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Introduction 
Under normal physiological conditions, there is equilibrium 

between antioxidants and prooxidants. When environmental factors, 
stressors, or disease occur, this homeostasis can become imbalanced in 
favor of prooxidants, resulting in a phenomenon known as oxidative 
stress [1]. Oxidative stress can also occur if there is an antioxidant 
deficiency or excess reactive oxygen/nitrogen species production [2]. 
The mitochondria are the key source for free radicals [3,4]. Reactive 
oxygen species (ROS) are molecules that contain oxygen with higher 
reactivity than ground state O2.  Some examples are hydroxyl radical 
(OH•), superoxide anion (O2

•-), hydrogen peroxide (H2O2), peroxyl 
radical (•OOH), hypochlorous acid (HOCl), and many others [1]. 
There are three mechanisms by which cells are protected from ROS: i) 
scavenging ROS and precursors; ii) binding catalytic metal ions needed 
for ROS formation; and iii) generating and upregulating endogenous 
antioxidant defenses. Oxidatively damaged proteins are often removed 
by the 20S proteosome. However, defects in the proteosome system can 
lead to elevated levels of oxidatively modified proteins. Reactive oxygen 
species levels increase as a function of age and are even higher in age-
related neurodegenerative disorders [5]. It has been well established 
that oxidative stress is elevated in Alzheimer’s disease [6,7], Parkinson’s 
disease [8], amyotrophic lateral sclerosis [2], Huntington’s disease [9] 
and other neurodegenerative disorders [6,10]. Alzheimer’s disease (AD) 
is characterized by progressive neurodegeneration that results from a 
variety of possible environmental, genetic, and age-related factors 
[11,12]. The pathological hallmarks of the disease are extracellular 
senile plaques (deposits of amyloid β peptide) and intracellular 
neurofibrillary tangles (NFTs), but oxidative stress and metabolic 
abnormalities can precede these hallmarks as well the dementia that 
results from abnormal brain function [13,14]. While several biomarkers 
exist that may indicate the presence of the disease, conclusive evidence 
can only be established post-mortem [15]. Autopsy reveals the extent 

at which neurodegeneration has occurred and is commonly described 
using Braak staging methods. Braak determined that Alzheimer’s 
disease progresses from stages I to VI with the increasing presence 
and distribution of NFTs and neutropil threads (NTs) [16]. This post-
mortem staging is used to help differentiate between the four stages of 
AD: preclinical AD (PCAD), mild cognitive impairment (MCI), early 
AD (EAD), and late stage AD (LAD).This article will discuss specifically 
the use of current pharmaceutical interventions as they relate to the 
mechanistic recovery of energy related metabolic proteins during the 
progression of Alzheimer’s disease. 

Energy Metabolism
In addition to the hallmarks of Alzheimer’s disease, senile plaques 

composed of amyloid beta peptide and neurofibrillary tangles composed 
of hyperphosphorylated tau protein, this disease is also characterized 
by oxidative stress and metabolic dysfunction that can precede both 
disease hallmarks [13,14]. The intricate relationship between these 
two characteristics, oxidative stress and metabolism dysfunction, 
has historically revealed itself in a very cyclic manner. A substantial 
portion of oxidative stress is generated by the mitochondria during 
regular metabolism, and this oxidative stress also serves as a disruptor 
of this same metabolism as excess reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) production begin to outweigh the 
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Abstract
Oxidative stress is the imbalance between antioxidants and oxidants. An increase in the level of free radicals or 

an antioxidant deficiency can perpetuate this phenomenon. Free radical mediated oxidative stress is demonstrated 
in various neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, 
and amyotrophic lateral sclerosis. This oxidative damage can result in a mechanistic chain reaction in which free 
radicals can bind to alkenes and cause overall protein damage and a decrease in energy metabolism. However, 
this mechanism can be halted with the use of antioxidant therapy. During the progression of Alzheimer’s disease, 
oxidative stress is continuously elevated. Current research shows several antioxidant strategies being implemented 
to stop oxidative stress in Alzheimer’s disease such as α-lipoic acid and acetyl L-carnitine. In addition to antioxidant 
therapies, antiaggregants, acetylcholinesterase inhibitors, β-secretase and γ–secretase inhibitors are also being 
used as pharmaceutical drugs to combat the pathological hallmarks of Alzheimer’s disease. This review will describe 
the current pharmaceutical interventions being used to regulate energy metabolism and inhibit free radical meditated 
oxidative stress during the progression of Alzheimer’s disease. 
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many compensatory mechanisms aimed to keep these oxidative species 
regulated [17]. This is evidenced by oxidative damage to many key 
metabolic proteins during the preclinical stage and each of the three 
clinical stages of AD [18-25]. This “chicken or the egg” –type genesis 
of AD pathology by oxidative damage and metabolic dysfunction is 
by no means a perfect mechanism and many of its details have been 
challenged. One recent proposal brought forth by Sun describes a lack 
of nutrient and oxygen availability as a key factor that promotes a 
protective response by the neuron to down-regulate metabolism [26].

Regardless of exactly what role oxidative stress plays in the 
pathogenesis of AD, there is a large body of accumulating evidence 
that shows key proteins involved in glycolysis, TCA cycle, electron-
transport chain, and antioxidant capabilities of the cell become 
oxidized at various stages throughout the progression of the disease [18-
22,25,27,28]. A summary of these oxidized enzymes is listed in Table 1. 
In order to understand the progression of AD, it is important to relate 
changes in metabolic function with the pathological characteristics 
of the disease. Patients with PCAD, also referred to as asymptomatic 
AD (ASYAD), show no signs of cognitive decline but present some of 
the neuropathological symptoms of AD. Braak scores range typically 
between III and IV due to the presence of NFTs and NTs [29,30]. MCI 
can be classified as amnestic or nonamnestic to distinguish between 

those with impaired memory and those without. Peterson defines 
MCI as being characterized by cognitive impairment and decline not 
related to age, no dementia, and no significant impairment in daily 
living [31]. Amnestic MCI patient autopsies are more common than 
non-amnestic patient autopsies and typically have Braak stages of III 
or IV, demonstrating a marked amount of neurodegeneration [32]. 
MCI transitions into EAD as memory continues to decline and other 
cognitive functions show impairment. Braak staging also increases 
compared to MCI, with autopsied patients having scores of IV or V. 
Markesbery et al. have described EAD and amnestic MCI as being 
virtually identical neuropathologically with the exception of neuritic 
plaques being elevated in EAD [33].Dementia progresses during 
the transition from EAD to LAD, affecting nearly every aspect of an 
individual’s life. Braak scores of V and VI and increased Aβ deposits 
are associated with this stage of the disease [34].

Amyloid Beta Peptide (Aβ) and Tau
Much progress has been made in developing transgenic mouse 

models of AD pathology for interpretation. Specifically, models 
aimed at identifying the relationship between the hallmark proteins 
of Alzheimer’s disease, Aβ and tau, have provided valuable insight 
into the mechanisms by which these proteins interfere with normal 

Enzyme Role Nitration1 HNE-Modificatio 2 Carbonylation3 Up-Regulated4 Down-Regulated4 Decreased Activity5

FBA Glycolysis MCI, EAD LAD EAD PCAD, LAD

TPI Glycolysis EAD, LAD EAD

GAPDH Glycolysis LAD PCAD

PGK Glycolysis MCI

PGM Glycolysis EAD EAD

Enolase Glycolysis MCI, EAD, LAD MCI, EAD, LAD LAD LAD EAD

PK Glycolysis PCAD MCI

LDH LAF LAD MCI MCI

Aconitase TCA Cycle LAD PCAD LAD

MDH TCA Cycle MCI EAD

COX ETC PCAD

ATPase ETC EAD, LAD MCI, EAD, LAD PCAD LAD MCI, EAD, LAD

GDH Metabolism/
Excitotoxicity EAD EAD

CK Metabolism LAD LAD

Cu/Zn SOD Antioxidant PCAD PCAD EAD*

MnSOD Antioxidant EAD, LAD LAD EAD*

GST Antioxidant MCI LAD LAD LAD

CR Antioxidant MCI

Prx2 Antioxidant EAD

Prx6 Antioxidant MCI LAD

MRP Antioxidant MCI LAD

Table 1: Oxidized proteins related to metabolism and antioxidant capacity of the cell are summarized.1 see [19,23-25]. 2 see [19,21,22,47]. 3 see[18,41,43,105,106]. 4 
see [21,47,107]. 5 see [19-22,47,105]. (HNE = 4-hydroxynonenal; FBA = fructose bisphosphate aldolase; TPI = triose phosphate isomerase; GAPDH = glyceraldehyde-
3-phosphate dehydrogenase; PGK = phosphoglycerate kinase; PGM = phosphoglycerate mutase; PK = pyruvate kinase; LDH = lactate dehydrogenase; MDH = malate 
dehydrogenase; COX = cytochrome C oxidase; ATPase = ATP synthase; GDH = glutamate dehydrogenase; CK = creatine kinase; SOD = superoxide dismutase; GST 
= glutathione-S-transferase; CR = carbonyl reductase; Prx = peroxiredoxin; MRP = multi-drug resistant protein; LAF = lactic acid fermentation; TCA = tricarboxylic acid; 
ETC = electron transport chain).
*Overall SOD activity is reduced in EAD.
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mitochondrial function. Eckert highlights the synergistic roles of Aβ 
and tau on down-regulating respiratory chain enzymes while promoting 
oxidative stress and an increased production of hyperphosphorylated 
tau protein in transgenic mouse models, leading to a proposed cyclic 
mechanism where increased Aβ deposition and neurofibrillary tangle 
formation is facilitated by dysfunctions in the respiratory chain that 
are initially brought about by increased levels of Aβ [35]. Specifically, 
an increase in Aβ levels, but not plaque levels, is associated with a 
significant decrease in the mitochondrial membrane potential as well 
as ATP production in 3 monthold Thy-1-APP751SL transgenic mice. 
This mitochondrial dysfunction becomes more prominent as the mice 
age, leading to elevations in ROS formation, increased susceptibility 
to Fe2+-catalyzed hydroxyl radical formation, as well as decreased 
respiratory chain Complex IV activity[36]. Similarly, Aβ fibrils induce 
a fivefold increase in intracellular neurofibrillary tangle formation in a 
tau transgenic P301L mouse model, and proteomic analyses indicate 
down regulation of respiratory chain Complex I, ATP synthase, triose 
phosphate isomerase, malate dehydrogenase, glutathione S-transferase, 
and glutathione peroxidase. Significant decreases in the respiratory 
control ratio and ATP levels were also found with 24 month old 
transgenic mice [37,38]. A triple transgenic mouse model (pR5/APP/
PS2) combining the Aβ and tau pathologies to facilitate significant 
increases in Aβ and phosphorylated tau levels, leads to several 
mitochondrial dysfunction markers, such as decreases in the activities 
of respiratory chain enzymes Complex I and Complex IV at 12 months 
of age [39]. Transgenic mouse models such as these serve as excellent 
resources for determining the exact roles of Aβ and tau in the cascade 
of events leading to cell death and ultimately neurodegeneration. These 
studies give credit to hypotheses such as the cyclic mechanism brought 
forth by Eckert that place mitochondrial dysfunction at the center of 
early AD pathology [35].

Glycolysis
Glycolytic enzymes are the most heavily targeted metabolic 

proteins throughout the progression of AD. Although glycolysis 
does not produce the majority of the energy for the cell, it generates 
pyruvate, which can serve as a starting material for other metabolic 
pathways. Proteomics research has found 70% of the enzymes 
involved in glycolysis to be oxidized by ROS and RNS species 
[18,19,21,22,25,27,40-43]. These enzymes are fructose-bisphosphate 
aldolase (FBA), triose phosphate isomerase (TPI), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), 
phosphoglycerate mutase (PGM), enolase, and pyruvate kinase (PK). 
Figure 1 illustrates which enzymes are oxidized in glycolysis during the 
progression of AD.

TCA Cycle 
The TCA cycle accounts for approximately 90% of the energy 

produced for the cell. Thus, preserving the integrity of the enzymes 
involved in this metabolic pathway is integral to meeting the cell’s 
energy demands. Neurons have very specific homeostatic requirements, 
such as maintaining phospholipid asymmetry, calcium regulation, and 
synaptic functioning. Overall energy demand for these processes in the 
brain is very high, as evidenced by the fact that the brain accounts for 
approximately 2% of body weight but uses 20% of body’s glucose and 
over 30% of the inspired oxygen. Proteomics research has found 25% of 
the enzymes directly involved in the TCA cycle to become significantly 
oxidized during the progression of AD [19,21,23]. These enzymes are 
aconitase (ACO) and malate dehydrogenase (MDH).

In addition to its function in the TCA cycle, MDH is also involved 
in the malate-aspartate shuttle, which is partially responsible for 
efficient transfer of NADH equivalent electrons across the inner 
mitochondrial membrane. It is also worth noting that oxaloacetate can 
also be formed from pyruvate via pyruvate carboxylase, but pyruvate 
formation is potentially hindered in the early stages of AD by the 
oxidation of PK in PCAD and MCI and reduced PK activity in MCI 
[18,22,44]. Glutamate dehydrogenase (GDH) can form α-ketoglutarate 
(α-KG), another key substrate in the TCA cycle and malate-aspartate 
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shuttle, via deamination of glutamate to yield one NADH molecule. 
GDH is oxidized in EAD, resulting in a reduction of enzyme activity 
[20]. Because GDH is responsible for keeping glutamate levels down, 
loss of GDH function can increase glutamate levels and lead to 
excitotoxicity [45]. Thus, the oxidation of MDH, PK, and GDH early in 
the progression of Alzheimer’s disease could limit the availabilities of 
acetylCoA, oxaloacetate, and α-KG, limit the efficient transfer of NADH 
equivalent electrons across the inner mitochondrial membrane, and 
lead to excitotoxicity. This implicates MDH, PK, and GDH oxidation 
in the early metabolic dysfunction and neuronal loss that characterize 
AD.

Other Metabolic Processes
Protein oxidation is also involved in lactic acid fermentation, 

creatine phosphorylation, and ATP synthesis at various stages of AD. 
Lactic acid fermentation, an anaerobic method of pyruvate reduction 
by lactate dehydrogenase (LDH), generates lactic acid for use in 
gluconeogenesis as well as recycling NAD+ back into glycolysis. The 
free NAD+ generated by LDH can be very important when the cell 
requires immediate energy at the expense of glucose via glycolysis, thus 
potentially implicating the oxidation of LDH in metabolic dysfunction 
in early stages of AD progression. Creatine kinase catalyzes the 
reversible phosphorylation of creatine to phosphocreatine by ATP 
in the intermembrane space of the mitochondria to transport high-
energy phosphate groups into the cytosol. This plays a large role in cell 
energy homeostasis by giving the cell access to the ATP generated by 
mitochondria. ATP synthase (ATPase), also known as Complex V of 
the electron transport chain, is a multi-subunit protein involved in the 
substrate-level phosphorylation of ADP in the mitochondrial matrix. 
Figure 2 illustrates the function of ATPase. The generation of ATP 
by ATPase is central to proper metabolism. Unfortunately, oxidation 
of the components of ATPase is highly involved in each stage during 
the progression of AD, leading to decreased enzyme activity during 
MCI, EAD, and LAD [18-22,46]. Due to its role in metabolism and 

oxidized during each stage of AD, ATPase is likely a key player in the 
progression of this disease.

Antioxidant Enzymes 
Since metabolic function is the primary source of ROS production, 

and because these ROS play such a significant role in metabolic protein 
function, antioxidant enzymes are thus implicated in the progression 
of AD [17]. Several antioxidant enzymes exist to maintain a reductive 
environment in the cytosol and mitochondria. A number of these 
proteins are oxidized during AD. Specifically, glutathione-S-transferase 
(GST), carbonyl reductase (CR), multidrug resistant protein 3, various 
superoxide dismutase (SOD) isoenzymes, and peroxiredoxins (Prx) are 
all oxidized at various stages of the disease [19-23,47]. GST detoxifies 
toxic species such as HNE so it is crucial for maintaining the integrity 
of proteins susceptible to HNE oxidation. Like GST, CR can also 
reduce HNE as well as carbonyl containing compounds. Superoxide is 
generated as a result of electron passage through the electron transport 
chain, so keeping mitochondrial SOD levels is very important for 
protecting metabolic proteins from oxidation. 

Pharmaceutical Interventions
While there are several treatment options for Alzheimer’s 

disease, current therapeutic interventions are limited in their 
functionality, measurements, and effectiveness. There are currently 
no options available that stop or reverse the disease. Treating the 
two neuropathological hallmarks of AD, extracellular senile plaques 
and intracellular neurofibrillary tangles, has become a major area of 
focus for drug development [48-50]. Other treatment options aim to 
counteract the symptoms of AD by increasing neurotransmitter levels 
(specifically acetylcholine) or acting on neurotransmitter receptors 
to limit excitotoxicity [51-54]. Because metabolic abnormalities can 
precede the cognitive impairments associated with AD, and because 
cytosolic and mitochondrial oxidative stress are well-documented in 
the disease, early pharmaceutical and diet intervention in these areas 
is of utmost importance [13,14,55,56]. A general overview of treatment 
options is listed in Table 2.

Treatment of Senile Plaques
Treatment of senile plaques involves decreasing the formation 

and aggregation of the Aβ peptide, the main component of these 
plaques. In relation to oxidative damage, especially mitochondrial 
oxidative damage, early treatments for reducing Aβ formation 
may play a critical role in slowing the progression of AD. Amyloid 
precursor protein (APP) is a transmembrane protein that plays a role 
in long term potentiation, neuronal plasticity, and memory loss [57]. 
Cleavage of APP is accomplished by three different enzymes (Figure 3). 
Specifically, β-secretase and γ-secretase are involved in cleaving APP at 
the two sites required to produce the insoluble Aβ peptide, so they are 
targets for inhibition to decrease Aβ formation [58,59]. APP cleavage 
by γ-secretase is nonspecific and forms Aβ peptides of varying lengths. 
The peptides with lengths of 40 amino acids (Aβ40) and 42 amino acids 
(Aβ42) play a central role in plaque formation because their ratio has 
been implicated in how Aβ aggregation occurs [60]. Aβ42 acts as an 
insoluble seed that promotes the aggregation of Aβ peptides, whereas 
Aβ40 has been shown to inhibit Aβ deposit formation [61-63]. Thus, 
methods to decrease the Aβ42/Aβ40 ratio via modulating γ-secretase 
activity may become very useful strategies in treating AD as they evolve 
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Signs and Symptoms Treatment Effect

Senile Plaque Formation β-secretase inhibitor Decreases the formation of Aβ by inhibiting cleavage of APP by β-secretase [51]

γ-secretase inhibitor Decreases the formation of Aβ by inhibiting cleavage of APP by γ-secretase [52]

PKC activator Decreases the formation of Aβ by increasing cleavage of APP within the Aβ domain by α-secretase via up-
regulation by PKC activation [53]

Antiaggregant Inhibits aggregation of Aβ into oligomers [54,55]

Vaccination Causes an immune response by which the body targets Aβ for degredation [56-58]

ApoE inhibitor Allows for removal of Aβ by blocking attachment of ApoE to Aβ [59]

Neurofibrillary Tangle CDK5 inhibitor Inhibits phosphorylation of tau protein by CDK5 [60]

GSK-3 inhibitor Inhibits phosphorylation of tau protein by GSK-3 [61]

ApoE inhibitor May inhibit phosphorylation of tau protein by GSK-3 via signal blocking [62,63]

Antiaggregant Inhibits aggregation of tau protein [64]

Low Acetylcholine Levels AChE inhibitor Increases levels of acetylcholine by inhibiting its degredation by AChE [45-48]

Oxidative Stress Antioxidant Breaks or inhibits free radical chain reactions by scavenging unpaired electrons [65,66]

Table 2: A summary of current treatment options for AD and their effects. (Aβ = amyloid beta peptide; AChE = acetylcholinesterase; ApoE = apolipoprotein E; APP = 
amyloid precursor protein; CDK5 = cyclin-dependent kinase 5; GSK-3 = glycogen synthase kinase 3; PKC = protein kinase C).

[60]. Activation of α-secretase also inhibits Aβ formation by cleaving 
APP within the Aβ domain [64]. Once formed, Aβ aggregates form 
oligomers of various sizes as well as the plaques that are traditionally 
associated with AD. Interference with this aggregation takes place 
at each stage of the process, with several compounds targeting early 
aggregation and others targeting larger assemblies of oligomers [65,66]. 
Apolipoprotein E (ApoE) is a lipoprotein used to in triglyceride 
catabolism. Although several alleles exist for this lipoprotein, the 
E4 allele is a risk factor for AD. Inhibiting apolipoprotein E has also 
been explored, as this protein hinders the removal of Aβ [67]. A 
relatively new area of research involves vaccination against Aβ, which 
has shown promising results in mouse models, and to some extent, 
in human trials [68-70]. Petrushina demonstrated that this type of 
immunotherapy can selectively decrease the formation of insoluble Aβ 
plaques without affecting the levels of soluble Aβ or causing cerebral 
microhemorrhages that have previously been encountered [70,71]. 
However, human clinical trials highlighted other dangers associated 
with immunotherapy when several patients undergoing this treatment 
strategy developed meningoencephalitis, causing the trials to be halted. 
While levels of Aβ plaques were found to be lower in treated patients 
at autopsy, cerebral inflammation was also found and cognitive decline 
was not prevented as a result of plaque clearance [69].

Treatment of Neurofibrillary Tangles
Neurofibrillary tangles are composed of hyperphosphorylated tau 

protein. Similar to treatment options for senile plaques, reduction 
of NFTs has been investigated using enzyme inhibitors as well as 
antiaggregant compounds that block the aggregation of tau protein 
[72]. Hyperphosphorylation of tau has been attributed to re-entry into 
the cell cycle by neurons, which has been observed in AD, because tau 
hyperphosphorylation is common during embryonic cell development 
but not in differentiated cells [73]. Hyperphosphorylation of tau is 
known to occur via cyclin-dependent kinase 5 (CDK5) and glycogen 
synthase kinase 3 (GSK-3), both of which have been targeted for 
inhibition [74,75]. ApoE may also become a target for inhibition 
specifically for its role in signaling GSK-3 [76,77]. Recent research has 
shown a direct relationship between cell cycle dysregulation (likely 
as a result of oxidative stress), hyperphosphorylation of tau, and 
AD progression [78]. Thus, treating only NFT formation, instead of 
upstream regulation defects, may only slow the progression of AD and 
not prevent or reverse the disease. 

Neurotransmitter Availability
When neurons die as a result of neurodegeneration, levels of 

neurotransmitters inevitably fall and consequently promotecognitive 
decline. In particular, acetylcholine has been the major neurotransmitter 
targeted for increase by means of acetylcholinesterase (AChE) 
inhibition. In 1985, Davies highlights the central role of acetylcholine 
in learning and cognitive function [79]. For this reason, 80% of FDA-
approved treatments (i.e. Exelon®, Razadyne®, Cognex®, and Aricept®) 
for cognitive impairment in Alzheimer’s disease target the degradation 
of acetylcholine by the enzyme acetylcholinesterase, with the fifth 
treatment, Namenda®, antagonizing N-methyl-D-aspartate (NMDA) 
receptors to decrease excitotoxicity [51-54]. While increasing the 
availability of neurotransmitters may temporarily increase cognition, 
this type of treatment addresses AD-related symptoms and not the 
pathology of the disease.

Antioxidant Therapies
Oxidative stress manifests itself through a variety of mechanisms 

during the progression of AD. More importantly, oxidative stress 

Cytosolα-secretase

H2N γ-secretase

β-secretase

COOH
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Figure 3: Cleavage of APP at different locations to promote or inhibit the forma-
tion of Aβ peptide (illustrated as the black fragment).
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precedes both traditional pathological hallmarks of AD, senile plaque 
formation and neurofibrillary tangles, leading in part to the formation 
of the “two-hit hypothesis” postulated by Zhu in 2004 [14,80,81]. This 
hypothesis places oxidative stress and cell cycle dysregulation at the 
forefront of the pathological onset of AD. Changes in metabolism have 
also been observed to occur before the appearance of the cognitive 
deficits of AD, and these kinds of changes can be caused by mtDNA 
mutation after exposure to reactive oxygen species (ROS) via changes 
in mitochondrial fission and fusion processes [13,82-84]. Control of 
mitochondrial fission and fusion is known to directly affect energy 
production and ROS formation [82,85]. Thus there is a potential 
cyclic mechanism by which early oxidative stress causes changes in 
mitochondrial fission and fusion control via mtDNA mutation, which 
in turn creates more ROS and exacerbates the shift toward an oxidative 
environment that the cell can’t overcome. A similar mechanism 
introduced in 2000 incorporates energy insufficiency and Ca2+ 
dyshomeostasis into the mechanism by which ROS and mitochondrial 
damage perpetuate one another [86]. These mechanisms offer insight 
into how important and possibly manageable the progression of AD 
can be if biomarkers for these disruptions in cell homeostasis are 
discovered early enough. 

Successful attempts at reducing oxidative stress, reducing changes 
in mitochondrial dynamics, and restoring cognitive function have used 
a supplemental combination of the antioxidants acetyl L-carnitine 
(ALCAR) and R-α-lipoic acid (LA) [87-91]. These endogenous 
compounds are involved in maintaining efficient metabolism of 
glucose and fatty acids. Structures for ALCAR and LA are shown in 
Figure 4. L-carnitine is involved in transporting long-chain fatty acids 
into the mitochondria for β-oxidation and transporting shorter fatty 
acid chains out of the mitochondria. By transporting short-chain 
fatty acids out of the mitochondria, L-carnitine is also involved in 
freeing coenzyme A (CoASH) for use in the TCA cycle via carnitine 
acyltransferase (CAT). LA is required as a coenzyme for pyruvate 
dehydrogenase and α-ketoglutarate dehydrogenase. ALCAR and LA 
have been shown to work synergistically to improve CAT binding and 
activity, which are reduced in aged rat brain [89]. ALCAR alone has 
also been shown to increase antioxidant enzyme activity as well as total 
antioxidant capacity in the plasma of healthy people, making it a viable 
candidate for early, safe intervention long before biomarkers for AD 
appear [92].

Future Directions
The role of inflammation in the pathogenesis of AD has 

become a central target for therapeutic intervention, involving such 
pharmaceutics as non-steroidal anti-inflammatory drugs (NSAIDs), 
immunotherapy options, and other means of destroying Aβ plaques 

[66,68,93]. The specific roles of various conformations of Aβ peptide 
as neurotoxins as well as mediators of beneficial cellular processes 
significantly impact the direction of anti-Aβ treatments [94]. Current 
literature suggests that progress has been made in developing Aβ 
antibodies that are specific to soluble and insoluble conformations 
[95]. A multi-treatment approach may prove to be invaluable in the 
coming years, as indicated by Gotz, as therapeutic strategies targeting 
tau protein also become more sophisticated [38]. This is evidenced by 
several transgenic mouse models of individual and combined Aβ- and 
tau-induced AD pathologies in relation to mitochondrial dysfunction 
[35-37,39,96-99]. Given the natural abilities of certain antioxidants to 
protect mitochondria from ROS-induced oxidative damage, future 
therapeutic strategies would likely benefit from treatments targeting 
not only the reduction of AD pathological hallmarks, but also the 
strengthening of protective mechanisms that are inherent to the 
neuron [91].

Conclusions
Oxidative stress occurs when there is an imbalance between 

oxidants and antioxidants in a system. Free radicals from ROS and RNS 
are highly elevated in during the progression of Alzheimer’s disease, 
while antioxidant enzymes have shown loss of protein function, 
reduced activity, and sometimes compensatory up-regulation to meet 
cellular demands. Therefore, increased oxidative stress can result from 
these free radicals causing cognitive decline in PCAD, MCI, EAD, and 
AD patients supporting the hypothesis of free radicals as an underlying 
contributor to Alzheimer’s disease [100-103]. Among the metabolic and 
antioxidant enzymes reviewed, the glycolytic enzymes are the primary 
targets of oxidative damage. Because glycolysis is an upstream process 
relative to the TCA cycle and electron transport chain, glycolytic enzyme 
oxidation and accompanying loss of activity may serve as a trigger for 
downstream metabolic defects that occur early in the progression 
of AD. Although there are several hurdles in developing successful 
treatments for Alzheimer’s disease[104], namely understanding the 
pathogenesis and successfully approaching the factor(s) involved in 
progression, early intervention and treatment efficacy are the most 
important factors that influence changes in the progression of AD. 
Current treatments have been met with little effectiveness, although 
vaccination against Aβ and early supplementation of ALCAR and 
LA may provide more promising results in the future. Combining 
therapies such as these at an early stage may prove to be a very effective 
therapeutic strategy once more progress has been made in clarifying 
AD pathogenesis.
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