalloproteinases 
(TIMPs) favoring MMPs. However, cartilage explant ECM protein was 
only partially degraded in the presence of IL-17A, but when OSM and 
TNF-α was added, cartilage ECM protein degradation was complete. 
Interestingly, only 28% of those RA patients in this patient cohort had 
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elevated levels of serum IL-17A prior to beginning biologic therapy. Of 
note, RA patients who were “IL-17A-negative” showed reduced ratios of 
MMP-1/TIMP-4, MMP3/TIMP-1 and MMP3/TIMP-4 after treatment 
with biological drugs, whereas “IL-17A positive” RA patients did not. At 
issue here is the extent to which OSM, TNF-α and IL-17A, alone, or in 
combination, activated JAK/STAT signaling [26-28,48,57,63,66,71,74] 
which is ultimately responsible for the destruction of articular cartilage 
ECM in RA and for joint failure. We could then ask; would inhibiting 
activation of specific STAT proteins suppress MMP gene expression 
and cartilage destruction? 

SAPK/MAPK Pathway Activation
From a functional perspective the SAPK/MAPK signaling pathway 

is composed of the 5 p38 kinase isoforms, p38α, p38β1, p38β2, p38γ 
and p38δ, extracellular signal-regulated protein kinases-1-, 2-, -3, -4, -7 
(ERK-1, -2, -3, -4, -7) and C-Jun-N-terminal kinases, JNK1, JNK2 and 
JNK3 [78]. Complete activation of SAPK/MAPK signaling generally is 
dependent on the activity of upstream kinases, namely, MEK, MKK4 
and MKKK7 [79], although there is some evidence that upstream kinase 
kinase-independent SAPK/MAPK activation can also occur [80]. 

A renewed focus on the role of the SAPK/MAPK signaling 
cascade in RA is driven by its significant role in regulating the cellular 
responsiveness to various pro-inflammatory cytokines including, 
MMP gene expression [40,81], NF-κB activation [82], and cell survival 
and apoptosis [79,83]. However, inhibition of p38α using an orally-
administered SMI although showing promise in preclinical studies 
in animal models of RA [84] then failed to show efficacy in adult RA 
clinical trials [85]. This result may shift the focus of SMI research 
and development towards ERK 1/2 and JNK or to other components 
of SAPK/MAPK signaling implicated in the survival or apoptosis of 
immune-cells and activated synoviocytes. 

SAPK/MAPK Activation: Effects on Inhibitor of 
Apoptosis Proteins, IKKβ, c-Myc and TNFR 

Studies on the inhibitor of apoptosis proteins (IAP) have shown 
that they are critical regulators of immune-cell death in RA [31] as 
well as inflammation in general [25]. With respect to defects in the 
innate immune system in RA, the activity of several pattern recognition 
receptors (PPRs) including, Toll-like receptor-4 (TLR4), nucleotide-
binding oligomerization domain 1, (NOD1), nucleotide-binding 
oligomerization domain 2 (NOD2) receptors and retinoic acid-
inducible gene (RIG-1) receptor were shown to be IAP-dependent [86]. 
Importantly, recent evidence showed that celluar-IAP1 (cIAP1), cIAP2 
and X-chromosome-linked IAP (XIAP) (Figure 1), contained ubiquitin 
E3-ligase activity [87,88] and by this mechanism regulate p38, JNK and 
NF-κB [89] activity and vice versa [90]. 

Interestingly, c-IAPs are required to recruit IKKβ (Figure 1) the 
IKK regulatory subunit NF-κB essential modulator (NEMO) and the 
RBCK1/Hoil1-interacting protein (HOIP) to the TNFR signaling 
complex. In turn, c-IAPs were shown to regulate TNF-α-mediated 
signaling [89] and downstream MAPK activation, including ERK-1, 
-2, the latter being important regulators of the biological activity of 
hemopoietic progenitor cells in RA synovium [91] and the oncoprotein 
transcription factor, c-Myc, by articular chondrocytes in response to 
mechanical stimulation which also involved integrin-linked kinase 
and B-Raf [92]. Over-expression of c-Myc is considered essential for 
maintaining the continuously proliferating phenotype of transformed 
cells [93], which is in all likelihood, a property relevant to the 
uncontrolled proliferation and the “apoptosis-resistant” phenotype of 
RA synovium [38]. 

Recent evidence also showed that the biological functions of c-Myc 
required that c-Myc form heterodimers with its activation partner, 
Max [93]. Importantly, the interaction between c-Myc and Max can be 
prevented with the small molecule, 7-nitro-N—(2-phenylphenyl)-2, 1, 
3-benzoxadiazol-4-amine (10074-G5) which acts to distort the basic-
helix-loop-helix leucine zipper protein domains in c-Myc the latter 
being the structural entity responsible for c-Myc/Max interactions [94]. 
Thus, regulating the biological activity of c-Myc could be facilitated by 
inhibiting ERK-1, -2. Conversely, suppressing the interaction of c-Myc 
with Max may also become a fruitful strategy for restoring normalcy to 
the aberrant proliferative phenotype of RA synovium [95]. 

Another signaling pathway critical for induction of apoptosis 
involves Fas ligand (FasL) and “the promoter of the death receptor,” Fas, 
also known as CD95, produced by monocyte-derived macrophages 
[96]. FasL binds to Fas and causes the recruitment of the Fas-activated 
death domain (FADD) protein (Figure 1) to the tumor necrosis factor 
receptor type 1-associated DEATH domain protein (TRADD) complex 
[30], activation of pro-caspase-8 and induction of apoptosis [30,31] via 
intranucleosomal DNA fragmentation (i.e. DNA degradation). Fas-like 
inhibitory protein (FLIP) (Figure 1) can block further downstream 
induction of apoptosis. Thus, cells which expressed high levels of FLIP 
had low “mature” caspase-8 activity [30,38]. 

Another potential strategy for suppressing inflammation in RA 
and MAPK activation, in particular, may occur through manipulating 
the activation of TNFR complexes (Figure 1). In summary, TNFR 
complexes regulate the activation of the non-canonical NF-κB pathway 
leading to translocation of c-IAPs, and TNF-associated factors- 2, -3 
and -5 (TRAFs-2, -3 and -5) from the cytosol to the cell membrane 
and proteasomal or lysosomal-mediated degradation. In this manner, 
TRAFs are involved in multiple activation and inhibition signaling 
patterns [97], which regulate cellular recognition via their cytoplasmic 
interaction with other signaling molecules [98]. 

 With respect to the role of TNFR1 in apoptosis, the binding of 
TNF-α to the Type I TNF receptor (TNFR1) triggers phosphorylation 
(P) by IκB kinases of the inactive IκB/RelA/p50 NF-κB complex (Figure 
1) with translocation of RelA/p65 and NFKB1/p50 to the nucleus. IκB 
liberated from the inactive NF-κB complex undergoes proteasomal-
mediated degradation. NF-κB-dependent apoptosis can be blocked by 
XIAP. As previously reported [99,100], XIAP was localized to both the 
cytoplasm and nucleus, but XIAP and another anti-apoptosis protein, 
survivin, were highly expressed in the cytoplasm of cells in active 
RA synovial tissue [101]. Second mitochondria-derived activator of 
caspase/direct inhibitor of apoptosis-binding protein with low pI 
(Smac/DIABLO) [38] mediated inhibition of XIAP activity may favor 
induction of apoptosis over cell survival under these conditions [31,38]. 
In addition, XIAP and other IAP proteins can directly inhibit caspase-3 
and caspase-7 activity [102] as well as modulate the Bax/cytochrome 
C apoptosis pathway via XIAP-mediated inhibition of caspase-9 [103]. 
Thus, elevated levels of XIAP may be responsible for low caspase-3 
activity and inhibition of apoptosis (i.e. “apoptosis-resistance”) in RA 
synovium [31]. 

PI-3K/AKT/mTOR Pathway Activation
The involvement of the PI-3K/AKT/mTOR pathway (Figure 1) in 

promoting aggressive immune-cell and synoviocyte proliferation and 
survival, neoangiogenesis, apoptosis, and altered innate immunity in 
inflammatory arthritis was recently reviewed [64]. The salient features 
of this review can be summarized as follows in which both positive 
and negative responses by cells involved in inflammatory arthritis 
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activation of PI-3K/AKT/mTOR could also cause suppression of 
immune-cell proliferation by dampening Forkhead box protein O 
(FoxO) transcription factor activity; 4) resistance of RA synoviocytes 
to Fas (CD95)-induced apoptosis (Figure 1) involving activation 
of extracellular S1P via PI-3K/AKT/mTOR-dependent-SphK1; 5) 
Involvement of PI-3K/AKT/mTOR in innate immune responses 
pertinent to inflammation was demonstrated by the capacity of 

were noted: 1) PI-3K/AKT/mTOR activity was associated with an 
increase in neutrophil, macrophage and eosinophil chemotaxis, mast 
cell degranulation, as well as activation, maturation and survival of 
activated T- and B-cells; 2) activation of PI-3K/AKT/mTOR by Tumor 
Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) and IL-15 
resulted in exuberant RA-fibroblast-like synoviocyte proliferation and 
increased IL-17 production by CD4+ T-cells, respectively; 3) conversely, 
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Figure 1: An Apoptotic/Survival Cascade in Synovial Fibroblasts: Regulation via Fas (CD95), TNF-α and Growth Factor Receptors. Apoptosis or survival of 
synovial fibroblasts can be induced by several types of ligand-receptor interactions. These interactions may involve Fas, cytokine or growth factor receptor activation. 
P, site for MAPK-mediated phosphorylation.



Citation: Malemud CJ (2013) Intracellular Signaling Pathways in Rheumatoid Arthritis. J Clin Cell Immunol 4: 160. doi:10.4172/2155-9899.1000160

Page 5 of 8

Volume 4 • Issue 4 • 1000160
J Clin Cell Immunol
ISSN: 2155-9899 JCCI, an open access journal Inflammatory Disorders

activated PI-3K/AKT/mTOR to dampen TLR4-mediated immune cell 
activity and regulation of peptidoglycan-induced IL-6 production in 
human synoviocytes. 

In other studies, Cejka et al. [104] showed that inhibition of mTOR 
activity through treating human TNF-transgenic arthritic mice with 
sirolimus or everolimus inhibited osteoclast development, bone erosions 
and cartilage loss. Of interest, fewer bone-derived osteoclasts were 
found ex vivo, which was traced to induction of osteoclast apoptosis 
in mTOR inhibitor-treated TNF-transgenic arthritic mice. Importantly, 
a correlation was found between activated mTOR signaling and the 
number of osteoclasts in RA patients. The results of this study were 
supported by a proposal made by Kim et al. [105] who have asserted 
that mTOR activity was crucial for osteoclast survival. Thus, Kim et 
al. [105] contended that in RA patients combination therapy with an 
mTOR inhibitor and vitamin D(3) could effectively block subchondral 
bone erosion. Lastly, a recently discovered cytokine, IL-22, was shown 
to significantly increase the proliferation of fibroblasts isolated from the 
skin of patients with psoriatic arthritis [106]. Moreover, proliferation 
was effectively blocked by NVP-BEZ235, a dual inhibitor of PI-3K/
mTOR. The effect of NVP-BEZ235 was apparently dependent on AKT/
mTOR activity since IL-22 induced AKT and mTOR phosphorylation 
in these fibroblasts and in normal human epidermal keratinocytes. 

The PI-3K/AKT/mTOR pathway can also be activated by growth 
factors (Figure 1) such as vascular endothelial growth factor (VEGF) 
and fibroblast growth factor (FGF) both of which play significant roles 
in RA [107-109] because they can induce immune-cell, synoviocyte 
or chondrocyte apoptosis and/or survival which may be regulated 
by activation of cellular AKT [107,108]. Thus, the growth factor 
pathway cascade is initiated when VEGF or FGF interacts with their 
respective receptor tyrosine kinases resulting in activation of PI-3Kγ, 
the intermediates phosphatidylinositide-phosphate-3 (PIP-3) and 
phosphoinositide-dependent protein kinase-1 (PDPK-1) which then 
causes AKT1 activation [109]. Thus, when AKT1 is correctly oriented 
at the cell membrane through its capacity to bind to PIP-3, AKT1 is 
phosphorylated by its activating kinases, PDPK-1 and mTOR complex 
2 (mTORC2). In the context of RA, activated AKT1 phosphorylates 
several downstream signaling proteins resulting in up-regulation of 
mTOR and down-regulation of Glycogen Synthase Kinase-3 (GSK-3), 
FKHR, also known as Forkhead box protein O1, and Bad [110,111], the 
latter a member of BH3-interacting death-domain antagonist protein 
family [30], as well as other signaling proteins [112]. For example, 
AKT1 can differentially regulate the transcription of anti-apoptosis (i.e. 
survival pathway) genes such as 14-3-3 [113] and androgen receptor 
(AR) also known as nuclear receptor subfamily 3, group C, member 4 
[114] or pro-apoptosis-related genes such as tumor protein-73 (TP-73) 
[115] which is structurally related to the p53 tumor protein.

Conclusions 
The JAK1/3 SMI, tofacitinib, was recently developed for the 

treatment of moderate-to-severe cases of RA in patients who have 
inadequately responded to conventional DMARDs or therapy with anti-
rheumatic biological drugs. The approval of tofacitinib appears to have 
provided the impetus for future basic research aimed at discovering 
novel protein kinase-specific SMIs which may be targeted towards 
individual protein kinases or targeted as a dual protein kinase inhibitor 
such as the newly described N1-p-fluorobenzyl-cymserine which was 
reported to inhibit both p38 kinase and JNK as well as NF-κB [116]. 

In addition to the role played by pro-inflammatory cytokines in RA 
that cause deregulation of JAK/STAT [26-28] and SAPK/MAPK [117-

121], the results of recent studies have focused on why the PI-3K/AKT/
mTOR signaling pathway (Figure 1) may be the most suitable target 
in the development of SMIs for RA [104-106]. Certainly, additional 
targets for regulating abnormal JAK/STAT activity could also arise 
from a greater understanding of the negative regulators of JAK/STAT 
activation, including Suppressor of Cytokine Signaling (SOCS), protein 
phosphatases such as SHP-1, and Protein Inhibitor of Activated STAT 
(PIAS) proteins which are also significantly deregulated in RA [26]. 
Thus, along with the aforementioned protein kinases, Syk, SphK1 and 
SphK2, TAK1, BMX and NIK which were also identified as participants 
in the RA process these enzymes could all become suitable targets for 
future medical intervention in RA. 

However, enthusiasm for developing SMIs for any one specific 
protein kinase implicated in the pathophysiology of RA must be 
tempered and viewed with cautious optimism as a result of the 
recent evidence from the OSKIRA-I Phase III safety and tolerability 
study [122]. As previously discussed, Syk is a suitable target for RA 
intervention. This is because activation of Syk occurs in response to 
B-cell antigen receptor (BCR) engagement [42-46]. As such, activation 
of the BCR and Syk activation downstream of the BCR regulates B-cell 
development, and survival. In OSKIRA-I, fostamatinib (formally 
known as R788), an orally administered Syk SMI, improved the clinical 
symptoms of 923 RA patients who had not adequately responded to 
methotrexate. However, this clinical response was seen only at the 
American College of Rheumatology-20 (ACR20) criteria. Importantly, 
fostamatinib failed to improve the modified Total Sharp Score when 
compared to placebo at 24 wks at either of the two doses employed. 
The most common side-effects of fostamatinib in OSKIRA-I were 
hypertension, diarrhea, nausea, headache and nasopharyngitis. 
However, the results of previous clinical studies had also shown that 
fostamatinib was associated with increased rates of infection, elevated 
liver enzyme levels and neutropenia [56]. Therefore, additional data 
will have to be collected over a longer period of observation in order 
to determine the extent to which fostamatinib can improve clinical 
outcomes in RA at least at the ACR50 level. Whether or not a positive 
clinical response to fostamatinib will correlate with a reduction in 
subchondral bone erosions and/or inhibition of articular cartilage 
destruction must also be considered in judging the effectiveness of 
fostamatinib as an RA therapy.
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