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Abstract
Bladder carcinoma is the most common malignancy of the urinary tract. Identification of genetic biomarkers for 

tumor invasiveness will help in earlier diagnosis and proper treatment. The present study aimed to integrate co-
expression network and GO enrichment analysis for identification of prognostic markers and key genes that contribute 
to bladder cancer initiation and progression using a DNA microarray dataset (GSE 37317), invasive and noninvasive 
bladder cancer genes were compared by applying weighted gene co-expression network, gene ontology and pathway 
analysis. This study identified candidate genes (PURA, SRPK2, TRAK1, BRD2, and UPF3) that might have significant 
role in progression and invasiveness of bladder carcinoma. These markers might aid in early diagnosis of muscle 
invasiveness of bladder cancer. In conclusion; these finding may provide better understanding of the molecular 
mechanism of bladder cancer progression and invasiveness.
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Introduction
Alteration of the balance of cell proliferation and cell death is the 

hallmark of cancer, which cause reprogramming of cellular metabolism to 
support neoplastic proliferation and to avoid immune destruction Ghafouri-
Fard et al., [1]. Bladder cancer is the commonest malignancy of the urinary 
tract, with the incidence being four times higher in men than in women 
Ploeg et al., [2]. Approximately 25% of the urothelial tumors are presented 
by muscle invasion (stage ≥T2), the rest are confined to the bladder mucosa 
(Ta) or lamina propria (T1) Cheung et al., [3]. Transurethral resection 
(TUR) of the bladder tumor is the standard method used to determine 
the local stage of the neoplasm which also provides treatment for patients 
with non-muscle-invasive disease and staging information for those with 
muscle-invasive disease Biagioli et al., [4]. Prior efforts have identified 
urinary protein biomarkers of bladder cancer Wang et al., [5,6]. However, 
markers that can predict tumor stage have not been identified. Such 
markers would provide pre-transurethral resection information that could 
be used for patient counseling and determination of the extent of the TUR 
required in cases where muscle-invasive disease is predicted Schiffer et al., 
[7]. The vast amount of available high-throughput gene expression data has 
provided excellent opportunities for studying gene functions on a global 
scale. Comparing the gene-expression profiles of cancerous and healthy 
tissues can help in the identification and characterization of susceptible 
genes associated with cancer Chin et al., [8]. Weighted coexpression 
network analysis is a system biology method for describing the correlation 
patterns among genes across microarray samples. It can be used for finding 
clusters (modules) of highly correlated genes, for summarizing such 
clusters, for relating modules to one another and to external sample traits, 
and for calculating module membership measures Horvath et al., [9,10]. 
Network-based gene screening methods can be used to identify candidate 
biomarkers or therapeutic targets and to identify key genes that contribute 
to the disease phenotypes Kristensen et al., [11]. By focusing on correlated 
gene modules rather than on individual genes, the network approach 
may provide a means to bridge the gap from individual genes to complex 
traits Stranger et al., [12]. Thus, we aimed to apply WGCNA to identify 
more prognosis markers and key genes that contribute to bladder cancer 
initiation and progression and to dissect its related biological pathways 
and networks by integration of coexpression network analysis and GO 
enrichment analysis.

Methods
Data description, processing and differential expression analysis

The data set with the series accession number (GSE 37317) 

accessible at National Center for Biotechnology Information (NCBI), 
Gene Expression Omnibus data repository (http://www.ncbi.nlm.
nih.gov/geo/) was used in this study. The 19 tissue samples for this 
microarray study consisted of 8 non-muscle invasive and 11 muscle 
invasive bladder cancers that were profiled for gene expression using 
the Affymetrix HG-U133A platform. The gene expression profile of 
one normal bladder tissue sample (GSM44682) was also used for the 
analysis of differential gene expression between normal and cancerous 
tissues. Raw gene expression data files were read into R statistical 
package using the Affy package and normalized using the Gene 
chip robust multichip average (GC-RMA) normalization method as 
implemented in Bioconductor Gautier et al., [13]. Then, the processed 
expression levels of each gene between normal samples and tumor 
samples were compared by linear modeling to identify a set of genes 
that are differentially expressed between normal and tumor samples. 
A false discovery rate (FDR) threshold of 5% was set to correct for 
multiple hypothesis testing. These analyses are performed in R statistical 
software with the Limma package Smyth [14].

Network construction and Module detection procedure
The expression profiles of these differentially expressed genes were 
inputted to construct weighted gene co-expression modules using 
the WGCNA R package Langfelder et al., [15]. Positive and negative 
correlations in gene expression may indicate different biological 
interactions (synergistic or antagonistic); hence, using the absolute 
value of the correlation may misinterpret biologically relevant 
information Song et al., [16]. Therefore, in order to identify direct 
gene-gene coexpression relationships among the set of differentially 
expressed genes, a signed weighted gene coexpression network was 
constructed by calculating the spearman’s correlations between gene 
expression levels for all pairs of genes, then, a signed similarity (Sij) 
parameter was derived: Sij=(1+cor (xi,xj))/2, where xi and xj consist 
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of the expression of genes i and j across microarray samples Mason 
et al., [17]. The signed similarity (Sij) was then raised to power β to 
represent the connection strength (aij); where aij=Sijβ. This step aims 
to emphasize strong correlations and reduce the emphasis of weak 
correlations on an exponential scale. A power of β=2 was chosen so 
that the resulting networks exhibited approximate scale-free topology 
Zhang et al., [18]. The topological overlap was used to organize the 
genes into clusters or modules. To calculate the topological overlap 
for a pair of genes, we compare them in terms of their connection 
strengths with all other genes in the network. Hence, the topological 
overlap-based metrics consider the correlation changes to all other 
genes to determine the similarity between two genes, this proximity 
measure can be used as input of clustering method followed by module 
extraction Yip et al., [19]. Hereby, my approach of identification of 
co-expressed gene modules was based on a modification of WGCNA 
method by applying the spectral clustering method, instead of the 
suggested hierarchical clustering, considering topological overlap 
matrix (TOM) as a similarity measure. Despite being applied in 
earlier studies Zhu et al., [5] and proved some utility, interpretation 
of hierarchical clustering is complex; besides expression patterns of 
individual gene sequences become less relevant as the clustering process 
progresses Li et al., [20]. Spectral clustering methods correspond to a 
family of unsupervised learning algorithms. The clustering information 
can be obtained from analyzing the eigenvalues and eigenvectors of 
a matrix derived from pairwise similarities of the data Li et al., [20]. 
These eigenvectors become a new representation of the data, where 
the clusters form a localized structure Huang et al., [21]. Following 
construction of a gene co-expression network, spectral clustering was 
run using specc function of the kernlab package implemented in R 
statistical software Karatzoglou et al., [22]. Number of centers was set 
to 18 and number of iterations to 200. Transcripts were clustered into 
18 distinct gene clusters or modules whose number of genes ranged 
from 38 (the sixth cluster) to 71(the seventeenth cluster). Each module 
represents a group of genes with similar expression profiles across the 
samples and the expression profile pattern is distinct from those of the 
other modules. Singular value decomposition was performed using 
the module Eigengenes function in WGCNA package implemented 
in R software to summarize the expression levels of all genes in each 
module Xiao et al., [23]. The module eigengene roughly corresponds 
to the average of the signed normalized gene-expression values for a 
given sample. The module eigengene-based connectivity (k) for each 
gene was defined by correlating the expression profile of a gene with the 
module eigengene of its resident module. This measures how connected 
a given gene is to biologically interesting modules. The larger ki, the 
more similar is gene i to the summary profile of the module Min et 
al., [24]. Furthermore, we assessed the trait-based gene significance by 
correlating the gene expression profile to the tumor stage, which was 
represented as a binary value (zero for the non-invasive and one for the 
invasive tumor). Gene significance specifies the biological significance 
of the gene, the higher this value, the more significant a gene is Puniya 
et al., [25]. Consequently, scatterplots, spearman correlation coefficients 
and the corresonding p-values as computed by the cor.test function 
in R statistical software were used to relate the gene significance to 
the intramodular connectivity. The physiological relevance of each 
module was assessed by measuring the module significance which 
was defined as the absolute value of the correlation between the tumor 
stage and the module eigengene. Functional annotation of the modules 
was performed on the basis of their gene composition using DAVID 
database. This software, which is available for download at (http://
www.d.abcc.ncifcrf.gov/home.jsp), calculates the p value for the extent 
of enrichment of a given biological pathway/set by performing Fisher’s 
exact test. ‘KEGG_PATHWAY’ and ‘PANTHER_PATHWAY ‘were 

selected for pathway enrichment analysis of coexpressed genes compared 
with the background list of all genes on the array. For characterization of 
modules, ‘GO_BP_FAT’ and ‘GO_MF_FAT’ were selected.

Results
The module significance was determined by correlating the trait with 

the module eigengene (Table 1). The three highest module significance 
(MS) scores observed were for the ninth module (MS=0.696, p=9.2 
× 10−4), the thirteenth module (MS=0.648, p=2.6 × 10−3) and the 
twelfth module (MS=0.45, p=0.05). We also used the non-parametric 
Jonckheere-Terpstra trend test to evaluate the correlation between the 
module eigengenes and tumor stage. For a given physiological trait, a 
measure of gene significance was defined as the absolute value of the 
correlation between trait and gene expression values. For example, the 
tumor stage can be used to define a gene significance of the ith gene 
expression GS (i)=|cor (x (i), stage)| where x (i) is the gene expression 
profile of the ith gene. Furthermore, eigengene based gene connectivity 
(k) of the three modules, which showed the highest module significance 
values, was plotted against gene significance for all genes in each 
module. These plots, shown in (Figures 1-3), revealed that there is a 
direct relationship between the connectivity of a gene and the extent 
to which it is related to the tumor stage. The three modules showed 
a significant positive correlation presented by (r=0.566, p=2. ×  10−6) 
for the ninth, (r=0.607, p=1.54 × 10−5) for the thirteenth and (r=0.373, 
p=1.9 × 10−3) for the twelfth module. So, it can be concluded that the 
connectivity within a physiologically relevant module is directly related 
to the gene significance. Using DAVID database, we tested each module 
for both enriched biological process and molecular function GO terms. 
The genes of the ninth module were markedly enriched for organelle 
organization (p=1.2  ×  10−5), negative regulation of programmed cell 
death (p=2.4 × 10−4) and DNA replication (p=3.3 × 10−3). Moreover, the 
genes of the twelfth module are highly enriched for cell cycle regulation 
terms such as regulation of mitotic cell cycle (p=3.4  ×  10−4), mitotic 
cell cycle checkpoints (p=6.6 × 10−4), cell cycle phase (p=1.2 × 10−3). 

Pearson correlation JT test

Module 
number 

Cluster size

(number 
of genes 

in the 
modules)

r = 
correlation 
coefficient

p-value JT test p-value Average gene 
significance

1 51 0.23 0.34 24 0.09 0.22
2 48 0.22 0.37 31 0.28 0.20
3 54 0.01 0.97 44 1 0.22
4 66 0.08 0.73 36 0.50 0.21
5 55 0.28 0.24 20 0.04 0.16
6 38 0.15 0.54 27 0.16 0.19
7 64 0.17 0.48 57 0.28 0.27
8 57 0.19 0.45 28 0.18 0.20
9 59 0.7 0.0009* 81 0.002* 0.23
10 45 0.11 0.64 26 0.13 0.29
11 42 0.41 0.07 20 0.09 0.20

12 66 0.45 0.04* 64 0.04* 0.25

13 43 0.65 0.002* 77 0.006* 0.23
14 60 0.24 0.31 65 0.08 0.31
15 68 0.14 0.55 36 0.50 0.26
16 71 0.33 0.16 19 0.06 0.22
17 71 0.07 0.79 39 0.67 0.22
18 42 0.02 0.92 45 0.93 0.20

*: P-value was considered significant at <0.05.
Table 1: Module significance determined by correlating the trait with the module 
eigen gene using Pearson correlation and JT test.
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They were also enriched for DNA recombination (p=8.0  ×  10−4) 
and nuclear mRNA splicing (p=3.2  ×  10−3). Meanwhile, the genes 
of the thirteenth module were significantly enriched for cellular 
localization (p=2.4 × 10−2) and defense response to virus (p=3.9 × 10−2). 
Concomitantly, we conducted a pathway enrichment analysis for each 
module using DAVID database in order to obtain further insight into 
the functional significance of the gene modules. ‘KEGG_PATHWAY’ 
and ‘PANTHER_PATHWAY‘ were selected for pathway enrichment 
analysis of co-expressed genes compared with the background list of 
all genes on the array. The ninth module was found to be enriched for 
genes within Pancreatic cancer pathway (p=4.1 × 10−2), B cell receptor 
signaling pathway (p=4.4 × 10−2) and Ras Pathway (p=3.7 × 10−2). 
Results for the functional analysis, those were significant at p<0.05 

level, are shown in (Tables 2-5). Screening for genes that may have a 
possible role in the progression and invasiveness of bladder cancer was 
performed by ranking the gene expressions based on their correlations 
with the clinical tumor stage. Furthermore, as the three modules 
eigengenes showed significant correlations with the tumor stage (with 
p value ≤0.05), genes were ranked by their membership to each module 
or by their eigengene based connectivity (K) values. Furthermore, 
genes potentially involved in bladder cancer progression were screened 
by two methods the first is ranking genes within each significant 
module by their eigengene based connectivity (K) values. The second 
is assessing the trait-based gene significance measure correlating the 
gene expression profile to the tumor stage. Specifically, we used the 
80th percentile of each screening variable, which resulted in six genes 
inside the ninth module and five genes in each of the twelfth and the 
thirteenth modules (Tables 6-8). 

Discussion
Bladder carcinoma is the most common malignancy of the urinary 

tract. It is associated with high recurrence and mortality rates. The 

 

Figure 1: A scatter plot showing correlation between the gene connectivity (K 
value) of the ninth module genes on the X-axis and gene significance of the 
same module on the X-axis; showing a significantly high positive correlation 
(r=0.566, p=2. × 10−6).

Figure 2: A scatter plot showing correlation between the gene connectivity (K 
value) of the thirteenth module genes on the X-axis and gene significance of 
the same module on the X-axis; showing a significantly high positive correlation 
(r=0.607, p=1.54× 10−5). 

 

Figure 3: A scatter plot showing correlation between the gene connectivity (K 
value) of the twelfth module genes on the X-axis and gene significance of the 
same module on the X-axis; showing a significantly high positive correlation 
(r=0.373, p=1.9× 10−3).

9th cluster Biological Process p-value
1 Organelle organization 1.2E-5
2 mitochondrion organization 8.2E-5
3 regulation of cell death 2.4E-4
4 cellular component organization 4.9E-4
5 regulation of apoptosis 9.9E-4
6 negative regulation of cell death 1.0E-3
7 regulation of programmed cell death 1.1E-3
8 DNA replication 3.3E-3
9 negative regulation of apoptosis 5.7E-3
10 negative regulation of programmed cell death 6.0E-3
11 cellular metabolic process 9.7E-3
12 apoptosis 1.3E-2
13 cellular process 1.3E-2
14 programmed cell death 1.4E-2
15 DNA-dependent DNA replication 1.5E-2
16 negative regulation of cellular process 1.6E-2
17 regulation of cellular component organization 1.6E-2
18 chromosome organization 2.0E-2
19 protein complex assembly 2.4E-2
20 protein complex biogenesis 2.4E-2
21 DNA metabolic process 2.4E-2
22 positive regulation of biological process 2.7E-2
23 response to radiation 2.7E-2
24 cell death 2.8E-2
25 negative regulation of biological process 2.8E-2

26 cellular macromolecular complex subunit 
organization 2.9E-2

28 anti-apoptosis 2.9E-2
29 response to abiotic stimulus 3.1E-2
30 positive regulation of cellular process 3.2E-2
31 cellular nitrogen compound metabolic process 3.5E-2

32 nucleobase, nucleoside, nucleotide and nucleic acid 
metabolic process 3.6E-2

33 actin cytoskeleton organization 3.7E-2
Enriched molecular function

1 protein binding 1.1E-3
2 ribonucleotide binding 8.8E-3
3 purine ribonucleotide binding 8.8E-3
4 purine nucleotide binding 1.2E-2

5 transferase activity, transferring phosphorus-
containing groups 2.8E-2

Table 2: Enriched GO terms in the ninth module.
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Pathway 
number Pathway Count Genes P- value

KEGG 
pathway 

hsa05212
Pancreatic cancer 3

BCL2-like 1 , v-Ki-ras2 Kirsten 
rat sarcoma viral oncogene 

homolog , v-ral simian 
leukemia viral oncogene 
homolog A (ras related) 

4.1E-2

KEGG 
pathway 

hsa04662

B cell receptor 
signaling pathway 3

glycogen synthase kinase 
3 beta , protein tyrosine 

phosphatase, non-receptor 
type 6 , v-Ki-ras2 Kirsten 

rat sarcoma viral oncogene 
homolog 

4.4E-2

PANTHER 
pathway 
P04393

Ras Pathway 3

glycogen synthase kinase 
3 beta , v-Ki-ras2 Kirsten 

rat sarcoma viral oncogene 
homolog , v-ral simian 

leukemia viral oncogene 
homolog A

3.7E-2

Table 3: Enriched pathways in the ninth module.

Twelfth 
Cluster Biological Process p-value

1 regulation of mitotic cell cycle 3.4E-4
2  cell cycle checkpoint 6.6E-4
3 DNA recombination 8.0E-4
5 regulation of cell cycle 2.0E-3
6 nuclear mRNA splicing, via spliceosome 3.2E-3

7 RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile 3.2E-3

8 RNA splicing, via transesterification reactions 3.2E-3
9 cell cycle 3.3E-3
10 response to DNA damage stimulus 3.6E-3
11 chromosome segregation 4.1E-3
12 RNA splicing 5.4E-3
15 mRNA processing 8.9E-3
17 regulation of cell cycle process 1.1E-2
18 mRNA metabolic process 1.6E-2
20 regulation of nuclear division 2.1E-2
21 regulation of mitosis 2.1E-2
22 cellular response to stress 2.5E-2
23 DNA repair 2.6E-2
24 ribonucleoprotein complex assembly 3.1E-2
25 cellular macromolecular complex assembly 3.8E-2

Molecular Function
1 protein N-terminus binding 3.3E-2
2 purine ribonucleotide binding 4.3E-2
3 ribonucleotide binding 4.3E-2

Table 4: Enriched GO terms in the twelfth module.

Thirteenth cluster Biological Process p-value
1 establishment of localization in cell 2.4E-2
2 cellular localization 3.4E-2
3 defense response to virus 3.9E-2
4 regulation of cell communication 4.9E-2

INTERPRO WD40/YVTN repeat-like 2.0E-2

Table 5: Enriched GO terms in the thirteenth module.

Gene 
Symbol Gene Chr ENSEMBL ID Entrez 

ID GS Connec-
tivity

VPS13D
vacuolar pro-
tein sorting 13 

homolog D
1p36.22 ENSG00000048707 55187 0.540 0.847

ZZEF1
zinc finger, ZZ-
type with EF-

hand domain 1
17p13.2 ENSG00000074755 23140 0.620 0.671

purA
purine-rich ele-
ment binding 

protein A
5q31 ENSG00000185129 5813 0.869 0.793

UBE2I
ubiquitin-conju-
gating enzyme 

E2I
16p13.3 ENSG00000103275 7329 0.789 0.772

DCAF8 WD repeat do-
main 42A

1q22-
q23 ENSG00000132716 50717 0.634 0.841

MEIS3P1
Meis homeo-
box 3 pseudo-

gene 1
17p12 ENSG00000179277 4213 0.716 0.771

Table 6: Gene screening strategy revealed candidate cancer driver genes in the 
ninth module.

Gene 
Symbol Gene Chr ENSEMBL ID Entrez 

ID GS Connec-
tivity

LR-
RC37A2

leucine rich 
repeat con-
taining 37, 
member A2

17q21.32 ENSG00000184525 474170 0.845 0.683584

CYP3A5

cytochrome 
P450, family 
3, subfamily 
A, polypep-

tide 5

7q21.1 ENSG00000106258 1577 0.717 0.713264

WDFY3

WD repeat 
and FYVE 

domain con-
taining 3

4q21.23 ENSG00000163625 23001 0.822 0.648671

upf3a

UPF3 
regulator of 
nonsense 
transcripts 
homolog A

13q34 ENSG00000169062 65110 0.842 0.585826

 ATP2A2 

ATPase, 
Ca++ trans-
porting, car-
diac muscle, 
slow twitch2

12q23-
q24.1 ENSG00000174437 488 0.753 0.525031

Table 7: Gene screening strategy revealed candidate cancer driver genes in the 
thirteenth module. 

Gene 
symbol Gene Chr ENSEMBL ID Entrez 

ID GS Connec-
tivity

SRPK2 SFRS protein 
kinase 2

7q22-
q31.1 ENSG00000135250 6733 0.5940 0.6969

POLR2A

polymerase 
(RNA) II (DNA 

directed) 
polypeptide A, 

220kDa

17p13.1 ENSG00000181222 5430 0.6275 0.6258

BCAP31
B-cell recep-

tor-associated 
protein 31

Xq28 ENSG00000185825 10134 0.6151 0.6169

TRAK1
trafficking pro-
tein, kinesin 

binding 1

3p25.3-
p24.1 ENSG00000182606 22906 0.4602 0.6281

BRD2 bromodomain 
containing 2 6p21.3 ENSG00000204256 6046 0.5224 0.8517

Table 8: Gene screening strategy revealed candidate cancer driver genes in the 
twelfth module.

basis for bladder cancer development and progression is complex and 
involves genetic abnormalities, therefore; development of accurate 
surveillance tests to evaluate disease aggressiveness is a major clinical 
need Frantzi et al., [26]. Network analysis has been emerged as an 
attractive approach to decipher the occurrence and progression of 
complex diseases as it provides means to bridge the gap from individual 
genes to systems biology Zeng et al., [27]. Weighted gene coexpression 
network measures correlations among all the gene pairs and extracts 
modules based on the density of gene connections Liu et al., [28]. 
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Using this approach, demonstrated that the co-expression modules for 
Hepatitis B virus/Hepatitis C virus -induced hepatocellular carcinoma 
revealed distinct progression patterns from hepatitis infection to 
hepatocellular carcinoma He et al., [29]. Therefore, the current study 
aimed to apply WGCNA for exploring the significant coexpressed 
modules, genes and the functionally enriched pathways involved in 
progression of bladder carcinoma from the noninvasive to the invasive 
phenotype. Several gene co-expression modules in bladder cancer were 
explored in this study. These modules are clusters of highly correlated 
genes; this high correlation could be a result of transcriptional co-
activation, or the co-regulation of mRNA stability, resulting in a 
complex genetic network of closely related genes coordinately acting 
to achieve a specific biological function Zhang et al., [16]. Among 
these co-expressed modules, 3 physiologically relevant or significant 
modules were detected, as their module eigengenes are found to be 
highly correlated with the tumor stage. Furthermore a gene screening 
strategy was applied for detecting the genetic drivers responsible for 
the invasiveness of bladder carcinoma, composed of two criteria: 
the first is the high association with the clinical tumor stage, i.e., 
high values of gene significance and the second is the value of k, i.e., 
membership in a tumor stage-related module. In this context, the 
current study demonstrated that most of the highly connected genes of 
a module have higher gene significance relationships to the malignant 
phenotype. Many of the identified genes by this screening method have 
been previously suggested as associated with tumorigenesis and cancer 
prognosis. For example, PURA gene encodes a single-stranded DNA-
binding protein which binds preferentially to the purine-rich element at 
origins of replication and in gene flanking regions. Thus, it is implicated 
in the control of both DNA replication and transcription. Deletion of 
this gene has been associated with myelodysplastic syndrome and acute 
myelogenous leukemia Lezon-Geyda et al., [30]. Also, it was found 
to be upregulated in HCV-related hepatocarcinogenesis De Giorgi 
et al., [31]. Well in line, SRPK2 gene product belongs to a family of 
cell cycle regulated protein kinases which phosphorylate Serine/
Arginine (SR) domain-containing proteins in nuclear speckles and 
mediate the pre-mRNA splicing. Of note, reported that SRPK2 gene 
was over-expresssed in lung adenocarcinoma and was associated 
with extensive stages which may be attributed to disruption of the 
splicing machinery Gout et al., [32]. Likewise, TRAK1 gene, encodes 
trafficking kinesin-binding protein 1, has been recently identified as an 
emerging novel cancer biomarker. An et al., [33] found that its elevated 
expression is correlated with poor prognosis in colorectal cancer 
patients. Noteworthy, BRD2 gene, encodes a transcriptional regulator 
belonging to the BET (the bromodomain and extra-terminal domain-
containing proteins), is characterized by tandem bromodomains that 
interact with acetylated histones and influence gene expression, cell-
cycle regulation, and development Belkina et al., [34]. In addition, 
BET proteins are associated with chromatin throughout mitosis, and 
thus facilitate rapid transcriptional reactivation of critical genes after 
mitosis. Recent studies showed that BET inhibitors inhibit growth in 
a range of hematopoietic malignant cell lines as well as prostate cancer 
Wyce et al., [35]. Concomitantly, UPF3 gene products are trans-acting 
factors of the nonsense-mediated mRNA decay pathway which is a 
surveillance mechanism that degrades transcripts containing nonsense 
mutations, preventing the translation of possibly harmful truncated 
proteins Chan et al., [36]. It has been reported that this pathway may 
have a role in hereditary gastric cancer by down regulation of the 
tumour suppressor E-cadherin transcripts in gastric cells Karam et al., 
[37]. Moreover, GO enrichement analysis of the significant coexpressed 
modules revealed that these modules are enriched with genes belonging 
to distinct cellular compartments. This finding is in agreement with 
previous findings by Wang et al., [38] who reported that proteins within 

the same compartment tend to be more highly connected. Pathway 
enrichment analysis of the co-expressed modules revealed activation 
of Pancreatic cancer pathway, B cell receptor signaling pathway and 
Ras Pathway. Conceivably, pancreatic cancer pathway, which involves 
apoptosis regulating genes, is implicated in many types of cancer and 
Ghosh et al., [39] suggested its major contribution in bladder cancer. 
Well in line, Arum et al., [40] have reported aberrant activation of B 
cell receptor signaling pathway in rat bladder carcinoma. Moreover, 
activated B cell receptor signaling pathway has been also linked to other 
types of human cancer as chronic lymphocytic leukemia Oppezzo et 
al., [41]. Concurring with the findings of this study, Ras signaling has 
been found to be activated in human bladder cancer Boulalas et al., 
[42], where its mutation cooperates with β-catenin activation to drive 
bladder tumourigenesis Ahmad et al., [43]. Altered Ras signaling was 
also cited as a contributing factor to various tumoral and nontumoral 
pathologies Fernández-Medarde et al., [44]. In conclusion, a gene 
coexpression network was constructed from DNA microarray gene 
expression data for human bladder cancer and reported significant 
genetic drivers and altered signaling pathways that might have a role 
in cancer initiation and progression. These finding shed light into the 
molecular mechanisms of bladder cancer, which is of great benefit for 
defining the driving molecules and pathways appropriate for novel-
targeted therapies. However, these results need further experimental 
validation and can be considered as a starting point for research studies 
exploring the magnitude of the involvement of these candidate genes in 
progression of this type of cancer.
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