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Abstract
Interferons (IFNs) are an integral part of the immune system, which upon stimulation results in recruitment of 

cytokines for viral clearance. IFNs have been characterized as potent antiviral agents that which can reduce viral 
titer and have been found to act as critical mediators for tumor regression in few cases. During the course of time 
Hepatitis C virus (HCV) has evolved and influence IFN efficiency through various pathways. Rapidly occurring 
amino acid substitutions in HCV’s core protein, sequence homology with protein kinase (PKR), increased numbers 
of quasi-species and wild-type Interferon sensitivity determining region (ISDR) strains are linked with an inefficient 
response to IFN therapy. This article describes the pharmacodynamics of IFNs with an aim to decipher the possible 
involvement of HCV proteins in subverting these responses. We hereby discuss IFN-based therapies targeting the 
host and viral genetic factors, since they have a strong impact in determining the efficacy of an IFN in HCV infected 
host.
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Introduction 
Hepatitis C virus (HCV) is an RNA virus which was first discovered 

in year 1989 [1,2]. Since its discovery, interferons (IFNs) have been 
used against HCV as a cornerstone of the anti-HCV therapy. Isaacs 
and Lindenmann in 1957 discovered this family of cytokines and 
named them inter-ferons because of their ability to “interfere” with 
the viral replication, conferring resistance to viral infection transferred 
from infected chick cells into uninfected cells [3]. IFNs are one of the 
key components of the innate immune system, considered as the first 
cytokines to be cloned, sequenced, purified to recombinant forms 
and have therefore been utilized in a wide range of applications [4]. 
Some of the much emphasized functions performed by this class of 
cytokines includes; inhibition of cell proliferation [5,6], up-regulation 
of Major histocompatibility complex (MHC) class I [7,8], induction of 
maturity in Dendritic cells (DC), promotion of B-cell differentiation 
to plasmablasts [9], promotion of T-cell responses and induction of 
expression of pro-inflammatory cytokines [10-14]. With the discovery 
of its isoforms, IFNs have been categorized into three distinct groups 
(Type 1-3) based on their amino acid sequences and specific receptor 
recognition [15]. The therapeutic potential of Type-1 IFNs in viral 
infection was first discovered through its inhibitory action against 
respiratory viral infections. Since then IFNs have been acknowledged 
clinically as effective antiviral and anti-neoplastic therapeutic agents. 
Various functions performed by this group of cytokines have been 
highlighted in figure 1.

On the other hand, viruses have evolved many mechanisms to block 
IFN synthesis and alter their actions by interfering at various stages 
of IFN signaling pathway to evade the IFN mediated host responses. 
Viruses such as Influenza virus, Ebola virus, Papilloma viruses and 
the Human Herpes Kaposi’s Sarcoma-associated virus (KSHV) 
encode proteins that interfere with interferon regulatory factors (IRF) 
activation or induction [16]. Chemical modulators which may either 
selectively activate IFN synthesis or block the synthesis of inflammatory 
cytokines can have a broad therapeutic potential in autoimmunity and 
are yet to be developed [17]. It can therefore reasonably be argued that 

complex organisms like mammals can only survive as long as their 
immune defenses are able to adjust with the strategies of invading 
pathogens. Hence, an adaptable IFN system is essential for mammals 
to make them capable of evading viral infections [18]. 

Some of the other related subjects widely discussed over the years 
include, the identification of viral mechanisms that resist the actions of 
IFN proteins and IFN-stimulated genes (ISGs). Amino acid substitutions 
in HCV’s core protein, sequence homology, higher numbers of quasi-
species and wild-type Interferon sensitivity determining region (ISDR) 
strains are also linked to an inefficient response with IFN therapy. This 
article elucidates the pharmacodynamics of IFNs with an emphasis on 
the possible involvement of HCV proteins in subverting these responses 
[19]. The effects of mutations and suppressions of gene products which 
are initiated by the IFN system and leads to the progression of cancers 
have also been explained in this article [20,21]. 

IFN Family of Proteins
IFNs are categorized into three distinct groups, named as type 1, 

type II and type III IFNs [10]. In humans 17 non-allelic functional 
genes have been identified that encode type I IFNs [22,23]. All of them 
are clustered on chromosome 9 and lack introns [23]. 

The complex evolutionary history demonstrated by type I IFNs 
predict the fact that it may be the consequence of various viral combats 
resulting in its divergence to at least eight distinct subfamilies: IFN-
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alpha (IFN-α), IFN-beta (IFN-β), IFN-epsilon (IFN-ε), IFN-kappa 
(IFN-κ), IFN-omega (IFN-ω), IFN-delta (IFN-δ), IFN-zeta (IFN-ζ) 
(limitin) and IFN-tau (IFN-τ) [22]. The first five are found in humans, 
of which there is only one IFN β but 13 IFN α subtypes [22]. All of 
them have a relatively higher specific potencies whereas most of them 
are non-glycosylated proteins of 165–200-plus amino acids as well, 
sharing homologies that range between 30–85% within a specie [24]. 
IFN τ is produced in trophectoderm of ruminants and appears to be 
important in early period of pregnancy [25].  IFN σ is expressed by 
trophoblasts of pigs [26]. IFN ζ (limitin) is expressed only in mice 
having a significantly greater homology to human IFNs [27,28]. Type 
II IFNs are believed to be the primary IFNs expressed after any viral 
attack and comprise of IFN-Gamma (IFN-γ) only, whereas type III 
IFNs consist of four recently identified members: IFN-λ1, IFN-λ2, 

Role of IFNs and Immune Responses
Interaction of IFN with its receptors activates intracellular signaling 

cascades rapidly induce the expression of a variety of overlapping and 
unique genes involved in inflammatory immune responses. The advent 
of novel cytokines is changing our approach towards pathogenesis and 
hence treatment of infectious diseases, allergies and autoimmunity 
[32]. Production of IFNs requires stimulation by viruses, microbial 
products or chemical inducers [20]. Various DNA and RNA viruses, 
bacteria and protozoa have also been reported to induce IFNs through 
activation of toll like receptors (TLRs) [31,33]. 

Retinoic acid–inducible gene (RIG)-I–like receptors (RLRs) are 

cytosolic RNA helicases that sense viral RNA and trigger signaling 
pathways which induce the production of IFNs and proinflammatory 
cytokines [34]. Immunohistochemical analysis has shown that RLRs 
are present in virus induced stress granules, accompanied by viral RNA 
and other antiviral proteins; altogether which is now termed as antiviral 
stress granules (avSGs) [34].Whereas for type III IFNs; a heterodimer 
of IFNLR1 and IL10R2 is necessary to form a functional receptor, to 
initiate the defensive cascade of activated factors [31]. IFN genes are 
induced by the binding of TLR-activated transcription factors to their 
promoters. The most important transcription factors for induction are 
IFN regulatory factors (IRF), specifically IRF3, IRF7, ATF-2/c-Jun, 
and NFκB families [35-37]. Mammalian NFκB/Rel family comprises 
of five members; NFκB-1 (p50), NFκB-2(p52), RelA (p65), RelB, and 
c-Rel. All of them play critical roles in the regulation of innate immune 
system by activating various immune responsive genes, such as cell 
adhesion molecules, proinflammatory cytokines and chemokines 
[38-40]. NFκB RelA is required during early phase of viral infections, 
whereas NFκB RelB with CCL19 plays a role in forming heterodimers 
with p50 and p52 in various genes transactivation [37,41-43]. IFNs also 
induce some GTPases in the activation of its pathway and Mx proteins 
are one of those GTPases, which belongs to the dynamin superfamily 
of Large GTPases. The antiviral activity showed by MxGTPases against 
a wide range of RNA viruses is a unique property belonging to this 
group member [44]. Direct and indirect mechanisms exploited by IFNs 
to counter viral attacks are outlined in table 1.

After recognizing the antiviral efficacy of IFNs against RNA and 
DNA viruses, they were included in the regimen against HCV and 
HBV. IFN-α and IFN-β have also shown reduced viral titers and 
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Figure 1: Significance of interferons in immune response against different viruses.

IFN-λ3 and IFN-λ4 [10,29-31]. The distinct feature of type III IFNs is 
the selective expression behavior of their heterodimer receptors [10].
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decreased clinical manifestations in cases of  herpes zoster, Herpes 
Simplex virus (HSV) and cytomegalovirus infections (CMV) [45].

IFNs provide fundamental cellular defense mechanisms against 
viral infections and cancers thus they hold significant importance in 
the health of humans and other animals [19]. Despite the fact that IFN 
therapy has not attained patient compliance, they are nevertheless 
the drug of choice because of their clinical effectiveness in limiting 
viral replication, reduction of tumor cell mass, regulation of disease 
symptoms and prolonging survivals [45]. As all biological effects of 
IFNs are manifested through the action of ISGs, understanding the 
functions of these genes may present antiviral therapeutics with higher 
efficacies [3,6,10].

Different viral and host factors may also determine the impact on 
the outcomes of the antiviral therapy, which includes age [46], gender 
[46], ethnicity [47,48], fibrosis score [49], immune response [50], IL-
28 genetic polymorphism [51], alcohol intake [52],  insulin resistance 
[53], hormonal imbalances [54], obesity [55] and anemia [56] as host 
factors and viral load [57], genotypes [58-60], mutations [61-64] and 
co-infections [65,66] as important host factors [19,57] (Table 2).

Biology of HCV and Its Role in Immune Subversion
HCV is a single stranded RNA virus, whose genome comprises of 

a single open reading frame that undergoes alternative splicing to yield 
structural (core and envelope proteins) and non-structural (NS 2,3,4, 
and 5) protein components (Figure 2). 

Efficacy of IFN therapy also depends on the genotype of HCV to 
a large extent as there are six genotypes of HCV (1-6); classified on 
the sequence homology, the sustained virologic response (SVR) rates, 
including many other factors depend indeed on the genotype of the 
virus infecting the host [67]. SVR is an efficacy measure for HCV 

therapy which is quantified through detection of HCV’s RNA in 
patient’s blood serum, at least six months after completion of antiviral 
therapy against chronic HCV infection [68]. After attaining a viremia 
during this period, the incidence of late relapses are minimal (<1%) 
[69].

Different proteins of HCV have been reported to regulate or inhibit 
the production or working of IFNs, which has been discussed as follows:

Core protein of HCV

Role of HCV proteins in reversing the actions of IFNs in host 
defense mechanisms are being identified with the passage of time 
through various experiments. Both viral and human polymorphisms 
have been correlated with the outcomes of IFN therapies. IL-28B 
polymorphism is under thorough studies now days, as it is believed to 
predict the efficacy of IFN therapy in different groups. Moreover, in a 
study conducted in Japan, it was concluded that host polymorphism 
(IL-28B) and viral polymorphism (HCV Core protein) contribute 
independently to a successful IFN therapy [51]. It was concluded that 
HCV core protein with mutations at position 70 and 91 is known to 
be very critical in non-responders of IFN therapy with genotype 1b in 
Japan [70]. The overall role for these positions is not much clear but 
they are believed to have an inhibiting activity in Janus kinase/signal 
transducers and activators of transcription (JAK/STAT) pathway 
however no correlation has yet been made in any other genotype 
of HCV [57,71]. The core protein also plays a role in generation of 
the suppressor of cytokine signaling 3 (SOCS3), which inhibits the 
function of interferon-stimulated gene factor 3 (ISGF3) [72]. SOCS-
3 is a member of STAT-induced STAT inhibitor (SSI), which is 
cytokine-inducible negative regulators of cytokine signaling and their 
expression can also be induced by various cytokines, including IL-6, 
IL-10, and interferon-gamma [73-76]. SOCS proteins can bind to JAK2 
kinase and inhibits its activity [77]. HCV core protein is also known to 
perform some other tasks; it help in inhibition of SOCS1, it accelerates 
the degradation of STAT1 and lastly it blocks DNA binding by ISGF3 
(Figure 3) [19,78].

Envelope protein (E2) of HCV (Genotypes and IFN resistance)

HCV reportedly undermines the effectiveness of IFNs through 
sequence homology between a small region of an endoplasmic 
reticulum (ER) – bound E2 protein with the phosphorylation sites of 
double-stranded RNA-activated protein kinase PKR and its substrate, 
the eukaryotic translation initiation factor 2α (eIF2α) (Figure 4)[79]. 
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Figure 2: Genomic and proteomic organization of Hepatitis C Virus (HCV).

Direct Indirect 
PKR (Protein Kinase-R) Up-regulation of human leukocyte antigen 

(HLA) class 1 expression. Which leads to 
Enhancing terminal differentiation of DCs

2’-5’ oligoadenylatesynthetase 
(2’-5’ OAS/ Rnase system) 

T-Cell antiproliferative effects 

Mx Protein Stimulation of IFN-γ by CD-4 T cells 
Up regulation of the expression of HCV 
antigens (modification of immunoproteosomes) 
required for presentation of antigens

Table 1: The direct and indirect mechanisms followed by interferons to counter 
viral attack and enhance host immunity.

Host Factors Viral Factors
Age Less than 40 years Genotypes 2 and 3
Gender; female Viral Load <2 million IU
Ethnicity; nonblack Lack of mutations in Interferon-sensitive 

determining region (ISDR)
Lack of liver fibrosis Decrease in E2 sequence homology with 

Protein Kinase R (PKR)
Anemic conditions Viral Kinetics; Rapid Decline with therapy
Immune response Increased duration of therapy
Interleukin-28 genetic 
polymorphism

Co-infections

Sex hormones and menopause
Non-alcoholic
Organ transplant
Insulin resistance
Obesity

Table 2: Various host and viral factors determining the effectiveness of interferon 
therapy in clearing the viral infection.
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E2 plays two important roles by modulating global translation through 
inhibition of the interferon-induced antiviral protein PKR via its PKR-
eIF2α phosphorylation site homology domain (PePHD) and binding 
with the PKR-like ER-resident kinase (PERK), to inhibit its function 
[79]. This inhibition and binding can be related with the inherent 
resistance of chronic HCV genotype 1 patients to IFN therapy, but 
weaker links may be found in account of those with genotypes 2 or 3, 
in accordance with the clinical data [80]. PKR is basically an antiviral 
protein, which can blocks protein synthesis by phosphorylation of eIF2a 
[81]. Although the inhibition of PKR is correlated with the similarity 
in sequences of PePHD sequence of E2, elF2a and PKR, but it still 
stays controversial because it can only explain the resistances shown 
by genotype 1 of HCV, whereas research have proved that the PePHD 
sequences are highly conserved within any genotype of HCV, which 
fails to explain the altered outcomes of IFN against same genotype. 
Thus, considering only this fact, cannot explain the variations in SVR 
of different isolates within same genotype and other HCV proteins do 
have a role in resistance of IFN therapy, which will be discussed under 
their related topics [82].

Nevertheless, the interaction between E2 and PKR is one of the 
mechanism by which HCV may act as a “decoy” for key molecules 
involved in IFN signaling. Moreover owing to greater sequence 

homology between PKR and E2 protein of HCV genotype 1, it shows 
more resistance to INF therapy [82]. Different viral and host factors, 
which play a vital role in the outcomes of IFN therapies are been shown 
in table 2.

PEGylation is a process whereby one or more molecules of 
polyethylene glycol (PEG) covalently attaches to a biological molecule 
or drug and therefore transforms it into a improved drug with better 
pharmacokinetic and pharmacodynamic parameters [83]. The process 
of PEGylation involves incubation of a reactive derivative of PEG with 
the targeted protein and this attachment can mask the therapeutic 
protein from the host’s immune system, reducing antigenicity and 
immunogenicity. Furthermore it also increases the hydrodynamic size 
of the protein, which prolongs its half-life inside the body and decreases 
its renal clearance [83,84]. PEG is therefore added with therapeutic IFN 
to make it long lasting and to reduce dose frequencies, hence improves 
patient compliance with the treatment. SVR rates of combined 
pegylated interferon (PEG-IFN) therapy for genotypes 1, 2, 3 and 4 are 
approximately 50%, 80%, 70%, and 50% respectively (Figure  5). 

Combined and mono therapies have strong effect on the SVR rates 
as 20% of HCV genome is not conserved at amino acid level in different 
genotypes, moreover HCV genotypes can be further subdivided into 
subtypes denoted by lower case alphabets (1a,1b,1c,etc) [19,61,84]. 
In common circumstances an individual is reported to be infected 
with a single subtype, however infection with multiple genotypes 
and subtypes have also been documented. Within each host, HCV is 
capable of multiplying number of directly related but discrete viral 
strains called quasi-species [84]. 

Hepatologists and scientists are facing many problems in the 
treatment of HCV all over the world because the genome of HCV is 10 
times more diverse than human immunodeficiency virus (HIV) since 
the RNA-dependent RNA polymerase in HCV lacks the proof reading 
capacity [85]. Poor responses to IFN therapy have been reported with 
an increase in number of quasi species visible before therapy [84]. 

The varieties of genotypes differ with the differences in geographic 
locations and five genotypes have been mainly identified. Genotype 1 is 
predominant in United States of America (USA) and Western Europe 
accounting for 60-65% infected HCV individuals, genotype 3 is mostly 
prevalent in Pakistan [86], genotype 4 is widespread in Middle East, 
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it may lead to liver cirrhosis, in which blood flow and liver functions 
get disrupted and fibrosis scoring is done to predict the advancement in 
the disease [96]. Whereas ALT is mainly found in liver and its measure 
helps us inspecting the liver damage. Amount of enzymes in the blood 
can be measured in this test, which helps in identifying liver diseases 
and their causes [49].

Interferon sensitivity-determining region (ISDR) is present in 
NS5A that may bind and inhibit protein kinase R (PKR) [97,98], but this 
inhibition of PKR is different from that of HCV E2, which is through 
sequence homology [90]. The ISDR (amino acid 2209-2248) is located 
within NS5A portion of the genome of HCV and has been reported to 
play an important role in determining the efficacy of exogenous IFN 
therapy on replication of virus through inhibition of PKR (Figure 7) 
[64,97,98]. Studies have shown that when NS5A binds and inactivates 
PKR, dsRNA (produced during RNA virus genome replication) 
activates an IFN induced gene product [81]. Protein translation shuts 
down as PKR phosphorylates the translation initiation factor elf-2α 
[99]. In addition to ISDR, another 26 residues of C- terminal to ISDR 
are required by NS5A to interact with PKR and their binding results 
in inhibition of PKR autophosphorylation and phosphorylation of an 
exogenous substrate [81,99]. The binding site of PKR was identified 
as the dimerization domain [63]. Different studies have proven that 
mutation of more than one amino acid in the ISDR elevates the SVR 
percentages in patients; however conflicting data has also been reported 
in this association [62,100].

Conclusion
Interferon therapy is a major treatment option in HCV infections 

but with the passage of time HCV has evolved mechanisms to cope 
with IFN therapy. Since HCV is an RNA virus having higher rates of 
mutations, these mutations play a pivotal role in virus survival [48,49]. 
Over the years, these mutations have helped HCV to evade host 
immune responses leading towards the failures of antiviral therapies. 
As a result HCV continues to be a challenging target being the foremost 
cause of demise and cancers related with livers. This article emphasizes 
the possible role of HCV proteins contributing towards reduced 
efficacy of IFN therapy. HCV core protein can hamper IFN mediated 
therapy by substitution of its amino acids resulting in development of 
IFN resistance and failure of treatment [51,57]. PEG-IFN and ribavirin 
therapies have varying effects on various genotypes of HCV; many 

Egypt and Central Asia whereas genotypes 5 and 6 are commonly 
found in South America and South East Asia respectively [87].

During the last century, there have been sudden outbreaks in the 
USA and Western Europe. A small number of subtypes including 
subtypes 1a, 1b, and 3a have been found prevalent, but genotype 
distribution has changed and diversified, which can be associated 
with intravenous drug use, blood transfusions and immigration to 
Europe and USA from endemic areas [88,89]. However efficacy of IFN 
therapy in different genotypes of HCV is found to be irregular. The 
reason behind this irregularity is a broad discussion but one of them is 
believed to be the outcome of sequence homology of envelope proteins 
of HCV genotype 1 with PKR (as discussed earlier) and this makes 
HCV capable of undermining the antiviral effects of IFN [90].

NS3/4A protein of HCV

The nonstructural proteins of HCV also possess a capacity of 
subverting the IFN activity. HCV NS3/4A serine protease prevents 
the phosphorylation  of IRF3 and thus inhibits IFN induction [91], it 
also performs another duty with similar result by cleavage of the “Toll-
IL-1 receptor domain- containing adaptor inducing IFN-β (TRIF)” 
protein that plays a key role in linkage of TLR3 to kinases responsible 
for the activation of IRF3 which has also been proved within an in vivo 
study that IRF3 is activated in the livers of patients infected with HCV 
(Figure 6) [92,93]. IFN induction is also interfered and down regulated 
through the disruption of RIG1 signaling by NS3/4A [94].

NS5A protein of HCV

The exact function of HCV NS5A is still unknown but it is possibly 
involved in the induction of proinflammatory chemokine interleukin-8 
(IL-8), which leads to the fractional inhibition of the IFN antiviral 
response [61,95].  Studies have shown that the increase in levels of IL-8 
in HCV patients under IFN treatment is directly related to the failure 
of IFN therapy [61,95]. Recently, a study has reported from Taiwan 
on HCV 1b patients concluded that SVR is inversely proportional 
to the hepatic IL-8 mRNA expression and ISDR mutations [49]. 
These types of studies suggest that HCV-induced changes in levels of 
proinflammatory cytokines and chemokines expression may play a role 
in anti-HCV therapy (IFN-therapy), endurance or pathogenesis [95]. 
Prediction of IL-8 mRNA expression is also possible through fibrosis 
scores and alanine aminotransferase levels (ALT), as both of these 
diagnostic tests informs us towards the progression of disease [49]. 
Most of the chronic liver diseases are accompanied with liver fibrosis, 
which is the excessive accumulation of extracellular matrix proteins and 
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IL-8, which leads to the fractional inhibition of IFN antiviral response. 
NS5A also contains ISDR (interferon sensitivity determining region), which 
is believed to inhibit PKR through its dimerization domain. Sustained 
virological response (SVR) is an efficacy measure of HCV therapy and 
mutations in ISDR increases SVR in various genotypes of HCV.
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quasi-species are also responsible for resistance to IFN therapy.

HCV also evades antiviral effects of IFN on account of homology 
between different host factors and viral proteins; NS5A protein has an 
important role in inhibition of IFN [62-64]. The ISDR region in HCV 
genome also contributes towards resistance against IFN therapy. These 
factors contribute to virus survival, and as a result, the host immune 
system fails to curb viral infection which may later damage the liver 
in case of HCV infection. HCV is a global threat effecting millions 
of people each year. Although IFN, PEG-IFN and other antiviral 
approaches have reduced the mortality rate, the HCV still remains a 
serious pathogen through its ability to persist by manipulating various 
host factors. Therefore, the need for modification of existing anti-HCV 
therapeutics as well as production of novel anti-HCV therapeutic 
agents is necessary to reduce the rate of HCV associated annual deaths. 
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