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Abstract

Sleep apnea syndrome (SAS) a highly prevalent disorder, and characterized by repetitive episodes of intermittent
hypoxia (IH), i.e. recurrent episodes of oxygen desaturation during sleep, the development of daytime sleepiness,
and deterioration in the quality of life. Multiple epidemiological studies have provided evidence implicating the
presence of SAS as a risk factor for insulin resistance and type 2 diabetes and have reported that type 2 diabetes is
associated with SAS independently of age, sex, and body habitus. One of the postulated mechanisms for the
metabolic alterations associated with SAS is that IH leads to substantial alterations in both pancreatic β cell function
and organ glucose homeostasis. On the other hand, hyperglycemia is known to increase the rate of β cell
replication, which can provide an increased source of insulin to combat insulin resistance. Although accumulating
evidence suggests associations between SAS and type 2 diabetes, the direct effect of IH on pancreatic β cell has
been unknown. In this review, we focus on the impact of IH on pancreatic β cells, particularly β cell dysfunction and
cell proliferation.
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Introduction
Sleep apnea syndrome (SAS) is characterized by recurrent episodes

of oxygen desaturation during sleep, the development of daytime
sleepiness, and deterioration in the quality of life [1], and this
condition affects up to 32% of the adult population [2]. Numerous
epidemiological and clinical studies [3] have confirmed that SAS is
closely related to type 2 diabetes and that this relationship is
independent of confounding factors, such as obesity and family
history. During sleep, the repeated upper airway collapse in SAS
patients can cause serious recurrent apnea, leading to the characteristic
intermittent hypoxia (IH). Thus, patients are exposed to an alternation
of low oxygen tension and normal oxygen tension. IH is similar to the
oxygen abnormality in the ischemic/reperfusion process and can
initiate oxidative stress. At present, SAS is considered an oxidative
stress-induced disease [4].

Obesity is recognized as a major health care problem, and there is a
high prevalence in the association with metabolic syndrome, the
commonly used term for the cluster of obesity, insulin resistance,
hypertension, and dyslipidemia [5,6]. Obesity is a predominant risk
factor for SAS [7], insulin resistance, hyperglycemia, and type 2
diabetes [8]. Multiple epidemiological studies have provided evidence
implicating the presence of SAS as a risk factor for insulin resistance
and type 2 diabetes [9], the latter of which was reported to be
associated with SAS independently of age, sex, and body habitus [10].
It has also been reported that the prevalence of type 2 diabetes
increases with the severity of SAS and that the severity of SAS is
associated with poor diabetic control in patients with type 2 diabetes
[11]. The association between nocturnal IH and the risk of developing

type 2 diabetes among community-dwelling Japanese participants was
also reported [12].

One of the postulated mechanisms for the metabolic alterations
associated with SAS is that IH during sleep, a hallmark of SAS, leads to
substantial alterations in both pancreatic β cell function and organ
glucose homeostasis. The progression to type 2 diabetes depends on
both the impairment of glucose-induced insulin secretion from
pancreatic β cells and the presence of insulin resistance. On the other
hand, hyperglycemia is known to increase the rate of β cell replication
[13, 14], which can provide an increased source of insulin to combat
insulin resistance. In a mouse model, IH was found to cause β cell
replication without hyperglycemia [15,16], suggesting a possible
mechanism that IH directly stimulates β cell replication. Here, we
focus on the impact of IH on pancreatic β cells, particularly β cell
dysfunction and proliferation, using an in vitro IH system [17,18].

Attenuation of glucose-induced insulin secretion from
IH-treated β cells

We exposed hamster HIT-T15 β cells, established by transforming
Syrian hamster (Mesocricetus auratus) primary culture cells with
SV40, contain modest numbers of membrane-bound secretory
granules and have the ability to release insulin following glucose
stimulation, similar to that of isolated pancreatic islets [19], to
normoxia, IH, or sustained hypoxia for 24 hours (Figure 1) and found
that glucose-induced insulin secretion from IH-treated HIT-T15 β
cells was significantly attenuated. The glucose-induced insulin
secretion was also attenuated in isolated rat islets by the treatment of
IH.
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Figure 1: Exposure of β cells/pancreatic islets to IH. IH was
generated/controlled in an incubator by a controlled gas delivery
system that regulated the flow of nitrogen and oxygen. Cells/islets
were exposed to sustained hypoxia (1% O2), 64 cycles of IH (5
minutes hypoxia [1% O2]/10 minutes normoxia [21% O2]), or
normoxia for 24 hours.

On the other hand, the levels of insulin mRNAs in HIT-T15 cells
(hamster insulin mRNA) and rat islets (rat Ins1 and Ins2 mRNAs)
were unchanged by IH treatment, suggesting that IH attenuates
glucose-induced insulin secretion without changing insulin gene
transcription [17]. Recent reports of β cell dysfunction in vivo IH
exposure animal models [20-22] also support the concept of pancreatic
β cell dysfunction including glucose-induced insulin secretion by IH
exposure.

Down-regulation of CD38 mRNA
We then examined the mRNA levels of several genes involved in

glucose-induced insulin secretion and found that the mRNA levels of
glucose transporter 2, glucokinase, sulfonylurea receptor 1, and the α
1c subunit of voltage-dependent L-type calcium channels were
unchanged between IH-treated and normoxia-treated islets [17].
These results suggest that IH has no effect on the gene expression
concerning Ca2+ influx from extracellular sources for glucose-induced
insulin secretion.

We then analyzed genes involved in Ca2+ mobilization from
intracellular pools, such as CD38, type 2 ryanodine receptor Ca2+
channel, and FK506-binding protein 12.6 and found that the mRNA
level of CD38 was significantly lower in IH-treated islets than in
normoxia-treated islets [17]. To investigate whether IH inhibits CD38
transcription, HIT-T15 cells were transiently transfected with the
reporter plasmid consisting of a luciferase reporter gene under the
control of human CD38 promoter. After exposure to IH for 24 hours,
we measured luciferase activities of normoxia- and IH-treated cells
and found that the transcriptional activity of CD38 was attenuated by
IH [17].

Cyclic ADP-ribose (N1-(β-D-ribosyl)adenosine 5'(P1),5''(P2)-cyclic
diphosphate: cADPR) acts as a second messenger for Ca2+
mobilization from an intracellular Ca2+ pool for glucose-induced
insulin secretion [23-26], and CD38 has both ADP-ribosyl cyclase and
cADPR hydrolase (EC 3.2.2.6) activities for cADPR synthesis from
NAD and hydrolysis to ADP-ribose (adenosine 5'-(5-deoxy-D-
ribofuranos-5-yl diphosphate)), respectively [25-27]. CD38 was
reported to play an essential role in glucose-induced insulin secretion
[24-28]; down-regulation of CD38 mRNA was reported in the islets of
Goto-Kakizaki (GK) rat [29], a rodent model of spontaneously

occurring type 2 diabetes with impaired glucose-stimulated insulin
secretion. In addition, a single nucleotide polymorphism that
decreases the cADPR synthesizing activity of CD38 [30] and
autoantibodies against CD38 that attenuated cADPR synthesis [31,32]
were detected in type 2 diabetes patients. We found that IH suppressed
CD38 transcription as well as glucose-induced insulin secretion.
Therefore, it is possible that the IH-induced attenuation of glucose-
induced insulin secretion is mediated by the suppression of CD38
expression at transcriptional level in β cells. To verify this possibility,
we prepared CD38 expression vector under the control of
cytomegalovirus promoter and transfected it into HIT-T15 β cells.
After the exposure to normoxia or IH for 24 hours, HIT-T15 cells
transfected with CD38 expression vector showed increased insulin
secretion by glucose stimulation whereas the glucose-induced insulin
secretion from HIT-T15 cells transfected with control vector did not
[17], suggesting that the suppression of CD38 expression in IH-treated
β cells is crucial for the attenuation of glucose-induced insulin
secretion. Recently, Wang et al. also reported that glucose-induced
insulin secretion but not KCl-induced insulin secretion was impaired
in IH-treated mice [33]. As CD38 knockout mouse islets showed
similar insulin secretion properties with those of IH-treated mouse
islets (impairment of glucose-induced insulin secretion but unaffected
in KCl-induced insulin secretion) [28], our results obtained in vitro
experiments possibly occur in SAS patients and may make them
diabetes.

In addition to glucose-induced insulin secretion, we have recently
showed that IH stimulation increased selenoprotein P mRNA but no
other diabetes-associated hepatokine (fibroblast growth factor 21, α2-
HS glycoprotein, angiopoietin-like protein 6, horomone-binding
globulin, leukocyte cell-derived chemotaxin 2, and lipasin) mRNAs in
cultured hepatocytes and that the concentrations of selenoprotein P,
determined by ELISA in the cultured hepatocyte medium, were
significantly increased in the IH-treated hepatocytes [34]. These
results strongly suggest that cyclic changes of hypoxia-reoxygenation,
which occurs in SAS patients, up-regulate selenoprotein P,
accelerating insulin resistance in SAS patients to exacerbate their
diabetes.

Increases in β cell proliferation by IH
To evaluate the direct effects of IH on β cell proliferation, rat

RINm5F (derived from New England Deaconess Hospital rat
insulinoma induced by high-dose X-ray irradiation), hamster HIT-
T15, and human 1.1B4 β (generated by electrofusion of normal human
islet cells with immortal human PANC-1 pancreatic duct cell line [35])
cells were exposed to normoxia, IH, or sustained hypoxia for 24 hours.
The viable cell numbers of RINm5F, HIT-T15, and 1.1B4 β cells
determined by WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-
nitrophenyl)- 5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt] cleavage method were significantly increased by IH, whereas the
cell numbers decreased in RINm5F and HIT-T15 cells and were
unchanged in 1.1B4 cells by sustained hypoxia. To determine whether
IH decreases apoptosis, we next measured apoptosis of RINm5F and
HIT-T15 cells by TUNEL (terminal deoxynucleotidyl transferase
dUTP nick end labeling) method, and found no statistically significant
difference in apoptosis between normoxia- and IH-treated β cells.
These results indicate that IH directly increases β cell proliferation
[18]. The results were well fitted the results that pancreatic β cell
proliferation in vivo mouse model of intermittent hypoxia [15].
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Reg family gene expression by IH
Regenerating gene (Reg) family genes, which encode autocrine/

paracrine β cell growth factors, are reported to be involved in β cell
proliferation [25,36-40]. We analyzed the mRNA levels of Reg family
genes by real-time RT-PCR and found that the mRNA levels of Reg I,
PAP II/Reg III, PAP III, and Reg IV significantly increased in rat
RINm5F β cells by IH stimulation. The mRNA level of REG Iα was
significantly increased in human 1.1B4 β cells by IH [18]. In order to
evaluate independent Reg family members, we introduced small
interfering RNAs (siRNAs) for rat Reg mRNAs into RINm5F β cells
and measured IH-induced cell proliferation by WST-8 assay. We
found that the introduction of siRNAs for Reg I, PAP II/Reg III, PAP
III, and Reg IV suppressed IH-induced β cell proliferation, whereas
siRNA for PAP I/Reg2 did not change the cell numbers [18],
indicating the involvement of Reg family genes, at least Reg I, PAP
II/Reg III, PAP III, and Reg IV in rat, in IH-induced pancreatic β cell
proliferation.

In contrast to pancreatic β cells, IH stimulation increased
hepatocarcinoma-intestine-pancreas (HIP)/pancreatitis-associated
protein (PAP) mRNA but not other members of the REG family gens
in human hepatocytes [34]. As HIP/PAP was originally found as a
gene expressed in hepatocarcinomas [41] and recent transgenic/
knockout mouse experiments showed its mitotic/growth factor activity
to hepatocytes and its obesogenic properties [42-44], over-expression
of HIP/PAP, induced by IH, could induce proliferation of hepatocytes
and adipocytes [44]. The hepatocytes exposed to IH are also induced
to express selenoprotein P [34]. Thus, IH treatment could induce
selenoprotein P-expressing hepatocyte proliferation as well as
pancreatic β cell proliferation.

Increased expression of interleukin (IL)-6 gene by IH
As Reg family genes are activated by IL-6 [25,40,45-51], we tested

whether IL-6 also increases human REG Iα mRNA in human
pancreatic β cells and found that IL-6 significantly increased human
REG Iα mRNA in 1.1B4 human β cells. We then determined IL-6
mRNA expression in RINm5F and 1.1B4 β cells exposed to IH and
found that the mRNA levels of IL-6 in RINm5F and 1.1B4 cells were
significantly increased by IH [18], suggesting that IH stimulation up-
regulates Reg family mRNAs through IL-6 expression in pancreatic β
cells. Recently, up-regulation of IL-6 in pancreatic islets of in vivo
mouse IH model was also reported [21]. As IL-6 has been also
reported to down-regulate its signaling molecules, such as IL-6
receptor and gp130, we measured mRNA levels of IL-6 receptor and
gp130 in RINm5F cells, rat islets, and 1.1B4 cells exposed to normoxia,
IH, or sustained hypoxia. We found that no IH-treated cells (RINm5F
cells, rat islets, and 1.1B4 cells) showed down-regulation of IL-6
receptor/gp130 mRNAs [18], suggesting that IL-6, induced by IH, up-
regulates Reg family mRNAs to stimulate β cell proliferation.

Hepatocyte growth factor (HGF) gene expression was
increased by IH

Although the Reg protein is a pancreatic β cell growth factor, a high
concentration of the reportedly induces β cell apoptosis [18,52,53].
These findings suggest that IH-stimulated β cells express some anti-
apoptotic factors against a high concentration of Reg protein. HGF has
been shown to protect rat RINm5F β cells against free fatty acid-
induced apoptosis [54]. Therefore, we tested a possible anti-apoptotic
action of HGF against a high concentration of Reg protein (1000 nM)

and found that HGF (both 2.5 and 25 ng/ml) protected RINm5F β
cells against apoptosis induced by a high concentration of rat Reg I
protein [18,53]. We next examined whether HGF expression is
induced by IH and found that HGF mRNA was induced by IH in
RINm5F and 1.1B4 β cells [18]. HGF gene was reported to be induced
by IL-6 stimulation via STAT3 activation [53] and IL-6 was up-
regulated in IH-treated pancreatic β cells in vitro and in vivo [18,21].
Therefore, IH stimulation induces HGF gene expression via the IL-6/
STAT3 pathway in pancreatic β cells. As HGF inhibited high-
concentrations of Reg I (a member of Reg family protein)-induced β
cell apoptosis [18,53], this simultaneous gene expression of HGF with
Reg family genes may work as a safety valve for pancreatic β cells to
minimize apoptotic effects of Reg family proteins.

A possible link between SAS and cancer has recently been suggested
[55,56] and possible involvements of vascular endothelial growth
factor, hypoxia-inducible factor, and reactive oxygen species-activated
activator protein 1 and nuclear factor-κB in cancer development/
progression in SAS patients were reported [57]. Recently, enhanced
metastatic ability of IH-treated human pancreatic cancer cell lines
(PANC-1 and BxPC-3) was also reported [58]. As Reg family proteins
and HGF were reported to be over-expressed in some cancer cells and
to influence cancer patient prognosis [41,59-72], IH may accelerate
tumor proliferation and/or invasion, ultimately resulting in an adverse
outcome via over-expression of Reg family and/or HGF.

Conclusions
Recently, there has been great interest in the interaction between

SAS and metabolic dysfunction. SAS is commonly found in patients
with type 2 diabetes. In addition to the development of glucose
intolerance and insulin resistance, the progression to type 2 diabetes is
dependent on the impairment of glucose-induced insulin secretion
from pancreatic β cells and the compensatory replication of pancreatic
β cells to combat the presence of insulin resistance. However, the
direct effects of SAS/IH on β cells have not been clarified. We
examined the relationship between IH and β cell dysfunction and/or
replication of pancreatic β cells and their mechanisms.

Our studies indicated that that the cyclic change of hypoxia-
reoxygenation, which occurs in SAS patients, attenuates glucose-
induced insulin secretion from pancreatic β cells via CD38 down-
regulation, resulting in glucose intolerance and type 2 diabetes, as
shown in Figure 2. IH also increased β cell mass by up-regulation of
Reg and HGF to overcome reduced glucose-induced insulin secretion
and insulin resistance, causing hyperinsulinemia and making patients
more obese; this worsened their SAS anatomically. The feature of gene
expression in IH-treated pancreatic β cells was in agreement with that
found in GK rat islets which showed down-regulation of CD38 [29] as
well as up-regulation of Reg family genes [73].
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Figure 2: The direct effects of IH on pancreatic β cells. Inhibition of
CD38 expression by IH leads to attenuation of glucose-induced
insulin secretion from pancreatic β cells. IH also up-regulates Reg
family genes as well as HGF, leading to β cell proliferation. Thus,
IH makes patient β cells with typical characteristics of diabetic β
cells through attenuating the CD38-cADPR and Reg-Reg receptor
systems.
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