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Abstract

Objectives: The analysis of Adverse Events (AE) is an important aspect of the assessment of new treatments.
Data on AE are often reported through individual frequency rates, ignoring potential sources of heterogeneity due to
either treatment course or individuals. We aimed to illustrate how Bayesian modelling may achieve reliable
information using data of a randomized clinical trial evaluating chemotherapies against acute promyelocytic
leukaemia (APL2006 trial).

Methods: We first performed in 2015 a medical literature search to illustrate the need for improvement in AE
reporting. We then used the APL2006 trial data to apply Bayesian hierarchical models on AE counts.

Results: Only five over the 10 intended journals were found to have published results from RCTs in the study
period. Median trial sample size was 523, ranging from 50 up to 20,870 with efficacy results mostly positive (in 61%).
Although 39 (89%) articles briefly report AE information in the abstract, the analysis of AE data was poorly reported
or even performed. In the APL2006 trial, 522 (97%) of the 538 patients received a total of 4,203 chemotherapy
courses. A total of 3,584 AEs were recorded on 2,242 (53.3%) courses in 520 (99.6%) patients, that is, in all but 2
patients from arm A. Therefore, the rate of patients experiencing AE was poorly informative while the mean AE
counts per patient were preferred. Besides the randomization arm, the various exposures– as summarized by the
number of administered courses and the type of chemotherapy course, appeared as potential sources of variability.
Bayes analysis of these AE counts, using Poisson-Gamma models with non-informative priors allowed to depict the
heterogeneity in AE count across arms.

Conclusion: We showed the interests of Bayes modeling to provide information on the adverse events
distribution in a randomized clinical trial.

Trial registration number and trial register: APL2006, NCT00378365.

Keywords: Bayesian approaches; Adverse events; Randomized phase
III clinical trials

Introduction
Although they cannot detect rare harms, Phase III randomized

clinical trials (RCT) offer the best approach for providing safety data
besides efficacy data [1,2]. Indeed, clinical safety data, usually reported
as clinically manifested adverse events (AEs) according to the Medical
Dictionary for Regulatory Activities (MedDRA), are routinely
collected during the course of the trial, and periodical monitoring of
the safety events is often required to determine whether excessive
occurrence of a set of AEs is associated with treatment.

However, though the extension of the CONSORT statement has
been developed to provide detailed recommendations on the reporting
of harms in randomized trials [3] it has been claimed repeatedly for
the last decade that reports of RCTs mostly provide inadequate
information on AE [3-5] with prevalence of inadequacy ranging from

one-half of RCTs up to nearly two thirds [6,7]. This was similarly
examined in systematic reviews, though only 6% of reviews appeared
to focus on such a topic, [8] with poor report on definition and
collection of adverse events [9].

Overall, the reported proportion of all reviews with data on adverse
events ranges from 18% to 28% [10,11]. Nevertheless, all these papers
pointed out that more consistency among authors and journals as to
how these adverse events are described and analyzed with regards to
the treatment arm is required. Actually, the predominant method for
statistical evaluation and interpretation of safety data collected in a
clinical trial is the tabular display of descriptive statistics.

However, other statistical methods could be used, including
graphical approaches [12] or Bayesian methods [13,14]. The interests
of Bayesian approaches in the modeling of AEs have been claimed in
the setting of pharmacovigilance, as an aid in regulatory decision-
making for analyzing post-marketing data [15,16].
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Bayesian methods indeed allow signal detection, [17] but they can
also accommodate the structure of reported AEs with the MedDRA
system throughout hierarchical models, [18] and incorporate prior
established medical or epidemiological knowledge [15]. However, in
pharmacovigilance, these analyses, based on spontaneously-reported
adverse events, are faced to truncation data issues. Indeed, besides the
potential selection biases induced by self-reporting, only patients who
experienced adverse events report.

We assumed that there is a great opportunity to enhance evaluation
of drug safety through the use of Bayesian tools, on the basis of Phase
III randomized clinical trial data. First, Bayesian methods are
intuitively appealing in displaying probability distributions of the
effects across arms. Second, Bayesian approaches allow incorporating
all available information, that is, in the trial and beyond the trial from
prior or outside studies evaluating the same treatment. Thus, as
previously reported, [19,20] pooling results from RCTs and
nonrandomized studies on adverse event using Bayesian methods
appears promising. Also, consistent criteria for determining whether
the drug is harmful or not could be based on posterior or predictive
probabilities, similarly to those defined for promising drugs for
instance in the Phase II setting [21,22].

Thus, the objectives of this paper were to propose Bayesian
statistical methods for harmonization, thus achieving the
comparability of previously collected data, which could be used in the
context of randomized clinical trial summary data or individual
participant data meta-analysis of AEs.

We first reported a literature search to describe the reported
statistics for comparing AEs across randomized arms. Then, we
detailed the use of Bayes approaches for the handling of such data,
both in graphical displays and conclusions regarding the association of
AEs with randomized arms.

Count data and multiple right censored data were considered. To
illustrate the interests of Bayesian methods for summarizing clinical
trial data with regards to AEs, we used individual data from the
APL2006 Phase IIII randomized clinical trial that aimed at assessing
the role of Arsenic Trioxide and/or ATRA during consolidation course
in 538 newly diagnosed Acute Promyelocytic Leukemia (APL). Some
discussion is lastly provided.

Methods

Literature review
We first assessed the handling of tolerance data in the 10 high-

impact general medicine and subspecialty journals in 2015: New
England Journal of Medicine (NEJM), Lancet, Journal of the American
Medical Association, The Lancet Oncology, The Lancet Infectious
Diseases, The Lancet Neurology, Journal of Clinical Oncology (JCO),
Annals of Internal Medicine, British Medical Journal, Archives of
Internal Medicine (See Appendix A for a detailed search strategy).
Specifically for adverse events, and according to previous reports,11 we
recorded the population under study (intention-to-treat, per-protocol,
other); the unit of observation (event, cure, patient); whether adverse
event rates and treatment discontinuations were reported overall and
in each arm separately; whether grades or severity scales were defined
or referenced; the summary statistics and the statistical tests (overall,
per arm); the handling of time scale; the correction for multiplicity; the
use of Bayes approaches.

The APL2006 Trial: Description and Statistical Analysis
From January, 2007, 9 to January, 2014, 16, a total of 538 patients

aged 70 years or less with WBC<10,000/mm3, were randomly allocated
to three parallel arms, differing in consolidation courses based on
idarubicine associated with either Aracytin (AraC, n=170, control arm
A), Arsenic trioxide (arm B; n=176) or ATRA (arm C; n=176), as
allocated by randomization (NCT00378365).

We first focused on the counts of adverse events (AE) observed in
units of observation (either the course or the patient), using Poisson-
Gamma models. Briefly, this consists in estimating the mean count µ
of AE on the units where individual counts are summarized, through
Poisson likelihoods while some extra-information from outside the
trial is introduced on the prior mean µ, using Gamma distributions,
where α is the shape and β the rate of the distribution. The posterior
mean of the AE counts is then given by a Gamma density, where
denote the total number of observed AEs and the sample size. Note
that the prior sample size in this model is just β (which makes sense
given that 1/β is the scale parameter for the Gamma distribution), and
the prior acts like a dataset consisting of β observations with mean α/β
Hierarchical models were fitted, where previous priors were generated
in Gamma distributions and hyperparameters’ priors also Gamma
distributed, using inference summaries from Markov chain Monte
Carlo (MCMC) methods. Effect of randomization was assessed on the
posterior distribution of the difference in Poisson AE counts across
randomized arms, also reported as a Skellam distribution [23].

Different amounts of extra-information were considered. First, non-
informative prior on each parameter, was used. Then, we assumed that
some increased count of AE in the Arsenic trioxide arm has been
suggested, so that informative priors were affected to that arm only.

MCMC inference process was based on 3 chains of 10,000 values
after a burn in of 20,000 discarded iterations. We analyzed the
posterior mean, standard deviation, 95% credibility interval, CrI), and
convergence criterion statistics. To check the goodness-of-fit of the
model before applying the results, used Bayesian P-values [24].

Analysis was performed on R 3.2.2 (https://www.R-project.org/).
The Bayesian framework was based on the JAGS software (http://
mcmc-jags.sourceforge.net/) and the R2jags package.

Results

Literature review
The study selection process is summarized in Figure 1, while main

characteristics of the 44 reviewed papers are summarized in Table 1.
Only five over the 10 intended journals were found to have published
results from RCTs in the study period, with three main journals
summing up 86% of the articles, namely NEJM (36%), JCO and Lancet
(25% each). Median sample size was 523, ranging from 50 up to 20,870
and efficacy results were mostly positive (in 61%).

By contrast, although 39 (89%) articles briefly report AE
information in the abstract, the analysis of AE data was poorly
reported or even performed. The most frequently reported statistics
regarding AE occurrence were the observed rates of patients
experiencing AE in each arm (reported in 27 articles, 61%), followed
by treatment discontinuation due to SAE (in 7 articles).
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None statistical analysis of AE data handled varying exposures in
time, treatment courses or cycles, that is, either induction,
consolidation, or maintenance cycles.

Characteristics n (%)

Journal

New England Journal of Medicine 16 (36%)

Lancet 11 (25%)

The Lancet Oncology 3 (7%)

The Lancet Infectious Diseases 3 (7%)

Journal of Clinical Oncology 11 (25%)

No authors: median [Interquartile range] 20 [12.75; 23]

Sample size: median [Interquartile range] 523 [349; 1051]

Reported information on AE in the abstract 39 (89%)

Analyzed population for AEs

All patients analyzed for efficacy (ITT) 5 (11%)

Only patients who received treatment (PP) 9 (21%)

Both ITT and PP 4 (9%)

Unclear/not reported 26 (59%)

Unit of observation

Events 2 (5%)

Patients 33 (75%)

Both 1 (2%)

Unclear/not reported 8 (18%)

Summary Statistics

Overall only 6 (14%)

Per arm only 27 (61%)

Both 1 (2%)

Unclear/not reported 8 (18%)

Test Statistics 9 (20%)

Table 1: Summary of Articles review regarding adverse events (AE)
reporting.

APL2006 trial: adverse events summary
Overall, 16 patients were untreated and 522 (97%) of the 538

patients received a total of 4,203 chemotherapy courses.

A total of 3,584 AEs were recorded on 2,242 (53.3%) courses in 520
(99.6%) patients, that is, in all but 2 patients from arm A.

Therefore, the rate of patients experiencing AE is poorly informative
here while the mean AE counts per patient, of about 7 (7.3 in arm A,
7.4 in arm B and 5.9 in arm C), may appear to be preferred.

However, these figures also ignore the inter-individual variability in
the occurrence of AE, as depicted in the Figure 2.

Figure 1: Flow diagram of the literature search and identification of
randomized controlled trial (RCT) abstracts.

Figure 2: APL2006 clinical trial-Observed distribution of the
number of adverse events per patient. [Figure 2a plot refers to the
observed distribution of these counts according to the type of
chemotherapy courses, namely induction (A), first (B) and second
(C) consolidation, and maintenance (D) courses. Figure 2b displays
the mean count of AEs in each patient is plotted against the
variability of individual counts on log-scales. Figure 2c and Figure
2d displays similar findings according to randomization arm, based
on idarubicine associated with either Aracytin (AraC, n=170,
control arm A), Arsenic trioxide (arm B; n=176) or ATRA (arm C;
n=176)].
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A B C Total

No patients 170 176 176 522

No courses 1,328 1,446 1,429 4,203

Induction 170 176 176 522

First consolidation 162 170 169 501

Second consolidation 142 158 163 463

Maintenance 854

No (%) patients with Adverse Events

168 (98.8%) 176 (100%) 176 (100%) 520 (99.6%)

No (mean) Adverse Events 1,241 (0.93) 1,296 (0.89) 1,047 (0.73) 3,584 (0.85)

Induction 392 (2.3) 414 (2.3) 409 (2.3) 1,215 (2.3)

First consolidation 298 (1.8) 339 (2.0) 164 (1.0) 801 (1.6)

Second consolidation 220 (1.5) 189 (1.2) 110 (0.7) 519 (1.1)

(Maintenance) 331 (0.4) 354 (0.4) 364 (0.4) 1,049 (0.4)

Mean ± SD Adverse Events per patient

7.30 ± 3.13 7.36 ± 3.60 5.94 ± 2.91 6.87 ± 3.29

Mean ± SD Adverse Events per course

1.18 ± 0.89 0.96 ± 1.05 0.91 ± 0.86 1.06 ± 0.94

Table 2: APL2006-Observed distribution of adverse events after administered courses based on idarubicine associated with either Aracytin (AraC,
n=170, control arm A), Arsenic trioxide (arm B; n=176) or ATRA (arm C; n=176), as allocated by randomization (NCT00378365).

Besides the randomization arm, the various exposures as
summarized by the number of administered courses and the type of
chemotherapy course appear potential sources of variability (Table 2).

Bayesian poisson-gamma modeling
Relationship between log-sample variance and log-sample mean

over the patients was somewhat linear, with estimated slope of the least
squares line at 0.7, suggesting that the Poisson-gamma distribution
may be roughly appropriate here.

Thus, we then considered Bayes analysis of these AE counts, using
Poisson-Gamma models with non-informative priors.

AE Count per course B against A C against A C against B

Mean -0.038 -0.202 -0.163

(95%CrI) (-0.11; 0.034) (-0.271;-0.134) (-0.229;-0.098)

AE Count per patient B against A C against A C against B

Mean 0.064 -1.352 -1.416

(95%CrI) (-0.508; 0.636) (-1.895;-0.810) (-1.953;-0.876)

Table 3: APL2006-Bayesian posterior estimates of mean count
difference in AE occurrence based on idarubicine associated with
either Aracytin (AraC, n=170, control arm A), Arsenic trioxide (arm

B; n=176) or ATRA (arm C; n=176), as allocated by randomization
(NCT00378365).

Rather than only summarizing AE information on mean count, this
allows to depict the heterogeneity in AE count across arms in the shape
of a distribution (Figure 3).

Moreover, differences according to randomized arms are
highlighted with, whatever the observation unit related to either the
chemotherapy course or the patient, a distribution shifted to the left in
arm C while that of arm A are shifted to the right.

Nevertheless, accounting for courses instead of patient as the unit of
observation modified the mean count in arm B that was closer to the
control arm A (Table 3).

This was in agreement with the posterior distributions of differences
in AE counts across arms (Figure 3).
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Figure 3: Bayes Poisson-Gamma modeling of the AE counts data
from the APL2006 trial-Upper plots refer to Posterior Bayesian
distribution of the count of adverse events using Poisson-Gamma
model with non-informative priors on Gamma parameters, on the
whole sample or according to randomization arm based on
idarubicine associated with either Aracytin (AraC, n=170, control
arm A), Arsenic trioxide (arm B; n=176) or ATRA (arm C; n=176).
Lower plot displays the posterior distribution of the difference in
AE counts across randomized arms. Left plots refer to count per
course while right plots to counts per patient.

Discussion
In this paper, we showed the interests of Bayes modeling to provide

information on the adverse events distribution in a randomized
clinical trial. Such Bayesian modeling has been mostly used for
detecting signals in clinical trials [30] or large databases of routinely
collected data [15]. This should be used more widely to provide
information on AE occurrence across randomized arms in RCTs. As
reported in the literature review from 10 journals, there is a room for
improvement in such a setting.

We first assumed that the AE counts were Poisson distributed,
which is typically used for count data. In a Bayes framework, Poisson-
Gamma distributions can be interpreted as a Poisson random variable
denoting the number of courses with adverse events whose parameter
is random and gamma distributed. Indeed, the gamma conjugate prior
distribution is used to facilitate analytic calculations. However, there
are two main consequences if the Poisson assumption does not hold:
The first is that standard errors of the parameter estimates, which are
based on the Poisson, are wrong. This could lead to wrong conclusions
when doing inference. The other consequence happens when the
Poisson distribution is used to make predictions, with probabilities
assigned to each number of AE to be predicted will be inaccurate.

However, when it comes to modeling and predicting AEs using the
Poisson, a good thing would be if the data were actually
underdispersed. That would mean that the probabilities for the
predicted number of AE would be higher around the expectation, and
it would be possible to make more precise predictions. Alternatives to
the Poisson model that are suitable to model count data and that are
capable of being underdispersed could have been considered. Except
for the negative binomial model there seems to have been little focus
on more flexible Poisson-like models in the literature. The mostly used
alternative to the Poisson model is the negative binomial distribution,
but it cannot be used to model underdispersion. Two distributions that
can handle both under- and over-dispersion are particularly
noteworthy. One is the Conway–Maxwell–Poisson (COM-Poisson or
CMP) distribution [25-27] that provides additional insight into the
relative effects of different covariates, not only on the mean of the
counts but also on the variance of the counts, and the other is the
double Poisson (DP) distribution [28] that has been shown easily
estimated to model count data [29]. They could appear promising
alternatives for such modeling.
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