
Open Access

Volume 5 • Issue 6 • 1000189
J Phys Chem Biophys
ISSN: 2161-0398 JPCB, an open access journal

Open AccessResearch Article

Butusov et al., J Phys Chem Biophys 2015, 5:6 
DOI: 10.4172/2161-0398.1000189

*Corresponding author: Leonid Butusov, Peoples’ Friendship University of
Russia, Russian Federation, Tel: +79851694226; E-mail: leonid.butusov@ya.ru

Received October 20, 2015; Accepted November 05, 2015; Published November 
10, 2015

Citation: Butusov LA, Nagovitsyn IA, Kurilkin VV, Chudinova GK (2015) Interaction 
of DNA with Globular Proteins of Different Structures in Thin Films on Substrates 
of Monocrystalline Silicon. J Phys Chem Biophys 5: 189. doi:10.4172/2161-
0398.1000189

Copyright: © 2015 Butusov LA, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
The two-component films of mixtures of DNA (from calf thymus) with different proteins: rabbit immunoglobulin 

(IgG), methemoglobin (MHB) and human serum albumin (HSA) were studied on single-crystal silicon substrates by 
the method of fluorescence spectroscopy. Registration of fluorescence spectra was performed by λex=260 and 280 
nm in the range 340-380 nm. To prepare films the spincoating method was used. Solutions deposited on the substrate 
contained the small concentrations of proteins 10-9 - 10-15 M at the same quantity of DNA.

Shape dependencies of the fluorescence intensity versus concentration differ markedly for each of the used proteins. 
The decreasing concentration of protein in the film is accompanied by a significant increase of the integrated 
fluorescence intensity (in comparison with the concentration of 10-9 M) for films of DNA-HSA in 2.5 and 5 times (10-13 
and 10-15 M HSA), for films of DNA-IgG in 4.6 and 15.9 times (10-11 and 10-13 M IgG), for films of DNA-MHB in 3.4 times 
(10-11 M MHB). The single-component films of proteins was studied as control samples whose properties noticeably 
differ from the properties of DNA-protein systems. The specificity of the fluorescent characteristics of DNA-protein films 
for proteins of different structure and their different concentrations could be used as the basis for developing biosensor 
systems.
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Introduction
The interaction of DNA with proteins is the most important 

fundamental problem and one of the main factors determining 
the specificity of the interaction is a three-dimensional structure 
of both compounds. The vast majority of modern researches in this 
area are aimed at studying the mechanisms of specific recognition of 
various natural and synthetic regulatory model proteins of individual 
nucleotides and their sequences [1].

At the same time the directions of artificial, not found in nature, 
supramolecular systems, including nanoscale, on the basis of DNA 
are developed [2,3]. The last direction is important as from the point 
of view of clarifying the fundamental aspects of the interaction of 
biomacromolecules [4], and also for medical applications [5].

It should be noted that the design of systems of molecular-scale 
with programmable physico-chemical and structural properties is a key 
task of the modern applied science [6]. Quality advantages of the DNA-
systems can be considered relatively easy projecting of predictability 
and geometry, while, unfortunately, only in relation to objects of small 
size, for example, DNA nanostructures. 

It is possible the creation of materials as a result of self-organization 
(self-assembly) that do not lose their working properties at the scale 
changes, where the preparation conditions define the properties and 
potentials for practical applications, [7-14].

The possibility of structure-function complication of the currently 
available DNA-structures, the programmability of self-assembly 
processes, the sensitivity of the DNA structures for the processes of 
molecular recognition allows effective use of them in fundamental and 

applied researches as effective optical and structural probes and also as 
biochemical transport system [15-17].

This article considers the interaction of DNA and physiologically 
important proteins (hemoglobin, serum albumin and immunoglobulin) 
in thin films on substrates of monocrystalline silicon. The aim of this 
work was to study changes in fluorescence systems "DNA-protein" and 
to study the possibilities of applying DNA-protein interaction for its 
use with small quantities of protein.

Silicon in its various forms (crystalline, polycrystalline, amorphous) 
is frequently used not only in microelectronics, etc., but also, especially 
in recent years, for the study of physico-chemical processes involving 
biological macromolecules. Such properties of the silicon substrates as 
homogeneity and a weak influence on photoluminescence of organic 
systems allows effectively to use them for studies of luminescent 
characteristics of thin films of biological macromolecules, including 
for the creation of biosensors [18-22].

In the present work we study the characteristics of DNA films on 
substrates of monocrystalline silicon with the addition of hemoglobin, 
serum albumin and immunoglobulin to show the possibility to detect 
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changes caused by the nature and concentration of added protein by 
the method of fluorescent spectroscopy.

Materials and Methods
Used materials were obtained from Sigma-Aldrich Co.: DNA 

from calf thymus, rabbit IgG, human serum albumin (HSA), human 
hemoglobin (MHB). The DNA suspension was exposed by ultrasound 
in a Branson 1510 set for ultrasonic treatment (42 kHz) of 40 minutes 
in a 0.1 M NaCl solution. The DNA solution (0.17 mg/ml) was mixed 
with protein ones of various concentrations in 0.1 M NaCl at a ratio of 
9:1, so that the concentration of proteins in solutions for application to 
substrates ranged from 10-9 to 10-15 M.

Thin films were obtained by the spincoating method on substrates 
of monocrystalline silicon (18 × 18 mm) using the set created in the 
laboratory on the basis of centrifuges "Elekon" CLMN-P10-02 (Russia) 
[23]; the rotation speed of substrate was 2000 rpm, the volume of 
deposited solution - 20 μl.

The samples of the silicon with surface orientation (100), thickness 
of 380 ± 20 µm, the roughness of the working surface ≤ 0.06 were used.

The fluorescence of the samples was measured on a 
spectrofluorometer RF-5300pc (Shimadzu). Registration of 
fluorescence intensity was performed with an interval of 0.2 nm with 
slits of excitation and registration of 3 and 5 nm, respectively. The 
software Origin 6.0 for data processing was used. For the calculation 
of the maxima of the fluorescent bands used spectra, processed using 
the “Adjacent Averaging” method smoothing of the curves (number of 
pixels for averaging is 20). The integral intensity of the fluorescence was 
calculated as the area under the curve the fluorescence intensity versus 
the wavelength in the wavelength region of 340-380 nm.

The use of integrated intensity it is convenient to unify the results, 
including the use different devices with different optical characteristics.

Results
The fluorescence of mixtures of DNA with proteins films was 

investigated on substrates of monocrystalline silicon. Samples of 
single-crystal silicon absorb in the ultraviolet region of the spectrum 
[24,25], including in the area of the maxima of the absorption bands 
of DNA and proteins, however, possess its own luminescence in the 
infrared region with energies ≈ of 1.1 eV with a low quantum yield of 
the order of 10-4 % at room temperature [26].

Observed luminescence of samples of single crystal silicon without 
the addition of DNA or protein (Figure 1, spectrum 1) is likely 
determined by the luminescence of the oxide film on the surface of a 
single crystal sample associated with radiation of single and aggregate 
color centers (F-centers) in the oxide matrix [27,28]; thus, when the 
excitation light wavelength of 260 nm (the absorption band of DNA), 
the maximum band fluorescence of the substrate was observed at 364 
nm (Figure 1, spectrum 1). Shoulders in areas of 355-360 and 370-375 
nm indicate, apparently, the different size of clusters in SiO2 oxide film.

When applied to the substrate single-component films of DNA 
(0.17 mg/ml), the change of the maximum position of the fluorescence 
band only slightly, while the intensity of the fluorescence increased 
almost 4 times (Figure 1, spectrum 2).

In the used samples of single-crystal silicon its own fluorescence with 
maxima at 688 and 722 nm was detected. There is a model explaining 
the origin of the photoluminescence by properties of the boundary 
of Si−SiOx saturated with defects [29,30]. On the samples of porous 

silicon it was shown that the position of the photoluminescence bands 
can significantly (1,75-2 eV) change with aging of the samples [31]. In 
this article we don’t consider the influence of biomacromolecules on 
the fluorescence of substrates in the visible range. 

DNA has its own fluorescence in solutions with a maximum at 358 
nm [32-34]. Thus, the resulting increase in the fluorescence intensity 
when DNA applied (Figure 1) due to apparently the presence of DNA, 
although we cannot exclude the possibility of increased ultraviolet 
fluorescence of the substrate oxide film under the action of DNA, as 
was shown for substrates of transition metals oxides in the SiO2 matrix 
[35,36].

Excitation to the absorption band of the protein (λex=280 nm) 
does not change significantly the shape of the spectrum and the silicon 
substrate, and a single-component film of DNA on it, leading only to 
the decrease of the fluorescence intensity in both cases as compared 
with the intensity observed when excited by light with a wavelength of 
260 nm (spectra not shown).

In Figure 2 the fluorescence spectra of two-component films of 
HSA - DNA on a silicon substrate with an excitation wavelength of 
260 nm were presented. The dependence of the fluorescence intensity 
on the concentration of HSA is non-linear. The integral intensity (area 
under the curve of the spectrum in the region of 340-380 nm) is 45.4, 
38.7, 113.8, 234 a.u. for concentrations of HSA - 10-9, 10-11, 10-13, 10-15 M, 
respectively. Thus, with reducing the concentration of HSA in the film 
we has seen an appreciable enhancement of fluorescence in 2.5-5 times.

It should be noted that the addition of protein and change in 
its concentration does not significantly shift the maximum of the 
fluorescence band, so when λex=260 nm, the maxima of the bands 
observed in region 363, 360, 362, 361 nm, and when λex=280 nm 
region 362, 359, 361, 360 nm for concentrations of HSA 10-9, 10-11, 10-

13, 10-15 M, respectively.

When excited by light with a wavelength of 280 nm (absorption 
band of the protein, spectra not shown) integrated fluorescence intensity 
is higher than in λex=260 nm at 13-19 %, which is obviously due to a 
significantly lower quantum yield of fluorescence of nucleic acid bases 
in comparison with tryptophan [37]. The shape of the spectra and the 
dependence of intensity on concentration of HSA for λex=280 nm are 
similar to those in Figure 2. Enhancing of the integrated intensity of 
fluorescence at concentrations of HSA 10-13 and 10-15 M is 2.5 and 5.1 
times. The research results of influence of the MHB and IgG are shown 
in Table 1.

In the spectra of two-component films with addition of IgG and 
MHB, the shoulders are more pronounced in the area of about 370-375 
nm compared to films of DNA- HSA. In the case of adding IgG (10-9 M) 
and MHB (10-15 M) we observed the peak occurrence, and in the case of 
the MHB, its intensity was comparable to the intensity of the peaks in 
the region 356-360 nm (Figure 3).

Figure 4 shows the change in the relative integrated fluorescence 
intensity (S/S0) when we excited by light with a wavelength of 280 nm 
for films of DNA-HSA, DNA–MHB, and DNA-IgG. When λex=260 
nm the shape of the dependencies remains. The most interesting cases 
of HSA and IgG; the first is a monotonous dependence, the second is 
a significant increase of fluorescence (almost in 16 times), that makes 
them promising for development of sensitive biosensor systems.

The fluorescence intensity of single-component films of proteins 
differ from one of the mixture films, and the difference depends on the 
nature of protein and its concentration (Table 2). The position of the 
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band maxima of the protein films are given in Table 3.

In Figure 5 the change in the relative integrated fluorescence 
intensity (S/S0) are shown by light excitation with a wavelength of 280 
nm for single-component films of HSA, MHB and IgG. Comparison 
of the data Figure 4 and Figure 5 shows that the interaction of DNA 
with MHB slightly changes the behavior of the system, as indicated by 
the similar shape of the dependency of the intensity on concentration, 
and similar values of the intensity for films of DNA-MHB and the 
MHB. However, the interaction of DNA with IgG and HSA leads to 
qualitative changes, significantly enhancing the fluorescence of the 
system at extremely low concentrations of protein.

Since in the present supramolecular systems a specific 
intermolecular binding (like, for example, by the reaction antigen-
antibody or complementary nucleotides binding) are absent, 
apparently, the tertiary structure of protein is a major factor of 
influence on the general structure of the films and, consequently, on 
their fluorescence.

The proteins, selected for study, vary in size, structure and 
physiological functions. Albumin is a transport protein of molecular 
weight 69 kDa has a size 8 × 6 × 3 nm [38], and it is the main transport 
protein of blood plasma. Immunoglobulin – one of the most important 
proteins of the humoral immune system with a molecular weight of 150 
kDa, it has an elongated ellipsoid with an area of up to 75 nm2 and a 
height of 15 nm [39], it works in blood plasma and in cell membranes.

Hemoglobin is located in erythrocytes and is an allosteric enzyme 
with a molecular mass of 67 kDa and dimensions 5 × 5 × 7.1 nm 
[40], has the four prosthetic groups of heme (a complex of Fe2+ and 
protoporphyrin IX) in its structure. All the studied proteins have 
important physiological functions, and their qualitative and quantitative 
definition of registration in medical laboratory analysis, and study of 
their physico-chemical characteristics in multi-component biological 
model systems because this is an important problem.

In the literature there is a wide range of works devoted to the 
interaction of DNA with various biological macromolecules. In ref. 
[41] authors describe the interactions of different amino acids with 
DNA, and their specificity is noted. 

The interaction of DNA with antibodies in autoimmune process 
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Figure 1: Fluorescence spectra (λex=260 nm) of a monocrystalline silicon 
substrate (1) and DNA films on monocrystalline silicon (2).
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Figure 4: The relative integrated fluorescence intensity (S/S0) while adding 
protein to the DNA film, λex=280 nm. S – integral intensity of the fluorescence, 
S0 is the integrated intensity of fluorescence protein at a concentration of 10-9 
M. 1 – IgG (-■-), 2 – HSA (-▲-) ,3 – MHB (-○-).

340 350 360 370 380
0

2

4

6

8

10

12

14

16

2

1

3

4

flu
or

es
ce

ns
e 

in
te

ns
ity

, a
.u

.

wavelength, nm

Figure 2: The fluorescence spectra of two-component films of DNA –NAV 
when λ=260 nm. Concentrations of HSA (mol/l): 1 – 10-9, 2 – 10-11, 3 – 10-13, 
4 – 10-15.
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Figure 3: The fluorescence spectra of two-component films of DNA with the 
addition of IgG 10-9 M (1,2; the left y-axis) and the MHB 10-15 M (3,4; right 
ordinate). 1,4 - λex=260 nm; 2,3 - λex=280 nm.
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was observed in ref. [42]. The formed complexes consist of DNA-
protein do not contain covalent bonds. Interaction DNA with protein is 
carried out by means of hydrogen bonds directly with DNA or through 
interaction with water, ionic bonds, such as formation of salt bridges, or 
interact directly with the DNA frame, and van der Waals interactions, 
including hydrophobic interactions. The study of interactions in such 

systems opens prospects for creation of new materials for biosensors, 
pharmacology [24].

Conclusions
The obtained results are important for the study of physico-chemical 

aspects of interaction of components in biomacromolecular complex 
systems in vitro, and possibly, for the development of biosensors for 
identification of these proteins and registration their quantity in model 
and physiological environ.
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