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Abstract
Immune cell infiltration into pancreatic islets (termed insulitis) has

been linked with destruction of pancreatic β-cells and thus with onset
of diabetes mellitus. Recently published guidelines for reporting
insulitis may generate some deliberation on pancreatic islet
inflammation and a re-examination of the role that immune cells play
in the process of β-cell death and dysfunction. Herein, we offer the
viewpoint that a mild insulitis (e.g., 2-fold increase in leukocytic
infiltration) would be sufficient to produce an adequate supply of
inflammatory molecules capable of initiating and maintaining an
inflammatory state within the pancreatic islets.

Recent guidelines recommend that a >2-fold increase in CD45+
immune cell infiltrates into islets be the minimum threshold for
reporting insulitis [1]. While standardization of the criteria for
reporting insulitis is an excellent idea, these new parameters may raise
questions about whether a mild leukocyte infiltration (e.g., 2-fold
increase) into the pancreas and targeted towards islets is responsible
for reductions in β-cell mass and function. Since pro-inflammatory
cytokines are a common link to both T1DM and T2DM [2-4], we
propose herein that the secreted factors from the leukocytic infiltrates,
in combination with the activity of the islet resident immune cells,
ultimately determine the rate of decline of β-cell mass and function.
Therefore, in our opinion, a 2-fold increase in insulitis would be
sufficient to promote losses in functional β-cell mass, if the immune
cells present near or within islets were in a pro-inflammatory state.
Thus, the quantity and array of pro- inflammatory mediators
produced by the immune cell population within the islets will almost
certainly produce alterations in insulin secretion, changes in β-cell
mass, and the development of diabetes while the total immune cell
numbers per se may or may not offer any specific indication of disease
progression.

Based on the variable nature of insulitis, several hypothetical
models can be envisioned to correlate islet immune cell infiltration
with pathophysiological outcomes. We envision four scenarios:

Large Quantitative Insulitis with High Inflammatory Activity: Many
immune cells detected within pancreatic islets, each producing
moderate to high amounts of inflammatory mediators. This is most
likely the situation observed in the female non-obese diabetic (NOD)
mouse model.

Large Quantitative Insulitis with Moderate Inflammatory Activity:
Many immune cells detected within pancreatic islets but producing
only low to moderate amounts of inflammatory mediators. Male
(NOD) mice, which develop diabetes at a reduced frequency relative to
their female counterparts, plausibly represent this situation.

Small Quantitative Insulitis with High Inflammatory Activity:
Fewer numbers of leukocytes detected within islets (e.g., >2-fold) but

capable of secreting moderate to high amounts of inflammatory
mediators, perhaps producing a more sudden onset of diabetes. This
scenario may explain the reported cases of fulminant diabetes, where
destruction of β-cells and ensuing diabetes is rapid [5].

Small Quantitative Insulitis with moderate inflammatory Activity:
Fewer leukocytes with sustained, but moderate production of
inflammatory mediators. This scenario may contribute to poor
disposition index initially, but may also be adequate to produce overt
diabetes over a period of many years.

We note that combinations of these possibilities may exist, such
that any individual islet within the pancreas of one subject may reflect
different levels of infiltration and thus the inflammatory state of a
given islet may be highly variable. In addition, a variance in the sum of
inflammatory mediators secreted by the discrete populations of
leukocytes present within the islet is almost certainly a contributor to
inflammation-associated pathologies targeting islet β-cells. This model
fits with the asymmetry of β-cell destruction observed within islets of
the same pancreas [6] as well as with the increasing heterogeneity
observed in diabetes [7].

Neutrophils and macrophages, both capable of producing IL-1β, are
also both present in pancreas prior to and during diabetes [8-11].
Pancreatic β-cells express the IL-1RI at very high levels, some of the
highest seen in any tissue, thus making them exquisitely sensitive to
IL-1β [12-14]. Consequently, even at submaximal levels of IL-1RI
activation, β-cells activate inflammatory pathways, including NF-κB,
that initially re-program the cells at the transcriptional and metabolic
levels followed by an eventual decline in their viability [15]. Due to the
high expression of the IL-1RI, the pancreatic β-cell is sensitive to
picomolar amounts of IL-1β [13] and activation of this signaling
mechanism is responsible for the expression of immunomodulatory
chemokine genes [13,16,17]. A sustained release of chemokines from
β-cells recruits immune cells into islets.

Experimental validation of the impact of chemokine synthesis and
secretion directly from pancreatic β-cells is apparent in mice with
transgenic production of CCL2 driven by the insulin promoter [18,19].
Interestingly, the insulitis produced in these mouse models of CCL2
overexpression can be either non-destructive [19], associated with
diabetes onset [18], or capable of reversing diabetes [20], depending
on genetic background (and likely additional factors). If one
chemokine, such as CCL2 in this case, can produce distinct outcomes
associated with insulitis, it seems likely that insulitis per se is only an
indirect readout of islet inflammation.

With the multitude of chemokines produced by β-cells after
exposure to cytokines [16], the recruitment of discrete leukocyte
populations and the crosstalk of these immune cells within the islets
creates intriguing possibilities for dynamic regulation of β-cell
function and quantity. Indeed, the heterogeneous clinical phenotypes
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of T1DM and T2DM patients may be better explained by the potential
variance in inflammatory mediators produced by immune cells
infiltrating the islets (i.e., an inflammatory threshold) rather than by
the total amount of insulitis (i.e., how many immune cells are present
within a group of islets). The latter is easier to quantify, offers
important information, and therefore has been the standard approach.

The increasing degree of heterogeneity emerging across the major
forms of diabetes is underscored by the diverse subgroups starting to
be characterized [7]. As mentioned above, if an inflammatory
threshold for islet inflammation could be established, new ideas and
avenues for research leading to novel therapeutic options targeting the
various forms of diabetes could emerge. As a starting point, and for the
purposes of this perspective, there are some commonalities between
both major forms of diabetes that will be considered:

1) There is measurable insulitis in both T1DM and T2DM [4,21].

2) This insulitis is variable between individuals and even between
islets of the same individual ([1] and references therein).

3) Cytokines and chemokines are made and secreted from
pancreatic β-cells [16,22-25].

We propose that the sum of the secreted products (cytokines,
chemokines, inflammatory lipids such as prostaglandins, etc.) from the
leukocyte population within islets, as well as directly from β-cells, are
quantitatively more important for the losses in functional β-cell mass
during progression to diabetes than the total given number of immune
cells within a particular islet. As an example of the importance of
secreted products, we note that diabetes is a disease that arises due to
inflammation-associated dysfunction in multiple tissues, including
adipocytes, liver, muscle, and pancreatic β-cells. TNF-α production
increases during obesity and leads to both hepatic [26] and skeletal
muscle insulin resistance [27]. TNF-α also has detrimental effects on
pancreatic β-cells [28] yet anti-TNF-α therapy has had limited success
when applied to diabetes [29].

Similarly, anti-IL-1 therapy in individuals with impaired glucose
tolerance or overt diabetes reveals an improvement in β-cell secretory
function, but does not appear to alleviate peripheral insulin resistance
[30,31]. While improving β-cell function initially seems positive, it
could lead to faster β-cell “burnout” (i.e., increased turnover due to
metabolic overload). Moreover, additional cytokines (e.g., IFN-γ)
often potentiate the TNF-α and IL-1β-mediated losses in both insulin
secretion and cytotoxicity [28, 32-34]. We therefore speculate that a
failure of individual immunomodulatory approaches to treat diabetes
is likely due to the vast array of immune cells capable of infiltrating
islets [10] coupled with the multiplicity of inflammatory mediators
secreted by such cells [35]. This combination of inflammatory events
overwhelms any single intervention strategy and helps to explain why
a 2-fold (or greater) increase in CD45+ infiltrates into islets can lead to
pathophysiological outcomes.

As proof of concept, higher rates of glycolytic metabolism within an
activated macrophage correlate with increased production of IL-1β
[36], meaning that the same number of macrophages, if exposed to an
activating signal (e.g. lipopolysaccharide, saturated fats, etc.), will be
secreting more cytokines. Since there are enough resident
macrophages present within islets to produce inflammatory amounts
of IL-1β [32], it is plausible that very few additional infiltrating
leukocytes are needed to initiate or maintain islet inflammation.
Furthermore, a slow but quantitatively small influx of immune cells
maintained by constant or pulsatile chemokine release from β-cells

may sustain a feed-forward auto-inflammatory response that drives
chronic islet inflammation. At the same time, gradually rising blood
glucose concentrations due to peripheral insulin resistance, coupled
with production of cytokines (and chemokines) directly from the β-
cell, would continue to be contributing factors to the islet
inflammation. Thus, enhanced secretion of IL-1β from highly
glycolytic macrophages, coupled with glucose-induced production of
IL-1β within pancreatic β-cells [37], together with the large abundance
of IL-1RI on the β-cell surface, exposes a situation sufficient to incite
islet inflammation with a quantitatively small amount of insulitis.

Finally, the timing of leukocytic infiltration into islets is almost
certainly critical to any inflammation-associated decrease in functional
β-cell mass. If β-cells are secreting soluble factors, such as chemokines,
that promote leukocytic infiltration, then insulitis prior to diabetes
onset is probably driven by a slow, but steady, infiltration into islets as
a reaction to the systemic availability of chemokines (released from β-
cells). Prior to diabetes, there are numerous β-cells present, which are
capable of the synthesis and secretion of such chemoattractant
molecules. Release of many different chemokines into circulation
could also prime multiple leukocyte populations for inflammatory
actions, in addition to promoting their migration to islets. Conversely,
once diabetes presents clinically, indicating that β-cell numbers are
sufficiently diminished (e.g., 60-70% reduction) to allow blood glucose
levels to rise, insulitis should, in theory, start to decline. If true, this
would explain why the pancreatic samples from rodents and humans
analyzed thus far display little to no insulitis once the insulin-positive
β-cells are eliminated [38,39]. On the other hand, infiltrating immune
cells that are largely inert or even anti-inflammatory would not be
detrimental and there is the possibility that a population of leukocytes
exist which may actually promote β-cell growth, proliferation, or
regeneration [40]. How much of a back and forth between pro- and
anti-inflammatory responses actually goes on within the islets is
unclear at the present time.

In summary, the immunopathology contributions to insulitis have
thus far been carried out mostly on tissues of individuals already
diagnosed with diabetes. While this data has been extremely valuable,
the question of what happens prior to clinical presentation of diabetes
has been difficult to address. Nevertheless, with the ongoing
development of tools that allow for non-invasive approaches to
quantify β cell death prior to diabetes onset [41], coupled with newly
emerging imaging procedures [42], fresh approaches and insights will
soon become a reality. The capability of addressing the relative
contributions of total numbers of immune cells versus how active
those immune cells are in terms of producing pro- (and
anti-)inflammatory molecules will provide a greater understanding of
immune-cell mediated destruction of β-cells. Understanding the more
complicated molecular nuances associated with islet inflammation
may also help to explain the variable nature of clinical presentation of
T1DM and T2DM and hopefully provide new therapeutic approaches.
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