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Abstract

The progression of venous return impairment is related to the evolution of muscle atrophy. Venous return is
influenced by factors such as blood volume, pressure gradient between the veins and atrium, and venous resistance
determined mainly by vascular diameter, which might all work in a compensatory manner in the event of loss of
skeletal muscle mass to prevent the progression of vascular problems. It is expected to occur a continued
progression in the loss of venous return, and in the loss of muscle mass. The latter represents the main factor of
influence on this hemodynamic mechanism and on cardiac output. There are significant data on venous return,
exercise and muscle atrophy, but few are associative data between these subjects. In this sense the literature gap
hinders the development of and/or therapeutic application to subjects with muscle atrophy. The proposed
manuscript addresses the relationship between loss of muscle mass and impairment in venous return and,
consequently, in cardiac output. In this context, the present review also brings some perspectives on the viable
biomarkers used to indicate the integrative function of the venous return and cardiac output.
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Introduction
The main function of the cardiovascular system is to supply cells

with nutrients and oxygen and to remove excretes from their
metabolism. This function, along with the general constitution of the
cardiovascular system, has been known since Harvey’s findings in the
17th century. He demonstrated that the heart was the central organ of
the cardiovascular system, and that it was responsible for propelling
the blood to the arteries and veins and back to its starting point. This
unidirectional blood flow was ensured by Harvey’s description of
valves in the venous system, which allows blood to flow toward the
heart preventing it from going in the opposite direction [1,2].

In the 19th century, Bayliss and Starling broadly described function
and control of the venous system [3]. Afterward, in the 1950’s, Guyton
et al. [4-8] further explored the venous system control and its
relationship with right atrial pressure. Nevertheless, during the years,
the venous side physiology has not been as appreciated as the arterial
side; hence it being left out of the circulatory system physiology.
Currently, the two basic known functions of the venous system are to
return the blood from the periphery to the right atrium and to store
large amounts of unneeded blood serving as a reservoir [9].

This system contains about 70% of the total blood volume while
only 18% are in the arteries [10-12]. Approximately three-fourths of
the 70% are in small veins and venules, especially in the systemic
venous circulation [12-14]. Such difference is due to the much higher
compliance of veins when compared to the arteries (30 times greater)
enabling the venous system to alter its blood volume without
producing any significant changes in venous pressure [9,10]. For this
reason, veins are usually called capacitance vessels, undoubtedly the

most important blood reservoir within the circulation, and they play
an important role in maintaining filling pressure in the right heart
[13-15]. The most important blood reservoir within the venous system
is the splanchnic region (liver, spleen, and small and large intestine)
for two reasons: it has the highest compliance, holding about 30% of
the total blood volume, and is richly innervated by the sympathetic
nervous system [14-16].

The hemodynamic mechanism that involves the rate of venous
blood return to the right heart through the venous system is defined as
Venous Return, and is equivalent to the Cardiac Output at steady-state
conditions [13,14,17].

The functionality of the venous system depends on valves or valve-
like structures, which are more prominent in deep limb veins and in
the legs [18,19]. Skeletal muscles surround these structures, and,
therefore, serve as an external pump that compresses the veins to
ensure the unidirectional blood flow back to the heart [13,14,20].

Venous Return Determinants
Hemodynamic parameters that determine venous return and,

consequently determine cardiac output include: blood volume
(unstressed and stressed volume), mean circulatory filling pressure,
right atrial pressure, and venous resistance [9,21,22]. Furthermore,
venous return from lower extremities can be profoundly influenced by
the skeletal muscle pump and by valve function; these are important
mechanisms during exercise performance [19,20]. Thus, effective
venous return depends on adequate interactions between the central
pump, the pressure gradient (peripheral and central pressure), a
peripheral venous pump, and on competent venous valves [19].
Hemodynamic factors affect or can be affected by vascular capacity.

Since the venous system is the body’s main blood reservoir, any
change in its capacity greatly influences venous return (altering
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preload) and, in turn, affects cardiac output and blood pressure
[13,14,22]. Therefore, in physiological conditions, we can assume that
cardiac output depends entirely on venous return and on all its
determining factors [15,21].

Unstressed and Stressed Volume
The total blood volume contained in the circulation at a specific

distending pressure, e.g., the baseline distending pressure, is named
vascular capacity. This volume can be divided into unstressed and
stressed volumes [13,14,22,23]. The former is the volume of blood that
fills the vessels to capacity without increasing transmural pressure, the
difference between the pressure inside the vessel and outside the vessel
wall [9,14,15,22]; it represents about 70% of the total volume and is
hemodynamically inactive [14,15,24]. Conversely, the latter is the
volume of blood that stretches the vessels and generates a positive
transmural pressure [9,14,22]. Due to the pressure, stressed volume is
considered hemodynamically active; it represents approximately 30%
of total volume [9,14,15].

Despite unstressed volume not being considered hemodynamically
active, in some situations, e.g. alterations in blood vessel capacity and
in the smooth muscle activity, it can be reduced or enlarged [14,22].
The unstressed volume can be reduced by venoconstriction through
diminished inflow or decreased transmural pressure; on the contrary,
it can be increased by venodilatation through increased inflow or
augmented transmural pressure [14]. Unstressed volume can become
stressed volume, acting as a blood volume reserve, which is quite
important under various conditions such as hemorrhage and exercise
[13-15]. Therefore, alterations in stressed volume can directly affect
cardiovascular hemodynamics through changes in venous pressure
and, consequently, in venous return and cardiac output [15].

Mean Circulatory Filling and Right Atrial Pressures
The mean circulatory filling pressure is the hypothetical mean

vascular pressure in the systemic circulation that would be observed if
the heart were stopped and the pressure in all parts of the circulation,
from the aorta to the right atrium, were equilibrated [14,17,25]. This
concept of “mean systemic pressure” at zero flow was established in
1850 by E.H. Weber [apud 21] and was further linked to the
cardiovascular system by Bayliss and Starling [3]. After having
performed a sympathectomy to induce cardiac arrest, by vagal
stimulation in a dog model through the insertion of a cannula in the
femoral artery and vein, portal vein, inferior vena cava and aorta,
Bayliss and Starling [3] demonstrated that under these circumstances,
the pressure at these points reached an equilibrium with values about 5
to 10 mmHg. Additional studies have observed that the mean
circulatory filling pressure measured in patients in the intensive care
unit is approximately 18 mmHg (or 12 mmHg, considering central
venous pressure zero) [26]. Therefore, it can be assumed that this
pressure is a reflection of how tightly the blood volume fills the venous
and arterial systems [23].

Normally, when the heart pumps blood, the arterial pressure rises
and the venous pressure reduces compared to the mean pressure of the
system. This pressure gradient between the vessels allows that blood to
be pushed through the arterial system, capillaries and venous systems
and, subsequently, back to the heart. Nevertheless, the pressure within
venules and small veins, the primary sites of compliance, is the same
during active circulation and cardiac halt [15,25]. For this reason, this
pressure is considered to be the equivalent of mean circulatory filling

pressure. Therefore, it can be postulated that, under normal
conditions, mean circulatory filling pressure resides in small venous
territory, and is the main driving force (the upstream pressure) that
determines the rate of venous return and thus cardiac output
[4,5,22,23,25].

The total stressed blood volume primarily determines the mean
circulatory filling pressure. Other factors, however, such as venous
compliance, ventricular contraction and relaxation, venous valve
function and skeletal muscles can alter it as well [14,15]. An increase in
stressed blood volume, by means of infusion of additional volume,
and/or by a decrease in venous capacity by venoconstrictors, or
skeletal muscle contraction, raises mean circulatory filling pressure
and consequently increases the venous return [9,15,21]. Similarly, a
reduction in venous compliance, in the absence of a change in blood
volume, also evokes an increase in mean circulatory filling pressure
and in venous return [14]. For this reason, the mean circulatory filling
pressure is considered to measure the effective volume status
(theoretically) independently from cardiac function [22].

The cardiac function can only affect venous return indirectly by
changing right atrial pressure (the downstream pressure), and
consequently altering the driving pressure gradient [9]. Guyton et al
extensively demonstrated this relationship through the venous return
curve [4,5,7]. This curve represents the steady-state relationship
between stepwise changes in right atrial pressure and the resulting
changes in venous return, which is a function of the circulating blood
volume, vasomotor tone and blood flow distribution [22]. When the
right atrial pressure is 0 mmHg, the gradient between the upstream
and downstream pressures is the greatest and the venous return
reaches a maximum. If the right atrial pressure falls below 0 mm Hg, it
produces a suction force that initially increases venous flow but,
shortly after, limits the venous return at a plateau due to extrathoracic
veins collapse [27]. On the other hand, if right atrial pressure rises,
venous return is reduced. It is noteworthy that venous returns can
only be zero when there is no pressure gradient between the upstream
and downstream pressures. This occurs when the venous return curve
intercepts the X-axis and, at this point, right atrial pressure reflects the
mean circulatory filling pressure [25]. Furthermore, the derivative of
any point of this curve describes the resistance for venous return, also
referred to as venous resistance [9,22].

Venous Resistance
Different from arterial resistance, venous resistance is lower, but is

an important determinant of venous return due to the low pressure
and the high capacity of the venous circulation. Whereas altering the
tone of arterioles mostly affects resistance, in veins it mostly affects
capacity. Thus, it is volume rather than resistance that is controlled in
order to regulate the circulation [28]. In this context, it is postulated
that venous resistance depends on the combination of resistance and
capacitance (the relationship between contained volume and
distending pressure of a segment) in different portions of the
peripheral circulation. Small veins and venules have very large cross-
sectional areas with high capacitance and, thus, they have little
contribution to venous resistance, serving mainly as a blood reservoir.
On the other hand, large central veins such as the vena cava, and
peripheral large and medium-sized veins have small cross-sectional
areas with little capacitance, acting primarily as a conduit and having
small contribution to the blood reservoir. Therefore, venous resistance
is mainly determined by these conducting veins, which can be
passively affected by blood volume alterations in the reservoir
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compartment, by autonomic stimulation, and by vasoactive mediators
[9,14,21].

Many factors, such as the diameter of vessels and blood viscosity
can alter venous resistance [9,22]. Constriction of conducting veins
can directly increase venous resistance, although it causes only a
minimal effect when compared to the arterial side as mentioned
before. An increase in blood viscosity (polycythemia) can also increase
venous resistance. Nevertheless, the main mechanism by which venous
resistance is altered is by redistribution of blood between different
vascular beds through vasoconstriction mainly in the splanchnic
region [21,22]. Venoconstriction and venodilation in different parts of
the systemic circulation is controlled mainly by a counterpoise
between α-adrenergic and β2-adrenergic activation. α1- adrenergic
activation of a vascular bed produces venoconstriction and, thereby,
decreases its unstressed blood volume while increasing its stressed
volume. These alterations evoke a brief rise in upstream pressure and
expel blood into the systemic circulation [22]. Most of the
venoconstriction occurs in the splanchnic circulation due to a more
prominent innervation and a greater sensitivity to sympathetic
stimulation than arterial resistance vessels [15,19,21]. Still, it is
important to point out that the splanchnic venoconstriction does not
significantly affect venous resistance, but has a great capability to
increase mean circulatory filling pressure secondary to an increase in
stressed volume [15,22]. Conversely, other vascular beds, such as the
hepatic one, are venodilated through β2-adrenergic activation, and
facilitate the blood flow and volume shift from the splanchnic
vasculature to the inferior vena cava and afterwards to the right
atrium, thereby increasing venous return [15].

Skeletal Muscle Pump
The skeletal muscle pump is considered one of the most important

factors that increase venous return mainly from the lower extremities
acting as a “peripheral heart” [19,29,30]. Although in accordance to
the classic muscle pump hypothesis, increased venous pressure caused,
for example, by a head upright tilt, would produce increased blood
flow, different insights about skeletal muscles have been brilliantly
elucidated [31]. Laughlin et al. proved that the peak venous outflow is
directly related to the total tension produced during skeletal muscle
contraction [32]. The authors also established the duration of muscle
contraction as an important determinant of venous outflow dynamics.
Both the amount of venous outflow per contraction and the time
course of outflow during contraction are altered by changes in
stimulation patterns.

Competent venous valves, that divide the hydrostatic column of
blood into segments, assist the muscle pump to avoid gravitational
venous reflux [30,33]. It happens mainly during walking and dynamic
exercise when the rhythmic contraction of the peripheral skeletal
muscles increases and causes intramuscular veins to suffer greater
compression [20,34,35]. In turn, this compression increases the mean
circulatory pressure about three times the normal value and expels
large amounts of blood from the venous vasculature toward the heart.
Thus, this muscle pump mechanism is one of the main factors that
increases the cardiac output at the onset of muscular activity (in
conformity to Frank-Starling mechanism), and it is mostly dependent
upon muscle mass and pump activity intensity [32,34,36,37].

The ability of the skeletal muscle pump to empty the venous vessels
has been widely demonstrated in animal and human studies
[20,32,34-38]. The main skeletal muscles responsible for this pump
function are the lower limb muscles including those of the feet, calves,

and thighs. Among these, the most important is the calf muscle pump
due to its large capacitance, and to the highest pressure generated
[19,35]. Studies have demonstrated that over 60% of the venous
volume can be moved centrally with a single calf muscle contraction
[19,37,39]. At least two mechanisms are responsible for this circulatory
pump role played by lower limb muscle contraction. First, during
muscular compression of intramuscular venous vessels, a considerable
amount of kinetic energy is transmitted to the venous blood that
facilitates its return to the heart (assisted by the venous valves).
Second, during muscular contraction, venous pressure is reduced to
very low values or even negative values, which generates a greater
arterial-venous gradient just after the end of muscle contraction that
contributes to the venous flow. As a result, venous return is
augmented, and it contributes to most of the increase in cardiac output
during exercise [17,20,32].

Whereas the practice of physical exercise positively associates
venous return and cardiac output, the disuse is the main mechanism to
a negative relationship. Indeed, in aging underlies the comprehension
of the disuse and of the cellular/biochemistry processes involved in
muscle atrophy [40].

Figure 1: Schematic relationship of Muscle Atropy affecting the
determinants of Venous Return. Briefly: Muscle atrophy causes
venous blood pooling which favors an increase in the unstressed
volume and a decrease of the stressed volume. As a result, the mean
circulatory filling pressure decreases producing a reduction in right
atrium filling and leads to extensive physical deconditioning,
indicated through, e.g., the reduced demand of oxygen to the
muscle leading to vascular atrophy. This compensatory mechanism
will increase vascular resistance and contribute to a reduction in
venous return. In the absence of skeletal muscle venous pumps,
these hemodynamic changes promote an abnormal venous return
that could compromise stroke volume and cardiac output.

Other causes of skeletal muscle atrophy may include: alcohol
associated myopathy, Amyotrophic Lateral Sclerosis (ALS or Lou
Gehrig's disease), BurnsGuillainBarré syndrome, injury, long-term
corticosteroid therapy, muscular dystrophy, and other diseases with
immobilization, like osteoarthritis, polio, rheumatoid arthritis, spinal
cord injury and stroke. Among chronic diseases related to skeletal
muscle there are: diabetes, uremia, cancer, and congestive heart failure
[41-43]. A decrease in strength muscle will cause venous blood pooling
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which favors an increase in the unstressed volume and a decrease the
stressed volume.

As a result, the mean circulatory filling pressure will decrease
producing a reduction in right atrium filling (Figure 1).

Moreover, as consequence of muscle atrophy and extensive physical
deconditioning, the demand of oxygen to the muscle is reduced
leading to vascular atrophy [44]. This compensatory mechanism will
increase vascular resistance and contribute to a reduction in venous
return [45-47]. Thus, in the absence of skeletal muscle venous pumps,
these hemodynamic changes promote an abnormal venous return that
could compromise stroke volume and cardiac output [47-49].

Indeed, some studies have reported cardiac output to be reduced
after periods of inactivity induced by bed rest, spinal cord injury, and
spaceflight [46,50-52]. Further, after 2 weeks of bed rest, Levine et al.
[53] found decrease cardiac filling, which promoted a decrease in LV
distensibility and impaired cardiac function. Despite some studies not
reporting a decrease in cardiac diastolic and systolic function after
spinal cord injury [45], it has been discovered that left ventricle mass
index and cardiac dimensions were reduced by prolonged inactivity
and short-term spaceflight [45,50,53].

Unquestionably, muscle atrophy caused by several conditions can
impair cardiovascular hemodynamics and promote cardiac alterations.

Some important genetic muscle atrophy disorders, like Becker and
Duchenne diseases [54,55], show progressive cardiac dysfunction.
Both are clinically characterized by progressive muscle weakness,
whose implications are [56] attributed as a cause or a consequence of
cardiovascular complications and are thought to, directly or indirectly,
affect the cardiac output and, consequently, the venous return. These
dystrophies generally develop during the second decade of the
patient’s life [57-60]. Although cardiac dysfunction originates due to
specific myocardial loss of dystrophin, extrinsic hemodynamic
parameters may impact the development, as well.

In Becker muscular dystrophy patients, there is no correlation
between cardiac involvement [61] and the severity of the
cardiomyopathy. Cardiac involvement may manifest as
electrocardiographic abnormalities, hypertrophic cardiomyopathy,
dilation of the cardiac cavities with preserved systolic function, dilative
cardiomyopathy, and cardiac arrest. On the other hand, taking [62] the
organ into account, myocardial damage increases with age through
progressive reduction of left ventricular ejection fraction as observed
in patients over 20. Patients under 20 years of age do not present
altered cardiac parameters such as ventricular dimensions, wall
thickness, fractional shortening, and ratio of early (E) to late (A)
ventricular filling velocities (E/A ratio); however, these young patients
present lower systolic and diastolic intramyocardial velocity gradients,
indicating the possible myocardial disease [63].

Ducceschi et al. [64] showed that in patients with Becker muscular
dystrophy there is a tendency towards a straight relationship between
the entity of cardiac sympathetic activity and the degree of left
ventricular systolic dysfunction. The authors reported evolution of
systolic impairment appearing somehow to be associated with the
development of autonomic imbalance, a condition that contributes to
increase ventricular propensity to arrhythmias. Further investigations,
nonetheless, demonstrate no autonomic nervous system involvement
as a key finding in Becker muscular dystrophy [65].

Lee et al. [60] demonstrated a reduction in left ventricle mass,
combined with a decrease in stroke volume and no alterations in

cardiac output in patients with Duchenne muscular dystrophy. To
maintain the cardiac output, their hearts are forced to increase beating
frequency to compensate reductions in left ventricle size.
Consequently, the cardiac muscle encounters two major threats, i.e.
mass reduction and overwork, that could evoke chronic cardiac fatigue
and alter cardiovascular hemodynamics. Further, independent from
additional genetic alterations in cardiac tissue, the widespread
dystrophic damage of skeletal muscle concurrent with postural
adaptation may also result in hemodynamic adaptation, which has
been established as a risk factor for the development of
cardiomyopathy [66,67]. Therefore, progressive skeletal muscle
degeneration and weakness most likely contributes to progressive
cardiac dysfunction.

Interestingly, animal studies with knockout mice have already
demonstrated a potential causal link between skeletal muscle disease
and cardiomyopathy. Normally, the mdx mice, a mouse model of
Duchenne muscular dystrophy, do not show characteristic dystrophic
cardiomyopathy until they reach 21 or more months of age [68,69].
Nevertheless, the mdx:MyoD-/- mice lacking dystrophin and the
skeletal muscle-specific bHLH transcription factor MyoD display
pronounced myopathic phenotype caused by marked reduction in
skeletal muscle regeneration due to impaired satellite cells activity
[70]. Using this mice model, Megeney et al. [70] observed that
accelerated skeletal muscle deterioration caused cardiac dilation and
myocardial fibrosis in the 5-month-old mdx:MyoD-/- mice heart. As
MyoD is not expressed in the heart and plays no role in heart
development, any myocardial changes evident in mdx: MyoD2y2 mice
would be directly attributable to the level of skeletal muscle damage.
Hence, the author suggested the progression of skeletal muscle damage
as a significant contributing factor leading to the development of
cardiomyopathy.

Figure 2: Integrative arrangement for venous return and cardiac
output involving atrophy (of skeletal muscle and of
cardiomyocyte). ROS: reactive oxygen species. VP: venous pressure.

Since in Becker and Duchenne muscular dystrophy cardiac
impairment is not directly correlated with the severity of skeletal
muscle involvement [71], the venous return is not directly a subject,
but it is indirectly involved in cardiac manifestations. Cardiac
involvement has been confirmed in cases preceding the onset of
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skeletal muscle manifestation and in cases of wheelchair-bound
patients who did not develop cardiac dysfunctions.

Skeletal Muscle Atrophy: Molecular pathophysiology
Studies concerning aging and skeletal muscle atrophy have

contributed to the exploration of the relationship among myopathic
changes, cardiac output, and venous return (Figure 2).

Neural, mechanical and metabolic factors coordinately keep
integrative signalling between cardiac output and skeletal muscle
perfusion [16,72-74]. It is well established that an increase in both the
venous return as in cardiac filling pressure caused by peripheral
vasodilatation is required to intensify cardiac output during heart rate
pacing [75,76].

Concerning the molecular aspects, a relevant cause of disuse
atrophy is an elevation in protein degradation rate relative to the
synthesis rate [77]. Taking a step back, a way to better understand
atrophy mechanisms is through investigative studies about
hypertrophy.

Mechanisms underlying muscular hypertrophy of externally applied
occlusive stimulus have been interpreted as follows: 1) Additional
recruitment of fast-twitch fibers in a hypoxic condition [78]; 2)
Moderate production of ROS, which promotes tissue growth [79-81];
3) Stimulated secretion of catecholamine and growth hormone [82].

All of these processes are also thought to be associated with
conventional, heavy-resistance exercises, because strong muscular
contractions produce large amounts of metabolic products and cause
transient intramuscular ischemia [83]. If the last two processes above
play roles in muscular hypertrophy, the occlusive stimulus per se is
expected to have an effect in either promoting hypertrophy or
attenuating atrophy. In addition to these mechanical, neural, and
hormonal factors, changes in the intramuscular oxygen environment
may play a role in the present effect of occlusive stimulus.

As is widely known, heart inotropism is important to cardiac
output. Reduced inotropism certainly contributes to reduced
functional capacity; impairments in skeletal muscle physiology,
including muscle atrophy, weakness, and reduced oxidative capacity
have well-accepted influence in such cardiac performance [84].

In a healthy individual, who presents elevated cardiac output during
submaximal or adenosine triphosphate (ATP) challenge, heart rate
response appears to be secondary to the regulation of cardiac output
due to a compensatory mechanism of reduction in stroke volume [85].
On the other hand, cardiac output is mainly regulated by an increase
in venous return that occurs in parallel to the increase in skeletal
muscle blood flow [85]. This suggested that peripheral O2 demand
and vasodilatation are the main determinants of cardiac output during
steady-state conditions.

Cardiac function is impaired in athletes with complete lesions above
T1. Undeniably, these individuals lack sympathetic innervation to the
heart and rely solely on parasympathetic withdrawal and circulating
catecholamines to increase their heart rate. Heart rate responses
during maximal exercise or high-intensity submaximal performance
will therefore hardly exceed 110–130 beats/min [86]. Athletes with
spinal lesions in levels down to T6 are also likely to achieve lower than
anticipated maximal heart rate values, while those with lesions below
that level will have normal responses [87-89].

Muscle ischemia also increases norepinephrine release from
sympathetic nerves [90]. Subsequent activation of α1-adrenoreceptors
exerts growth factor-like activity on arterial smooth muscle cells by a
ROS-dependent mechanism; also, it induces leukocyte accumulation.
This results in collateral growth and angiogenesis in the ischemic
region, providing a means to increase nutritive perfusion [90].

Muscle Atrophy: Molecular Approaches
Non-stimulated or poorly stimulated muscle fibers will have their

functional properties changed [91] leading to issues in co-factors such
as spasticity and microvascularity, which constitute important
morphological, molecular, and biochemical alterations. Bulks of
biomarkers have been used to detect cardiac and skeletal muscle
impairment, and to find a relationship between their integrative
functions.

Myotoxicity and biomarkers
There are some important approaches in studies about myotoxicity

[92]. Measurements of enzyme activity like of aspartate transaminase
(AST), lactate dehydrogenase (LDH) and creatine kinase (CK) have
long been used to detect cardiac and skeletal muscle injury. These
three biomarkers, however, present low sensitivity and specificity
[93,94]. Cardiac troponin I (cTnI) and T (cTnT) have been used as the
preferred biomarkers for myocardial infarction in clinical examination
as proposed by the American College of Cardiology and the European
Society of Cardiology [95-97]. Troponins and myosin light chain 1
(MLC1) [98] are considered, mainly in pre-clinical conditions, useful
biomarkers of cardiotoxicity; while plasma fatty acid binding protein 3
(Fabp3), as a biomarker of skeletal myotoxicity [99].

Tonomura et al. [100] properly demonstrated proteins Fabp3 and
MLC1 as effective biomarkers due to their specific skeletal muscle
distribution, although the rapid blood clearance of these markers
should be taken into account when considering their use. An
important contribution of Tonomura et al. [100] was the higher
positive predictive value from combinatorial measurements of Fabp3,
MLC1, cTnI, cTnT, AST, LDH and CK, as well as a comparison of
their usefulness as drug safety biomarkers of myotoxicity (skeletal and
cardiac).

Among all muscle atrophy promoting factors, cortisol is definitely
one to focus on. Atrophy linked to cortisol action depends on
metabolic processes due to amino acid breakdown to feed
gluconeogenesis (distributing amino acids to the liver for glucose
synthesis [101]. Indeed, glucocorticoids have been used to induce
muscle atrophy, and to study the mechanisms in which it regulates
muscle protein degradation. It has been demonstrated that atrophy
triggered by synthetic glucocorticoids is dependent on alterations at
muscle gene expression [102]. The synthetic glucocorticoid
dexamethasone was shown to induce atrophy and trigger changes in
muscle gene expression (‘atrogenes’). The main gene involved is a
Ubiquitin-ligase (E3), called atrogin 1 (MAFbx), a muscle-specific F
box protein that is induced many-fold in fasting, diabetes and cancer
[103]. Another muscle-specific E3, MuRF1, is also highly induced in
atrophying muscle [104]. Both of these genes have been shown to be
upregulated in human muscle atrophy induced by lower limb
immobilization [105]. In this sense, the potential findings of
Tonomura et al. [100] are clinically applicable when taking into
account a cortisol long-term treatment and its toxicity.
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Myofibrils and biomarkers
Apart from myotoxicity concerns, metabolic adaptations are

another point of focus. They are found in a vast group of muscles and
cause a direct impairment in the activity towards cardiac output. These
adaptations are not always associated with contractile myofibrils, such
as the myosin heavy chain (MHC) isoforms.

The formation of the myosin-actin interaction (cross-bridge)
culminates in muscle contraction. In peripheral skeletal muscle,
distributions of isoform MHC IIA in single fibers tented to show a
greater expression of MLC 1f in patients who had suffered heart failure
[88], however this was not associated with differences in single fiber
function. Although measured indirectly, variations in Ca2+ sensitivity
were noted in MHC IIA fibers, which could reflect adaptations in
actin-associated regulatory proteins.

Considering diagnostics, a relationship between impaired cardiac
function and reduced tension has been demonstrated in heart failure
patients and in experimental models with both MHC I and IIA fibers
[107,108]. On the contrary, Miller et al. [106], found no diminution in
single fiber tension, arguing that prior results of reduced tension with
heart failure were explained more by muscle disuse and/or aging than
by heart failure per se. Since the authors concluded that adaptations in
myosin kinetic properties compensate for the loss of myosin protein
content to preserve isometric contractile strength, myofibril evaluation
may have a low predictive value as a biomarker of cardiac output.

Cellular activity, metabolism, and biomarkers
There seems to be an orchestrate-like regulation, mainly under

neuroendocrine control, involving systemic blood flow and oxygen
delivery to peripheral tissues and organs. Take blood pressure for
example: compensatory mechanisms promptly act to correct any
decreases in blood flow or pressure. These mechanisms provide short-
term benefits to metabolically active cells, but trigger long-term injury
to the cardiovascular and, ultimately, to systemic body systems when
chronically activated [109].

In general, peripheral tissues function as “sensors” of metabolic
alterations, and their activities count with an integrated function of the
cardiac output. In this sense, conditions of metabolic deficit lead the
peripheral tissues, like skeletal muscle, to push for an increase in
cardiac output [110].

The intramuscular accumulation of metabolites has been shown to
stimulate the sympathetic nerve and the hypothalamus-pituitary
system through actions of muscular metaboreceptors, and to cause an
increase in plasma concentrations of noradrenaline, adrenaline
[78,83,111,112] and growth hormone [78]. In addition, the application
of strong occlusive pressure may directly stimulate the sympathetic
nerve through the intramuscular pressure-sensitive mechanoreflex
[113,114]. These nervous and hormonal responses may be involved in
the mechanisms underlying the present atrophy-attenuating effect of
occlusive stimulus. It should be noted, particularly, that stimulation of
β2- adrenergic receptors in rat muscles promotes a selective
hypertrophy of fast, Type II fibers, by possibly suppressing protein
catabolism [115,116].

Metabolically speaking, reactive oxygen species (ROS) are accepted
to be core-contributing factors that link the biochemical and
molecular pathways. According to Ozmen et al. [117] and Bachle et al.
[118], ROS are the mediators between persistent ischemia and skeletal
muscle necrosis, causing microcirculatory damage that results in

irreversible deterioration and injury. It has been shown that muscular
xanthine oxidase activity is elevated in hypoxic conditions, and that it
produces ROS during subsequent reperfusion [119].

Several investigations about venous congestion and arterial
ischemia have benefited studies of biomarkers. In the flap salvage
model [120], for example, the pathophysiology of arterial occlusion
results from an inadequate oxygen supply to affected tissues and from
a simultaneous deficit in the clearance of toxic metabolites. As
discussed by Nguyen et al. [120], there is accumulation of ROS, an
influx of inflammatory cells including neutrophils, macrophages, and
a progressive release of cytokines in a cycle of inflammation that
ultimately leads to tissue necrosis [121-124].

In venous congestion, arterial flow persists; this causes increased
intravascular pressure and subsequent hemorrhage of the
microvasculature into the extra-vascular space [125-127]. Increased
extra-vascular pressure, in turn, causes external compression and
collapse of the vessels.

Skeletal muscle has many potential modulators of cellular functions,
which consequently deal with myofilament structure impairment;
therefore, mitochondria are key organelles. A recent revision
published by Hepple [128] presents a broad approach concerning
controversial issues about the impact of mitochondrial function on
skeletal muscle atrophy in aging muscles and on related disuse
conditions. According to the authors, there are at least three
postulated conclusions about mitochondria functions regarding the
progressive skeletal muscle atrophy: i) it is reduced in aging muscle
[129]; ii) there are no changes [130]; iii) it varies depending on the
muscles [131].

What the researches above used to evaluate the aspects of
mitochondrial content/function were mitochondrial enzyme markers
(e.g., citrate synthase and cytochrome oxidase activities), specific
mitochondrial proteins (e.g., porin, electron transport system complex
subunits), mitochondrial DNA (mtDNA) copy number, and the gold
standard, electron microscopic quantitation of mitochondrial volume
density [132].

An important point that explains the disparities between results
from the different approaches is physical activity levels that modulate
mitochondrial activity. In other words, activity-matched subjects
consistently show no decline in indicators of mitochondrial content
and respiratory capacity, independent of the age.

Hepple [128] brought together important considerations about
mitochondrial respiratory function and oxidative stress through ROS
production among atrophy progression in different skeletal muscles,
and through the benefit of maintaining physical activity to the
organelle function.

In this sense, ROS and everything related to them must be
prospective biomarkers. Lower cardiac stroke volume responses,
potentially caused by the absence of the skeletal muscle venous pump
in inactive legs, may involve ROS production.

In order to access the ROS and the mitochondrion metabolism
involved, Servais et al. [133] used the thiobarbituric acid-reactive
substance (TBARS) [134] as markers of reduced soleus muscle atrophy
after antioxidant treatment (vit. E). Oxidative stress in the cellular
environment results in the formation of highly reactive and unstable
lipid hydroperoxides. Decomposition of the unstable peroxides
derived from polyunsaturated fatty acids produces malondialdehyde
(MDA), which can be quantified colorimetrically after a controlled
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reaction with thiobarbituric acid. The measurement of these
'Thiobarbituric Acid Reactive Substances' (TBARS) is a well-
established method for screening and monitoring lipid peroxidation
[135,136].

Haemodynamic and coagulation biomarkers
Blood volume influences venous return to the heart. High plasma

viscosity while total blood viscosity is lower than normal has beneficial
effects in microvasculature haemodynamic. As the heart couples with
the systemic vascular network, changes in plasma and blood viscosity
during haemodilution determine both the vascular pressure drop and
the flow rate, effecting cardiac function. When clotting mechanisms
are stimulated in the blood, platelet aggregation and interactions with
plasma proteins occur. This leads to an entrapment of red blood cells
and clot formation, dramatically increasing blood viscosity [137].

As previously mentioned, blood viscosity modifies venous
resistance [9,22] in the sense that increasing blood viscosity
(polycythaemia) triggers an increase in venous resistance. This is
related, either as a cause or a consequence, to skeletal muscle atrophy.
In consideration, measurements of clotting mechanisms may
represent an important biomarker. Actually, fibrinogen, a plasma
glycoprotein synthesized by the liver, may indirectly indicate cardiac-
skeletal muscle relationship. The conversion of fibrinogen to fibrin is
catalysed by thrombin, and it plays a key role both in clot formation
and in its stabilization. In addition, fibrinogen induces platelet
activation and aggregation by binding to the platelet fibrinogen
receptor glycoprotein GPIIb/IIIa [138,139]. Nikolaychik et al. [140]
has demonstrated the importance of fibrinogen/fibrin as a dynamic
indicator of optimizing the transfer of skeletal muscle-derived power
to the heart as a mean of improving cardiac output in dynamic
cardiomyoplasty.

Conclusion
The determinants of venous return are blood volume (stressed and

unstressed), mean circulatory filling pressure, right atrial pressure,
venous resistance, hemodynamic factors, pumping function of skeletal
muscles and venous valves. A disturbance in any of these parameters
significantly alters the venous return and consequently the cardiac
output. Figure 2 represents a probable pathway of muscular atrophy in
relation to the venous return.

Based on this review, muscular atrophy has an effective mechanism
over venous return by neural, mechanical and metabolic deregulation.
Measurements of specific molecular biomarkers have shown
alterations in skeletal and cardiac muscles, which might account for
changes seen in venous return and cardiac output.
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