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Introduction
The Acetohydroxyacid synthase (EC 2.2.1.6) or Acetolactate 

synthase (ALS), a plastid enzyme [1] which catalyzes the first reaction in 
the biosynthesis of branched-chain essential amino acids - isoleucine, 
leucine and valine [2-4] is the vital target of multiple herbicides. 
Acetohydroxyacid synthase (AHAS) belongs to a family of thiamine 
diphosphate (TPP) dependent enzymes present in plants, algae, fungi, 
and bacteria [5]. The ion cofactor is typically Mg2+ [6] which anchors 
TPP to AHAS. Flavin adenine dinucleotide (FAD) molecule, a third 
cofactor is also required by AHAS. Commercially available herbicides 
that inhibit AHAS include sulfonylureas (SU), imidazolinones (IMI), 
triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB) [also 
known as pyrimidinylsalicylic acids or pyrimidinyloxybenzoic acids] 
and sulfonyl-aminocarbonyl-triazolinones (SCT) [7,8]. Out of these 
the sulfonylureas and imidazolinones are the most significant, with the 
sulfonylureas being the leading group on an active ingredient basis. 
Due to amino acid starvation, AHAS inhibition leads to plant death 
[9]. The mammals lack the pathway for branched-chain amino acids 
biosynthesis and thus the ALS-inhibiting herbicides are thought to be 
non-toxic to them [10]. They are highly selective to plants and have 
a broad range of weed control activity [11-13]. The most common 
naturally occurring mutations are at amino acids Ala122 [14,15], Pro197 
[16-18], Trp574 [14,16,19] and Ser653 [15,20]. Thus understanding 
its structural details would be a great revolution for engineering new 
herbicides, developing resistant crops and antimicrobial drugs.

Materials and Methods
Homology modelling and structural analysis: Oryza sativa 

AHAS (OsAHAS) sequence was retrieved by using NCBI database 
(http://www.ncbi.nlm.nih.gov). By searching the PDB of known 
protein structures, the homology modelling was performed with target 
sequence as the query [21]. The target sequence was searched for similar 
sequence using the BLAST (Basic Local Alignment Search Tool) [22] 
against Protein Database (http://www.rcsb.org). The BLAST results 
yielded X-ray structure of AHAS from Arabidopsis thaliana (AtAHAS) 
with 76% similarity to our target protein (OsAHAS). Using ClustalW 

[23], all the sequences of AHAS were aligned to find out the similarity 
present among the sequences. 2D and 3D structure alignment was 
carried out using ClustalW [24] and MATRAS 1.2 [25] respectively. 
The sequences of the AHAS were further analysed for the presence of 
specific AHAS domains and motifs through motifscan (myhits.isb-
sib.ch/cgi-bin/motif scan) and scan prosite (Prosite.expasy.nlm.nih.
gov). Analysis of conserved motifs was done by MEME version 3.5.7 
[26] using minimum and maximum motif width of 20 and 50 residues
respectively and maximum number of 7 motifs, keeping rest of the
considerations at default. Via Modeller 9.12 by comparative modelling
of protein structure prediction, the theoretical structure of OsAHAS
was generated.

The secondary structural features of the AHAS sequences of 
template (AtAHAS) and target (OsAHAS) were calculated using 
SOPMA. The physico-chemical properties of AHAS sequences like 
molecular weight, theoretical isoelectric point (pI), number of amino 
acids, total number of positive and negative residues, aliphatic index 
[27], grand average hydropathy (GRAVY) [28] extinction coefficient 
[29] and instability index [30] were evaluated by using Expasy’s
ProtParam server (http://us.expasy.org/tools/protparam.html) [31].
Using String software (http://string-db.org/) the interacting partners
of AHAS and its co-expressed genes were predicted [32].

Model validation of OsAHAS: The model was evaluated on the 
basis of geometrical and stereo-chemical constraints using RAMPAGE 
server (http://mordred.bioc.cam.ac.uk/-rapper/rampage.php), 
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PROCHECK [33], Verify 3D [34] and ProSA-Web [35]. The model 
with the least number of residues in the disallowed region was selected 
for the further studies. The RMSD value between the template and 
target was calculated using MOE [36]. The best model structure was 
then compared with the template protein by superimposition using 
SuperPose Version 1.0 [37].

Phylogenetic analysis: Phylogenetic analysis of the sequences was 
done by Molecular Evolutionary Genetic Analysis (MEGA) software 
Version 4.1 [38] by using UPGMA method. Each node was tested using 
the bootstrap approach by taking 5,000 replicates.

Results and Discussion
Homology modelling and structural analysis: The Oryza sativa 

AHAS (OsAHAS) protein sequence consist of 644 amino acid residues. 
The query sequence from OsAHAS protein was selected for homology 
based searching of the template structure by the BLAST program 
against the structural database of PDB (http://www.rcsb.org) [30,31]. 
Sequences that showed maximum identity with high score and low 
e-value were aligned and the alignment was used to build a 3D model 
for OsAHAS. According to the result of BLAST search against PDB 
[39], three reference proteins (PDB: 3E9Y, 1YBH, 1NOH) represented 
a high level of sequence identity that is 76%, 75% and 41%, respectively. 
The homology search of AHAS revealed 76% sequence identity to 
Arabidopsis thaliana (PDB ID: 3E9Y) with an e-value of 0.0 and was 
selected for comparative modelling. Multiple sequence alignment 
of the AHAS sequences highlighted the sequence conservation of 
amino acid residues among different species (Supplementary File 
S1). Structurally conserved regions (SCRs) between model OsAHAS 
(target) and homologous proteins (PDB: 3E9Y, 1YBH, 1NOH) were 
determined by multiple sequence alignment (Figure 1). Structurally 
conserved regions (SCRs) between model OsAHAS and template 
(PDB: 3E9Y) were also determined (Figure 2). An extensive search 

of the motifs and their positions was done by MEME software which 
identified several conserved motifs in the protein sequences of AHAS 
(Figure 3). Multilevel consensus sequences for the MEME defined 
motifs along with their e-values are shown in Figure 4.

The initial model of OsAHAS was built by homology modelling 
methods using Modeller 9.12. software [40]. In this study, predicted 3D 
structure of OsAHAS was generated and the N-terminal and C-terminal 
domains were identified (Figure 5). Each subunit consists of three 
domains - α, β, and γ, plus a C-terminal tail. In Arabidopsis thaliana, 
each subunit consists of three domains, α (residues 86-280), β (281-
451), and γ (463-639), plus a C-terminal tail (646-668) that loops over 
the active site [41]. The secondary structural features of the Arabidopsis 
thaliana and OsAHAS sequences were calculated using SOPMA [42] 
with default parameters (Table 1). The AHAS protein is composed of 
31.52% α-helices, 22.52% extended strands and 9.94% β-turn in rice. 
In case of Arabidopsis thaliana, the AHAS protein is composed of 
33.22% α-helices, 23.63% extended strands and 9.76% β-turn. Thus 
the α-helices and the β-sheets cover comparatively larger portions of 
the rice and Arabidopsis thaliana AHAS enzymes. Similar results have 
been observed by McCourt et al. [41] in Arabidopsis thaliana. Several 
physico-chemical properties of AHAS sequences were calculated by 
using Expasy’s ProtParam server [31]. The results are shown in Table 
2. In developing buffer system for protein purification, the computed 
isoelectric point (pI) will be useful. The very high aliphatic index of the 
AHAS enzyme sequences indicate that these enzymes may be stable for 
a wide temperature range. The high extinction coefficient of enzyme in 
rice indicates the presence of more Cys, Trp and Tyr. The instability 
index value for the AHAS proteins were found to be ranging from 36.51 
to 41.61 indicating the stable and instable nature of the Arabidopsis 
thaliana and rice AHAS protein respectively.

Using String software, the AHAS interacting partners as well as 
its coexpression genes were predicted in both rice and Arabidopsis 

Figure 1: Comparative sequence alignment of OsAHAS with other homologues.



Citation: Yaqoob U, Kaul T, Nawchoo IA (2016) In-Silico Analysis, Structural Modelling and Phylogenetic Analysis of Acetohydroxyacid Synthase 
Gene of Oryza sativa. Med Aromat Plants (Los Angel) 5: 272. doi: 10.4172/2167-0412.1000272

Page 3 of 8

Volume 5 • Issue 6 • 1000272
Med Aromat Plants (Los Angel), an open access journal
ISSN: 2167-0412

Figure 2: Comparative sequence alignment of OsAHAS (target) and AtAHAS (template) using superpose.

Figure 3: Block diagram of multilevel consensus sequences for the MEME defined motifs of AHAS proteins: Seven motifs were obtained by MEME software. 
Different motifs are indicated by different filled boxes with numbers 1 to 7.
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Figure 4: Multilevel consensus sequences for the MEME defined motifs and their e values.

Figure 5: Cartoon structure of OsAHAS.
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Figure 6: AHAS interacting partners as well as its coexpression genes predicted by STRING. (A) Rice (B) Arabidopsis thaliana (C) The key to the putative 
interacting partners for OsAHAS gene is listed. (D) The key to the putative interacting partners of AtAHAS gene is listed.

Figure 7: The plot for OsAHAS designed by Rampage.
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thaliana (Figure 6). Some proteins such as ketol-acid reductoisomerase, 
dihydroxyacid dehydratase, 2-isopropylmalate synthase and 
3-isopropylmalate dehydrogenase are found to be common interacting 
partners of AHAS in both rice and Arabidopsis thaliana. These proteins 
are involved in the BCAA synthesis pathway for the biosynthesis of 
amino acids which is conserved in prokaryotes, algae, fungi and plants.

Validation of OsAHAS structure: RAMPAGE server and 
PROCHECK generated model revealed that 81.6% residues are falling 
in the most favoured region, 11.7% residues in allowed region, and 
6.7% residues in outlier region of the Ramachandran plot (Figure 7). 
ProSA-Web analysis of the model revealed a Z-score value of target 
protein. The Z-score value of the target model OsAHAS (-9.55) is 
located within the space of proteins determined by NMR and X-ray 
crystallography. This Z-score value is close to the value of template 
3E9Y (-11.49) which suggested that the obtained model was reliable 
and very close to experimentally determined structures (Figure 8a). 
Verify3D showed a score greater than 0.2 in 86.02% of the residues 
that corresponded to the quality of the OsAHAS model that was 
acceptable and reliable. The value of RMSD indicates the degree to 
which the two three dimensional structures are similar. The lesser the 
value, the more similar the structures are. The Cα RMSD and backbone 
RSMD deviation for the OsAHAS model and the AtAHAS template 
were 1.03Å, and 1.10 Å, respectively and overall RMSD was 1.75 Å. 
Thus, the OsAHAS model generated by Modeller 9.12 was confirmed 
to be reliable and accurate. The superimposition of the template and 
the model structure is shown in Figure 8b. It shows that the helix and 
the sheet regions of the template and model structure superimposed 
in a better way and a large deviation can be observed mainly in loop 
regions. It is reported that the loop region is the main region where the 
accuracy of a model protein structure deviates from the templates [43].

Phylogenetic analysis: The phylogenetic analysis of AHAS across 
the selected organisms showed a delineation of AHAS into four clusters 
- fungi, algae, bacteria and plants with some variations. Phylogenetic 
tree results outline the development of AHAS in Arabidopsis thaliana, 
Aphanizomenon flos-aquae, Agaricus bisporus, Brachypodium 
distachyon, Bacillus cellulosilyticus, Bacillus thuringiensis, Clostridium 
botulinum, Chlamydomonas reinhardtii, Escherichia hermannii, 
E. coli, Galerina marginata, Microcystis aeruginosa, Oryza sativa, 
Oscillatoria nigro-viridis, Phaseolus vulgaris, Ricinus communis, Setaria 
italica, Sorghum bicolor, Solanum lycopersicum, Schizosaccharomyces 
pombe, Streptococcus ratti, Synechococcus elongatus, Streptomyces 
hygroscopicus, Vitis vinifera, Volvox carteri and Zea mays. Many of these 
exhibited orthologous and paralogous relations with each other (Figure 
9). The algae A. flos-aquae and O. nigro-viridis differs from others. 
Similarly, the bacteria C. botulinum differs from others. However, B. 
distachyon showed highest sequence similarity to OsAHAS. The results 
indicate that AHAS protein gene family is conserved and has evolved 
from bacteria and algae.

Conclusions
The homology model of OsAHAS protein was revealed using the 

structure of Arabidopsis thaliana AHAS (PDB ID: 3E9Y) as template. 
The resulting model structure was refined by PROCHECK, ProSA, 
RMSD and Verify3D that indicated the model structure is reliable with 
76% amino acid sequence identity with template. The multiple sequence 
alignment of these AHAS protein sequences from different organisms 
showed conserved regions at different stretches with homology in 
amino acid residues. Through motif analysis, it was revealed that 
conserved AHAS domain are found in all AHAS proteins suggesting 
its possible role in cellular and metabolic functions.

Figure 8: (A) Validation of OsAHAS by ProSA tool. The Z-score value OsAHAS (target) and AtAHAS (template) protein were determined by NMR (represented in dark 
blue colour) and X-ray (represented in light blue colour). The two black dots represent Z-score value of target and the template. (B) Superposition of OsAHAS (target) 
and AtAHAS template (PDBID: 3E9Y) shown in yellow and red colour respectively.
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Secondary structure element OsAHAS AtAHAS
Alpha helix 31.52% 33.22%

310 helix 0.00% 0.00%
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Extended strand 22.52% 23.63%

Beta turn 9.94% 9.76%
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Random coil 36.02% 33.39%
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Table 1: Details of the calculated secondary structure elements by SOPMA.

Properties OsAHAS AtAHAS

Molecular weight 69392.7 63739.1

Theoretical pI 6.48 5.47
Number of amino acids 644 584
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Aliphatic index 92.13 93.68
Grand average of 

hydropathicity (GRAVY) -0.027 -0.066

Extinction coefficients 
(M-1 cm-1) 64205 48735

Instability index 41.61 36.51

Table 2: Physiochemical, structural and sequence properties of the AHAS protein 
sequences.
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