
Research Article Open Access

Jilling et al., J Clin Cell Immunol 2012, S3 
DOI: 10.4172/2155-9899.S3-007

Review Article Open Access

J Clin Cell Immunol                               ISSN:2155-9899 JCCI, an open access journal 
Immune Response and 

Apoptosis

*Corresponding author: Tamas Jilling, MD, The Ellrodt-Schweighauser Family 
Chair of Perinatal Research, Evanston Northwestern Healthcare Research Institute, 
Research Associate Professor, Northwestern University Feinberg School of 
Medicine, Evanston Hospital, Department of Pediatrics, 2650 Ridge Ave, Evanston, 
IL 60201, USA, E-mail: tamasjilling@gmail.com

Received September 06, 2011; Accepted January 24, 2012; Published March, 
09, 2012

Citation: Jilling T, Lu J,Caplan MS (2012) Intestinal Epithelial Cell Apoptosis, 
Immunoregulatory Molecules, and Necrotizing Enterocolitis. J Clin Cell Immunol 
S3:007. doi:10.4172/2155-9899.S3-007

Copyright: © 2012 Jilling T, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Necrotizing enterocolitis is one of the most severe, life-threatening consequences of premature birth, affecting 

5-15% of premature neonates with birth weights <1,500 grams. Many lines of evidence suggest a role for the
dysregulation of enterocyte apoptosis in NEC pathogenesis. In addition to apoptosis, the roles of several inflammatory
mediators such as platelet-activating factor, IL-8, TNFα and endotoxin have been shown to be pathogenic. Receptors
for these ligands and downstream cellular signaling pathways, such as mitochondrial injury-induced caspase
activation and NFĸB-mediated transcriptional regulation are thought to be involved in the mechanisms of mucosal
injury in NEC. In this review, we attempt to summarize the role of enterocyte apoptosis in NEC along with an analysis
of the connection between inflammatory signaling and apoptosis in this disease.
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Introduction
The nineteenth century French physiologist Claude Bernard, who 

is considered to be the father of modern physiology, eloquently defined 
the concept of homeostasis:

“The living body, though it has need of the surrounding environment, 
is nevertheless relatively independent of it. This independence, which 
the organism has of its external environment, derives from the fact that 
in the living being, the tissues are in fact withdrawn from direct external 
influences and are protected by a veritable internal environment which 
is constituted, in particular, by the fluids circulating in the body.” [1]

One of the most important requirements to maintain this 
homeostasis is the integrity of epithelial tissues, which constitute the 
barrier and transport facility between the highly regulated internal 
milieu and the variable outside world. As it is detailed through various 
chapters of this book, the intestinal epithelium is a dynamic and 
complex structure and it is in charge of simultaneously forming a barrier 
and mediating interactions between the internal milieu of the body 
and the intestinal content, which is a direct extension of the external 
environment. This interface is extremely intricate due to the number 
of transport processes that are required for food digestion, absorption 
of nutrients and regulation of intestinal luminal environment; the 
presence of vast quantity and diversity of microbes that inhabit the 
intestinal lumen; and the diverse immune and immune regulatory 
processes that take place concurrently. This complexity is compounded 
by the fact that enterocytes have one of the highest turnover rates of all 
cell types in the human body, with the entire intestinal epithelial lining 
being renewed every few days. In the early neonatal period, this rapid 
enterocyte turnover coincides with fast growth and with the adaptation 
of the intestine to interactions with the extrauterine environment and 
to the stress of food intake. 

In the early neonatal period, the adjustment from being exposed 
to the very stable amniotic fluid to processing and absorbing food 
involves large scale changes in gene expression of transporters, 
enzymes, and receptors, as well as an adaptation of splanchnic 
circulation to the rapidly increasing energy consumption of the active 
intestine and to the need for carrying the absorbed nutrients to the 
systemic circulation. Another part of this adaptation is the colonization 
of the lamina propria with cells of the adaptive immune system, which 
enables the host to mount proper immune reactions to invading 
pathogens. Yet another part of this process is the adjustment of the 
innate immune system’s reactivity, allowing the host to accommodate 

the colonization of probiotic bacteria and to reduce reactivity to low 
levels of bacterial cell wall components or other microbial constituents 
that may be present in food normally. All of these adaptation processes 
have important implications for intestinal diseases occurring in the 
perinatal period. To orchestrate the processing and absorption of 
nutrients and the aforementioned various dramatic changes, a number 
of mediators that are not present in the intestinal microenvironment 
prior to birth must be released in an orderly fashion after oral feeding 
begins. The colonization of the lamina propria with lymphocytes, 
granulocytes and monocytes increases the number of highly reactive 
cell types that are capable of producing cytokines and chemokines 
which may have profound effects on epithelial physiology and viability. 
The proper adjustment of innate immune signaling is essential to 
preempting any unnecessary inflammatory signaling by the epithelium 
in reaction to normal intestinal luminal content which, in turn, may 
trigger additional inflammatory signaling by inflammatory cells that 
are establishing their presence in the lamina propria.

While the aforementioned growth and adaptation processes 
progress with high fidelity and without major difficulties in mature 
neonates, in the premature infant these mechanisms appear to be less 
than perfect, as up to 15% of premature newborns weighing less than 
1500 grams suffer from a catastrophic collapse of enteric integrity 
following the beginning of oral feeding and are affected by a disease 
termed necrotizing enterocolitis (NEC). Although our understanding 
of the exact mechanisms that are responsible for the collapse of mucosal 
integrity is just emerging, there are a number of mediators and cellular 
processes that have been identified as major players in pathology.
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The risk factors and clinical features of NEC 

NEC is a devastating gastrointestinal disease affecting premature 
infants, and despite recent advances in neonatology, it remains a 
leading cause of morbidity and mortality in this high-risk population 
[2]. The disease incidence varies worldwide, but estimates in babies 
born weighing less than 1500 grams range from 10% in the U.S. to 
14% in Argentina and 28% in Hong Kong. In one report, the incidence 
of death from NEC was just below that from sudden infant death 
syndrome, a leading cause of death in infants [3]. The number one 
predictor of risk for NEC is prematurity. There is a very clear and 
inverse relationship between gestational age and NEC incidence as 
well as birth weight and NEC incidence [4]. Compromised circulation 
and oxygenation likely plays a role, since NEC is observed in full term 
infants only if disordered circulation occurs as a result of major cardiac 
malformations, open heart surgery, polycythemia, double-exchange 
transfusion or birth asphyxia and the incidence of NEC in premature 
neonates who had congenital heart disease is significantly higher than 
in infants without heart disease [5]. Breast feeding provides some 
protection from NEC; therefore, formula feeding is considered to be a 
risk factor. Aberrant bacterial colonization or exposure to pathogens is 
thought to predispose to NEC, but this area is not very well characterized 
in detail [6]. Typically, NEC presents several days after initiation of oral 
feeding with symptoms of distended abdomen, reduced peristalsis and 
bloody stool, and the disease often progresses to include systemic signs 
of inflammation. The definitive diagnosis of NEC is made based on the 
signs of pneumatosis intestinalis and/or gas in the portal circulation on 
abdominal x-ray. Currently, the mainstay of initial treatment is non-
specific supportive care, and includes the management of systemic 
inflammation and sepsis. Surgical intervention is provided for signs 
of intestinal perforation and/or worsening local and systemic signs 
of disease, and might include a conservative approach with bedside 
drainage or an exploratory laparotomy with resection of necrotic bowel. 
There is no clear consensus regarding the benefits of conservative or 
more invasive surgical management as recent studies have identified 
similar morbidity and mortality rates amongst these two options. 
Notably, surgical intervention does not seem to influence mortality in 
this complex disorder. 

The role of intestinal ischemia 

The newborn intestinal vasculature exhibits very low resistance, 
primarily due to an increased baseline and stimulus-induced 
production of endothelial-derived nitric oxide [7]. This low baseline 
vascular resistance limits the ability of the neonatal splanchnic 
vasculature to adapt to systemic decrease of blood supply or oxygen. 
Furthermore, due to the role of endothelium in maintaining this 
low vascular resistance, any endothelial dysfunction may lead to 
severe vasoconstriction. It has been shown that in human neonatal 
intestinal microvasculature there is severe vasoconstriction in areas 
of necrosis and that in these submucosal arterioles there is a defective 
endothelium-mediated autoregulation in response to pressure changes 
[8]. This is compounded by an exaggerated endothelin-1-dependent 
vasoconstrictive response [9]. Tissue ischemia is a potent inducer of 
inflammatory molecules, including platelet-activating factor [10,11].

The role of platelet activating factor homeostasis

Studies from our lab and others have shown that PAF plays an 
important role in the pathophysiology of intestinal inflammation and 
NEC in adult rats; for example: 1) exogenous PAF given intravenously 
results in ischemic bowel necrosis [12], 2) endotoxin, hypoxia, or TNF-
induced intestinal injury can be prevented by PAF receptor antagonists 

[13-15], 3) endotoxin and hypoxia stress increases intestinal PAF 
content [13]. Additional experiments have evaluated the importance 
of PAF in neonatal rats using the typical risk factors of NEC, including 
asphyxia and formula feeding [16]. In this model, we have shown that 
PAF receptor blockade reduces the incidence of NEC, and that the 
PAF-degrading enzyme PAF-AH given with enteral feeding interferes 
with the initiation of NEC [17,18]. Breast milk, which is thought to 
reduce the risk for NEC, contains significant quantities of this enzyme. 
Importantly, both PAFR antagonist and PAF-AH protected animals 
from NEC when they were administered luminally, i.e.; mixed into 
the formula end without absorbing into the systemic circulation. 
These data strongly suggest that luminal PAF content and PAFR in 
the luminal plasma membranes of enterocytes might have important 
pathological significance.

PAF receptor in enterocytes 

The PAFR was originally cloned from guinea pig lung [19], then 
subsequently from a number of other species. Based on its general 
architecture PAFR belongs to the seven transmembrane domain, 
G protein coupled receptors (GPCRs). PAFR is expressed on the 
surfaces of a broad range of cells, including various leukocytes [20,21], 
endothelial cells [22], neurons [23] and epithelial cells lining the 
airways [24] and the GI tract [25]. PAFR is expressed at the highest 
level in intestinal epithelial cells [26,27], yet its physiological function 
in these cells is poorly characterized. We have found that the PAFR is 
localized and functions exclusively in the apical plasma membrane in 
cultured colonic epithelial cells [25]. PAFR activation by mucosal PAF 
elicits Cl- transport in colonocytes [25], apoptosis in small intestinal 
epithelial cells [28] and intracellular acidification in both colonocytes 
and small intestinal epithelial cells [29]. Strikingly, PAFR can be 
activated on the mucosal surfaces of colonic epithelial cells only at three 
orders of magnitude higher PAF concentrations than in non-polarized 
cells [25]. These findings correlate with reports indicating a similar low 
affinity activation in airway epithelial cells [24]. The data suggest that 
the exclusive apical localization of PAFR has a discrete physiological 
significance, and that the investigation of PAFR targeting and function 
in epithelial cells has the potential to reveal details that cannot be 
obtained from non-polarized cells. It will be essential to characterize 
the molecular determinants of targeting, trafficking and function of 
the PAFR in polarized epithelial cells. The PAFR belongs to one of the 
largest receptor families known in biology, the seven transmembrane 
domain G protein coupled receptors (GPCR). Therefore, knowledge 
accumulated about the PAFR in intestinal epithelial biology will have 
relevance to signaling via many others in this large family.

GPCRs in intestinal epithelial cells

Cultured intestinal epithelial cells express a number of GPCRs, 
such as the VIP receptor [30], secretin receptor [31], β adrenergic 
receptor [32], angiotensin II and lysophosphatidic acid receptors [33], 
muscarinic acetylcholine receptor [34], PAF receptor [26], proteinase-
activated receptors 1 and 2 [35,36], purinergic receptors [37] and 
the thromboxane receptor (our unpublished data), to name a few. 
Activation of many of these receptors profoundly affects enterocyte 
proliferation, differentiation and cell death among their regulatory 
effects on many other cellular functions. The various GPCRs elicit 
their effects on enterocytes via multiple distinct signaling mechanisms. 
Many of these signaling mechanisms were characterized based on 
the pharmacology of agonist-induced epithelial transport properties. 
For instance, VIP acts primarily through Gαs and elicits a sustained 
Cl- secretory current via generation of cAMP [38], while purinergic 
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receptor activation results in an increase of intracellular free calcium 
via G(i/o6) [39], which is a poor direct activator of Cl- currents, but 
results in a large potentiation of cAMP-induced secretory current. 
Furthermore, while we have overwhelming evidence that PAFR 
activation is a potent pro-apoptotic signal for enterocytes [28,29,40], 
activation of other GPCR-s, such as the lysophosphatidic acid receptor 
is antiapoptotic [41]. Given that both Gs and G(i/o)-dependent 
signaling has implications on epithelial proliferation and cell death, 
GPCR signaling is an important aspect of NEC pathogenesis. The best 
characterized GPCR in NEC pathogenesis is the PAFR, but many other 
epithelial GPCRs and their signaling mechanisms warrant further 
investigation in this matter. 

PAFR signaling

Activation of PAF-receptor leads to stimulation of several signal 
transduction pathways culminating in physiological or pathological 
regulation of vasoconstriction and/or vasodilatation, leukocyte 
stimulation and migration, synthesis and activation of cell adhesion 
molecules, increased capillary permeability, production of reactive 
oxygen and nitrogen species, and alterations in intestinal mucosal 
permeability [42,43]. To elicit signaling, the PAFR is capable of linking 
to both Gs or G(i/o) [44], but it is more commonly found to link to 
Gi [45,46]. Downstream from G protein activation, PAFR activation 
results in phosphatidylinositol turnover [47], phosphorylation of 
signaling proteins, such as β-catenin [48], VE-cadherin [49], ERK1/2 
[50], Tyk2 [51], elevation of intracellular free [Ca++] [52], protein kinase 
C activation [53], and subsequent activation of signal transducers and 
activators of transcription (STATs) [54, 55] and NFĸB [56-58]. We 
identified three major downstream consequences of these PAFR-
activation-evoked signaling steps in intestinal epithelial cells that may 
have significance in NEC pathogenesis. These are 1) regulation of Cl- 
channels [25], 2) regulation of gene expression (our unpublished data) 
and 3) regulation of apoptosis [28]. 

Regulation of epithelial ion transport by PAF 

Since many GPCRs, including the the VIP receptor [38], secretin 
receptor [59], β adrenergic receptor [60], muscarinic acetylcholine 
receptor [61], protease-activated receptors [35], and purinergic 
receptors [37] regulate ion transport in enterocytes it is very feasible 
that PAF does the same. In order to verify this expectation we 
investigated PAF-induced transepithelial ion transport and have 
found that indeed PAF activates a transepithelial ion flux in HT29-
Cl19A polarized colonic epithelial monolayers [25]. We also found 
that the PAFRs localize to the apical plasma membrane of polarized 
colonocytes, suggesting interesting implications for the luminal origin 
of PAF in NEC pathology. In our more recent studies we have found 
that in addition to regulating transepithelial ion flux, PAFR activation 
may lead to intracellular acidification due to release of HCO3

- through 
CLC-3 chloride channels [29]. These findings may be significant 
because several caspases and apoptosis-related nucleases have acidic 
pH optima [62] and cytoplasmic acidification has been shown to 
promote apoptosis [63]. To support this notion, we have found that 
over-expression of the Na+/H+ exchanger NHE1, or knocking down 
CLC-3 using shRNA results in inhibition of PAF-induced apoptosis in 
enterocytes [29].

Regulation of epithelial gene expression by PAF 

Many GPCRs that are expressed in epithelial cells are known 
to regulate gene expression in various cell types. PAFR signaling 
specifically, is known to regulate gene expression as activation of 

the PAFR leads to expression of immediate, early oncogenes in rat 
fibroblasts [64], HEC-1A endometrial carcinoma cells [53], and in 
A-431 human epithelial carcinoma cells [65]. More importantly from 
the point of view of enteral health, PAFR activation leads to intestinal 
TNFα, PLA2-II, PAFR gene expression in an in vivo, PAF-perfusion-
induced bowel necrosis model [66-68]. As discussed above, signaling 
via the PAFR results in the activation of transcription factors such as 
STAT [55] and NFĸB [58,59]. These transcription factors are likely to 
play major roles in PAF-induced gene expression regulation. We have 
found that PAF induces expression of PAFR, PLA2-II and toll-like 
receptor 4 (TLR4) and 2 (TLR2) in enterocytes (our unpublished data). 
While the upregulation of PAFR and PLA2-II is evidently important 
because it suggest that there is an autoregulatory positive feedback loop 
for PAF-induced cellular effects, the upregulation of TLR-s warrants 
further discussion.

The role of TLR-s and bacterial colonization in NEC

Toll-like receptors have been identified as the class of pattern 
recognition receptors mediating signaling upon the host’s encounter 
with microorganisms. There are now over 10 human TLR-s identified; 
the most prominent example being TLR4, which recognizes 
lipopolysaccharide, an endotoxin that is present in the cell wall of gram 
negative bacteria [69]. As one of the predominant pathways following 
the initial signaling steps of TLR4 activation is IĸB ubiquitination 
and degradation, enabling NFĸB translocation to the nucleus and 
activation of mRNA transcription, primarily of pro-inflammatory 
cytokines [70]. Data from neonatal rodents and human fetal tissue 
explants suggest that this pro-inflammatory pathway is prone to 
excessive activation in the neonatal period, even more so in premature 
rodents and humans [71,72]. The reason for this hypersensitivity is 
only partly understood but recent findings have shed some light on 
the underlying mechanisms. Unlike in the mature, healthy intestinal 
epithelial cell, where TLR4 is poorly expressed, in the neonate that 
has experienced asphyxia and formula feeding, TLR4 is up-regulated 
on the luminal side of the intestinal epithelium, thereby allowing 
for gram negative bacteria or their cell wall components to activate 
TLR4 signaling [73]. Another line of evidence suggests that IĸB 
expression in epithelial cells is lower in fetal and premature neonatal 
intestine and activation of TLR signaling results in higher levels of 
IĸB phosphorylation in these premature cells than in more mature 
enterocytes [72]. These findings together suggest that a combination of 
higher receptor expression, diminished inhibitory capacity by IĸB and 
more active signaling contribute to the exaggerated NFĸB activation 
and inflammatory mediator production in the premature gut. The 
pathological significance of TLR4-dependent and NFĸB-mediated pro-
inflammatory signaling in NEC is underscored by the observation in 
two independent studies that TLR4 mutant mice are protected from 
experimental NEC and additional findings that NFĸB inhibitors reduce 
the risk for experimental NEC [71,73].

Enterocyte apoptosis in NEC

The layer of enterocytes forms a dynamic barrier between the 
balanced milieu intérieur [1] and the intestinal luminal content. It has 
been postulated that a collapse of this barrier is an important step in 
NEC pathogenesis [74]. One obvious mechanism that may damage the 
integrity of this barrier is the death of enterocytes on a massive scale. 
Investigation of human intestinal samples that was obtained during 
surgery for NEC revealed that there is an abundance of apoptotic 
nuclei in the epithelium of intestines affected by NEC [75]. To 
determine whether this observation is a mere coincidence, or whether 
apoptosis may indeed play a pathological role in NEC, we investigated 
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the role of apoptosis in a well established animal model of NEC. In 
addition to confirming the findings in the human specimens that 
NEC is accompanied by profuse enterocyte apoptosis, these animal 
studies have shown that apoptosis occurs prior to gross histological 
damage and, more importantly, inhibition of apoptosis by chemical 
caspase inhibitors preempted the development of experimental NEC 
[76]. Since this early observation, several studies have shown that 
the development of experimental NEC is halted by various growth 
factors that cause enterocyte cell survival, such as EGF [77], IGF-I [78]
and hb-EGF [79], or by a blocking antibody to TNFα [80] which is a 
proapoptotic molecule for enterocytes in vitro [81].

The role of defective repair mechanisms in NEC

Given that there are repair mechanisms to correct the defects in 
the epithelial lining that are caused by apoptosis, it has been postulated 
that these repair mechanism are likely to be deficient in premature 
neonates, otherwise the damage caused by apoptotic death could be 
bypassed. An evidence for such defective repair mechanisms was found 
when the role of TLR4 was evaluated in a neonatal murine model of 
NEC. It was found that in experimental NEC, in addition to increased 
apoptosis as was shown earlier, there was a reduced epithelial cell 
proliferation and defective migration along the crypt villus axis; these 
defects required intact TLR4 signaling and were accompanied with an 
increased phosphorylation of focal adhesion kinase (FAK) on S722, i.e., 
a phosphorylation state of FAK that inhibits epithelial cell migration 
[82]. In vitro, TLR4 activation resulted in FAK phosphorylation and 
inhibited enterocyte migration. 

Mechanisms leading to large scale enterocyte apoptosis

We are only beginning to understand the mechanisms of NEC 
but there is a convergence of evidence indicating a role for premature 
and exaggerated enterocyte apoptosis in the disease. To understand 
the underlying mechanisms that may be responsible for the large 
scale apoptosis of enterocytes, multiple studies have investigated the 
mediators and mechanisms regulating enterocyte apoptosis. Cell 
survival is regulated by a balance of survival and death signals. Cell 
death is initiated by either a loss of survival signal or by the activation 
of an active cell death signal. Survival signal for enterocytes comes 
from three principal sources: 1) cell to extracellular matrix attachment 
{Strater, 1996 #5668}, 2) homotypic cell adhesion {Ireland, 2004 
#5669} and 3) growth factor receptor activation {Clark, 2005 #5413}. 
Cell death signals may come from either the loss of any of the above 3 
survival signals or by evoking a number of cell death signals, including: 
1) nutrient deprivation {Lemasters, 2005 #5670}, 2) DNA damage 
{Okudela, 1999 #5671}, 3) activation of a death receptor pathway 
{Tang, 2004 #5672}, 4) mitochondrial damage {Lu, 2004 #5013} or 5) 
signaling that may uncouple any of the survival signals. 

Growth factors and NEC

In the neonatal period, an important source of survival signals for 
enterocytes derives from human milk. There is evidence to indicate that 
preterm infants who are fed maternal milk are significantly less likely 
to develop NEC than those infants fed commercial infant formula [83]. 
Breast milk contains several growth factors that are known to promote 
epithelial survival such as epidermal growth factor (EGF) [84], heparin-
binding EGF-like growth factor (hb-EGF) [85], hepatocyte growth 
factor (HGF) [86], insulin-like growth factor (IGF) [87], transforming 
growth factor-beta (TGF-β) [88], erythropoietin [89] and vascular 
endothelial growth factor (VEGF) [90]. Several of these factors have 
recently been found to be potentially protective against development 

of NEC when given as formula supplementation in animal studies 
[79,91] and all of these growth factors have been shown to promote 
enterocyte survival either in vivo or in vitro [78,86,92-95]. Commercial 
formulas are devoid of these growth factors and, therefore, enterocytes 
of formula-fed infants are deprived of the exogenous supplementation 
of trophic and survival signals imparted by these molecules. However, 
NEC is extremely rare in full term infants even if they receive 100% 
of their nutrition from formula instead of breast milk. This is not 
necessarily surprising, since there are endogenous sources for all of 
these growth factors and there is evidence that several pro-apoptotic 
mechanisms are exaggerated in premature newborns. Nevertheless, a 
better understanding of endogenous sources for these growth factors 
and the developmental regulation of their expression in endogenous 
sources may be important. For instance, EGF and IGF is produced in 
the salivary gland [96,97] and a recent study has shown a gestational-
age dependent increase in salivary EGF output while revealing a 
correlation between salivary EGF release kinetics and the incidence of 
NEC [98]. Similar information regarding developmental regulation of 
endogenous sources of other milk-derived epithelial-protective growth 
factors is not yet available, but should be investigated. However, it 
is well established that there are several mechanisms in addition to 
growth factor withdrawal that may actively signal cell death and several 
of these appear to play roles in NEC pathogenesis.

Pro-apoptotic signaling in NEC

Some GPCRs have been shown to signal cell survival in enterocytes, 
such as cholinergic receptors [99] and the lysophosphatidic acid 
(LPA) receptor [41], and some have shown to induce apoptosis, such 
as proteinase-activated receptor [100] and PAFR [28]. Since PAF has 
been shown to have pathogenic significance in NEC, we investigated 
the mechanisms of PAF induced apoptosis in IEC-6 cells. We have 
found that PAF induces apoptosis in enterocytes via a sequence 
of events that involves Bax translocation to mitochondria and the 
collapse of mitochondrial membrane potential within 30 minutes of 
exposure to PAF, followed by caspase activation that maximizes by 6 
hrs of exposure, which is followed by DNA fragmentation plateauing 
at 12-16 hrs after PAF treatment [28]. In the same study we have found 
that heterologous over-expression of Bcl-2, a molecular antagonist of 
Bax, prevented PAF-induced collapse of mitochondrial membrane 
potential and apoptosis in these cells, indicating that mitochondrial 
damage is important in the mechanism of PAF-induced apoptosis, 
and suggesting that understanding the expression profiles of the Bcl 
family of apoptosis regulators during intestinal development may be 
important for our understanding of NEC pathogenesis. In light of our 
earlier observation that wide-spread enterocyte apoptosis precedes and 
accompanies gross tissue necrosis in an animal model of NEC and that 
caspase inhibition prevents the development of experimental NEC 
[76], our in vitro evidence for PAF-induced enterocyte apoptosis is a 
significant observation to aid our mechanistic understanding of NEC 
pathogenesis. Additionally, we have shown that PAF does not only 
directly regulate apoptosis, but that signaling via the PAFR induces 
TLR4 expression in enterocytes (unpublished data). TLR4, the receptor 
for LPS, has been shown to take part in NEC pathogenesis [73,82], 
causes enterocyte apoptosis [101] and defective enterocyte migration 
[82]. Furthermore, TLR4 activation leads to induction of inflammatory 
molecules such as TNFα [102] and nitric oxide (NO) [103]; both of 
these molecules have been shown to be involved in NEC pathogenesis 
[15,81,104] and have been shown to be pro-apoptotic for enterocytes 
[81,105]. It is notable that other GPCRs that are closely related to 
PAFR may impart either pro or anti-apoptotic signals on enterocytes 
as discussed above [41,99,100] and the PAFR can cause anti-apoptotic 
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signaling in other cell types that can actively promote inflammation 
such as PMN [106] and lymphocytes [108]. These findings suggest that 
we are only beginning to skim the surface of the intricate mechanisms 
of GPCR-mediated cell death and survival and that other GPCRs may 
play significant roles in NEC.

Nutrition, PAFR signaling, apoptosis and NEC

A seemingly unlikely convergence of two parallel research areas 
may offer valuable insights into NEC pathogenesis and potentially 
into clinically useful NEC prevention strategies. Several years ago, 
a clinical study that was geared towards evaluating the efficacy of 
polyunsaturated fatty acid (PUFA) supplementation to premature 
neonatal formula to improve long term neurodevelopmental outcomes 
has found, as an incidental finding, that PUFA supplementation 
reduced the incidence of NEC [108]. In order to verify these findings 
and to further understand the mechanisms that may be involved in 
this unexpected beneficial effect of PUFA, in two subsequent studies 
we have shown that PUFA supplementation to formula dramatically 
reduced the incidence of NEC in rodent models of NEC [109,110]. 
Importantly, both in the human study a in our animal model 
experiments, both n-3 and n-6 PUFA appeared to be protective, which 
is quite different from some other models where n-3 PUFA is beneficial 
via antagonizing undesirable pro-inflammatory prostaglandin and 
leukotriene production from n-6 PUFA precursors [111]. In the mean 
time, our laboratory was heavily involved in investigating pro-apoptotic 
signaling mechanisms via PAFR activation. We have found that the 
earliest step that we can identify in this signaling cascade is a PAFR 
activation-induced inhibition of the phosphatidylinositol 3 kinase 
(PI3K) [40]. Due to accumulating evidence indicating that PUFA can 
inhibit signaling via GPCR-s via a unique mechanism based on an 
effect on protein acylation and due to the role of PUFA in both human 
and experimental NEC, in the same study we investigated the effect of 
polyunsaturated fatty acids on PAFR signaling. We have found that, 
paralleling our in vivo data, both n-3 and n-6 PUFA antagonized PAFR 
activation-induced signaling and apoptosis, this effect was independent 
of prostaglandin synthesis and was mimicked by a synthetic inhibitor of 
palmitoylation 2Br-palmitate [40]. Palmitoylation is a posttranslational 
modification on many proteins and it is a covalent attachment of 
a fatty acyl chain to cysteine residues that are surrounded by basic 
and aromatic amino acids [112]. Typically, the fatty acyl chain that is 
involved in such a reaction is palmitate, as the most common saturated 
fatty acid in cells. The reaction takes place between fatty acyl coenzyme 
A (CoA) and appropriate cysteine residues in peptide chains even in 
the absence of enzymes, but there are enzymes known to facilitate both 
incorporation and hydrolysis of this bond and their expression levels 
have implications on apoptotic signaling [113,114]. The attachment of 
saturated fatty acyl chains endow proteins with new characteristics, 

such as converting cytoplasmic proteins to membrane-bound entities 
and targeting proteins to cholesterol-rich membrane microdomains, 
commonly referred to as lipid rafts [115,116]. Palmitoylation is 
excessively common in the family of GPCR-s and has been thought 
to be important in the formation of receptor-signal-transduction 
complexes, by targeting GPCR-s, G proteins and kinases that execute 
G-protein-dependent signaling to lipid rafts while enhancing signaling 
efficiency, by creating proximity between molecules that need to 
interact for signaling to take place [116,117]. It has been shown that 
PUFA can displace palmitate in normally palmitoylated proteins in 
a competitive manner and that this displacement of palmitate results 
in diminished signaling [115,118]. In our most recent study, we were 
able to document that both n-3 and n-6 PUFA can displace palmitate 
in C317 of the C terminus cytoplasmic tail of the PAFR (unpublished 
observation). These data indicate that PUFA are potent modulators 
of PAFR signaling via a mechanism that is independent of their effect 
on prostaglandin and leukotriene biosynthesis, and that they may be 
effective in the prevention of NEC where signaling via the PAFR plays 
a major role. 

Summary
Inflammatory signaling and enterocyte apoptosis play important 

roles in NEC pathophysiology. Based on results from animal models, 
human sample analysis and based on available data from in vitro 
experimentation, we hypothesize (Figure 1) that the premature 
infant, when exposed to risk factors for NEC: 1) exhibits a propensity 
to produce and react to platelet-activating factor, 2) consequently, 
PAFR activation on enterocytes leads to abnormally increased TLR4 
expression, which in turn, together with bacterial colonization 3) 
results in a hyperactive innate immune system that is skewed toward 
a pro-inflammatory response in the intestinal epithelium; these factors 
lead to intestinal epithelial cell apoptosis, mucosal barrier dysfunction, 
and necrosis, ultimately resulting in NEC in a subset of patients. 
There may be several other contributing factors to these alterations, 
including a dysregulation of splanchnic microcirculation, decreased 
input of exogenous growth factors due to formula feeding, a deficient 
production of endogenous growth factors due to prematurity and 
potential signaling via other pro-apoptotic mechanisms. A better 
understanding of these mechanisms by future studies and elucidation of 
the mechanisms of enterocyte apoptosis may lead to new preventive or 
therapeutic approaches for NEC. Nevertheless, the findings discussed 
throughout this chapter reaffirm the genius of Claude Bernard, who 
made his seminal discoveries on the importance of the regulated 
internal milieu of the human body and they show that understanding 
the miracles and wonders of a single cell layer that is 15-30 µm thick 
and is responsible to separate and connect our regulated internal fluids 
with the widely changing external environment is one of the keys that 
we need to find to further human health.
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