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Abstract

The combined T-cell receptor α and δ locus, Tcra/Tcrd, encodes the TCRα and TCRδ chains of the αβ or γδ T-cell
receptors (TCRαβ and TCRγδ), respectively, which define the two distinct T-cell lineages, αβ and γδ T lymphocytes.
Like other antigen receptor loci, this locus must recombine its variable (V), diversity (D), and joining (J) gene
segments to generate a diverse range of TCR that allow vertebrates to respond to an unlimited number of antigens.
The Tcra/Tcrd germline transcription and subsequent V(D)J gene segment rearrangements are strictly regulated by
two distant transcriptional enhancers, Eα and Eδ, respectively, during thymocyte development. Once the Tcra locus
is productively rearranged, it is assumed Eα remains active for the transcription of the rearranged locus and the
expression of the functional TCRα chain in αβ T lymphocytes. However, our recent experiments have shown Eα is
significantly inhibited during the final stage of thymocyte development, concomitantly with the expression of the
rearranged Tcra locus, and remains inhibited in αβ T lymphocytes. These results imply the existence of an Eα-
independent mechanism to activate transcription of the rearranged Tcra locus in αβ T lymphocytes. Interestingly, Eα
is essential for the normal expression of the rearranged Tcrd locus in γδ T lymphocytes. In this review, the current
knowledge about the regulation of Tcra/Tcrd germline transcription and gene segment rearrangement during
thymocyte development and the possible mechanisms for transcription of the rearranged Tcra locus in mature αβ T
lymphocytes are discussed. The knowledge of the detailed mechanisms involved in the regulation of transcription at
the Tcra/Tcrd locus by distant enhancers is important to understand the cases in which deregulation this process
results in disease.
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Abbreviations:
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CTCCC-Binding Factor; D: Diversity; DN: Double Negative; DP:
Double Positive; Eα: Tcra Enhancer; Eδ: Tcrd Enhancer; eDP: Early
DP; ETP: Early T-cell Progenitor; HS: DNaseI Hypersensitivity Site;
IL-7R: Interleukin-7 Receptor; ISP: Immature Single Positive; J:
Joining; LCR: Locus Control Region; lDP: Late DP; Rag: Recombinase
Activating Gene; SP: Single Positive; T-ALL: T-cell Acute
Lymphoblastic Leukemia; TEAp; T Early α Promoter; TCR: T-cell
Receptor; TCRα: T-cell Receptor α; Tcra: T-cell Receptor α Gene;
TCRαβ: αβ T-cell Receptor; TCRβ: T-cell Receptor β chain; Tcrb: T-cell
Receptor β Gene; TCRδ: T-cell Receptor δ; Tcrd: T-cell Receptor δ
gene; TCRγ: T-cell Receptor γ; Tcrg: T-cell Receptor γ gene; TCRγδ: γδ
T-cell Receptor; TF: Transcription Factor; Traj: T-cell Receptor α J;
Trav: T-cell Receptor α V; Trdd: T-cell Receptor δ D; Trdj: T-cell
Receptor δ J; Trdv: T-cell Receptor δ V; V: Variable.

Temporal Control of TCR Gene Rearrangements
During thymic T-cell development (Figure 1), early T-cell

progenitors (ETP) arising from fetal liver or bone marrow enter to the
thymus, where they mature progressively through different stages that

can be distinguished based on the expression of the CD4 and CD8
surface markers: CD4-CD8- double-negative (DN) thymocytes,
immature single-positive (ISP) CD8+ thymocytes, CD4+CD8+ double-
positive (DP) thymocytes, and CD4+ or CD8+ single-positive (SP)
thymocytes [1]. Among the DN thymocyte population, four
subpopulations can be further distinguished based on the expression of
CD25 and CD44 surface markers: DN1 (CD44+CD25-), DN2
(CD44+CD25+), DN3 (CD44-CD25+), and DN4 (CD44-CD25-)
thymocytes. In addition, two DN3 subpopulations can be
distinguished based on the expression of CD27: DN3a (CD27low) and
DN3b (CD27high) thymocytes [2]. Furthermore, two DP thymocyte
populations can be distinguished based on the expression of CD71:
early DP (eDP) (CD71+) and late DP (lDP) (CD71-) thymocytes [3].
For αβ T-cell development, thymocytes transition from DN1 to SP
thymocytes by maturing successively through the following
populations: DN1, DN2, DN3a, DN3b, DN4, ISP, eDP, lDP, and SP
thymocytes; whereas for γδ T-cell development, thymocytes transit
only from DN1 to DN2 or DN3a before becoming mature cells [1].

The loci that encode for the TCR chains are composed of dispersed
variable (V), diversity (D), and joining (J) gene segments that are
rearranged during thymocyte development by a process known as
V(D)J recombination to generate a gene configuration capable of
expressing the functional receptors, TCRαβ or TCRγδ, on the cell
membrane [4,5]. The V(D)J recombination is completed in DN2 and
DN3a thymocytes at the Tcrg and Tcrd loci, in DN3a thymocytes at the
Tcrb locus, and in DP thymocytes at the Tcra locus [4].
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Figure 1: Temporal control of T-cell gene rearrangements and
thymocyte development. The thymus is represented as a light pink
rectangle. Schematic representation of thymocyte maturation
depicting the various developmental stages and the TCR gene
rearrangements is shown. β-, γδ-, and positive selection, which
depend on the expression of pre-TCR, TCRγδ or TCRαβ,
respectively, are indicated in red. T cell maturation is indicated by
the transition from yellow to red (maturation to γδ T lymphocytes)
or green (maturation to αβ T lymphocytes).

A successful Tcrg VJ and Tcrd VDJ recombination permits the
expression of a TCRγδ, which drives cell differentiation to γδ T
lymphocytes in a process known as γδ-selection [4]. A successful Tcrb
VDJ recombination in DN3a thymocytes permits the expression of a
functional TCRβ chain that assembles with the invariant pre-Tα chain
to form a pre-TCR, which drives cell differentiation to DP thymocytes
in a process known as β-selection [1,4]. A successful Tcra VJ
recombination in eDP and lDP thymocytes permits the expression of a
TCRα chain that associates with the previously expressed TCRβ chain
to form a TCRαβ [1,4]. The antigen affinity of the TCRαβ in lDP
thymocytes will determine the positive selection of a few DP
thymocytes that will survive and differentiate into CD4+ or CD8+ SP
thymocytes [1]. SP thymocytes migrate to the periphery as mature αβ
T lymphocytes [1].

In addition to the essential roles for pre-TCR- and TCR-mediated
signaling on thymocyte development, signals mediated by Notch and
interleukin-7 receptor (IL-7R) are required for T-cell commitment,
survival, and differentiation [6-10]. Each of these signals has a pivotal
role in controlling the process of V(D)J recombination at the different
TCR loci [1]. In DN2/3a thymocytes, signaling mediated by IL-7R is
essential for the Tcrg germline transcription and VJ recombination, as
well as for γδ T lymphocyte development [11], whereas signaling
mediated by Notch is essential for Tcrb gene VDJ recombination and
αβ T lymphocyte development [12]. During β-selection, pre-TCR-
mediated signaling triggers the Tcra germline transcription and VJ
recombination and the development of αβ T lymphocytes, and inhibits
the transcription of the Tcrg and Tcrd loci [13-15]. The molecular
targets of those signaling pathways are genomic regulatory sequences
capable of controlling chromatin structure of the loci, such as the

enhancers associated with the Tcrg, Tcrd, and Tcra loci, and the
silencer and promoters associated with the Tcrg and Tcrb loci
[11,13,14,16-25].

Regulatory Cis-elements Present at the Tcra/Tcrd Locus
The Tcra and Tcrd genes are linked in a single genetic locus, Tcra/

Tcrd, which spans 1.8-Mb with a conserved genomic structure and a
location between the olfactory receptor genes and the Dad1 gene on
chromosome 14 in humans and mice [4,5,26]. The 1.7-Mb 5´-locus
region includes 132 Tcra and Tcrd V (Trav and Trdv) gene segments,
while the remaining 0.1-Mb 3´-locus region contains the Tcrd D and J
(Trdd and Trdj) gene segments, the Tcrd constant region (Cδ), the
Trdv5 gene segment, the Tcra J (Traj) gene segments, and the Tcra
constant region (Cα) (Figure 2). Among the Trav/Trdv gene segments,
some only rearrange with the Trdd gene segments, some only with the
Traj gene segments, and some can rearrange with either Trdd or Traj
gene segments, contributing to both the TCRδ and TCRα chain
repertoires [5]. The nested organization of these genes prevents the
occurrence of the Tcrd and Tcra gene segment rearrangements on the
same chromosome, because the Tcra VJ recombination results in the
deletion of the Tcrd locus in an extra-chromosomal circle (Figure 2)
[4].

Each Tcra and Tcrd locus is equipped with one transcriptional
enhancer, Eα and Eδ, located at the 3´-end of Cα and at the 5´-end of
Cδ, respectively, and the numerous promoters that associated with the
V, D, and J gene segments along the locus, including the T early α
promoter, TEAp, associated with the most 5´-Traj gene segment,
Traj61 (Figure 2) [4]. TEAp orchestrates different chromatin loops at
the 3´-end of the locus during T-cell development [5,27,28] (see
below). Eα is part of a previously described locus control region (LCR)
located between Cα and the ubiquitously expressed Dad1 gene [29].
The Tcra LCR spans approximately 7.4-kb, with seven DNase I-
hypersensitivity sites (HS): HS1, HS1´, HS2, HS3, HS4, HS5, and HS6
[30]. The most 5´-1.4-kb LCR fragment contains HS1 and HS1´
[30,31]. HS1 contains Eα whereas the 3´-contiguous HS1´ contains
two binding sites for the CTCCC-binding factor (CTCF) involved in
the Tcra/Tcrd locus chromatin organization and Eα function during
thymocyte development [27,30-33]. Eα is responsible for activating the
endogenous locus germline transcription and the Tcra VJ
recombination, as well as the generation of αβ T lymphocytes [34]. Eα
can also activate transcription and the V(D)J recombination of
transgenic reporter constructs in a temporally regulated manner
during thymocyte development [29,35-38]. In addition, Eα is required
for the normal expression of the rearranged Tcrd locus in γδ T
lymphocytes [34]. CTCF binding to HS1´, TEAp, and proximal Trav/
Trdv promoters is important to generate a functional chromatin hub
among Eα, TEAp, and proximal Trav/Trdv promoters to promote the
endogenous Tcra VJ recombination in eDP thymocytes [27] (see
below). CTCF binding to HS1´ also collaborates with Eα for the
expression of transgenic reporter constructs in thymocytes and
splenocytes [30]. The 3´-6-kb LCR fragment contains HS2-6 [29].
HS2-6 is transcriptionally active in non T-lineage cells and collaborates
with Eα to confer a high-level, position-independent and copy
number-dependent transgene expression in T-lineage cells by acting as
an insulator that blocks Eα activity to maintain the distinct regulatory
programs of the neighboring Tcra/Tcrd and Dad1 genes [29,30,39].
The HS4-HS6 fragment contains the greatest enhancer blocking
activity [39], with HS4 and HS6 being the major contributors that
confer Eα-dependent high-level, position-independent and copy
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number-dependent transgene expression in T-lineage cells in a CTCF-
independent  manner  [32,40,41].   In  addition,  two  other          Tcra/Tcrd

Figure 2: Representation of the different structure of the Tcra/Tcrd
locus during T-lymphocyte development. The V, D, and J gene
segments are represented by black narrow rectangles. The Cδ and
Cα regions are represented by black large rectangles. The 1.6-Mb

5´-locus region includes the Trav/Trdv gene segments, and the 0.1-
Mb 3´-locus region includes the Trdd and Trdj gene segments, the
Cδ region, the Trdv5 gene segment, the Traj gene segments, and the
Cα region. Red lines indicate the areas occupied by Trav/Trdv, Trdd
and Trdj, and Traj gene segments. The position of the functionally
relevant regulatory elements is indicated as follows: INT1/2 as green
circles, Eδ as a blue circle, TEAp as a purple circle, E3´-Jα as an
orange circle, LCR as a pink line, Eα as a red circle, HS-1´as a black
rectangle, and HS2-6 as brown ovals. The dashed lines represent the
possible different rearrangements along the Trav/Trdv gene segment
cluster and the continuous lines represent the Tcrd DJ
recombination in DN2/3a thymocytes and the primary and
secondary Tcra VJ recombination in DP thymocytes. The arrows
represent regions of active germline transcription. Arrows anchored
to a particular V gene segment represent the transcripts originated
from specific V promoters. The rearranged Tcrd VDJ and Tcra VJ
transcripts are written in bold blue characters. Low transcription is
represented by dashed lines (low transcription level) whereas the
width of the continuous lines is proportional to the level of
transcription (medium or high). The deleted Tcrd locus in DP and
SP thymocytes, and in αβ T lymphocytes, is represented as a
separate circularized DNA fragment containing the rearranged Tcrd
and several unrearranged Trav/Trdv and Traj gene segments
produced as a consequence of a Tcra VJ recombination.

regulatory  elements  have  been  recently  described  (Figure 2):  1)  two
binding sites for CTCF located upstream of the Trdv4 gene segment,
INT1/2, that creates a functionally relevant chromatin loop with TEAp
in DN2/3a thymocytes to increase the Tcrd and Tcra repertoires (see
below), and 2) a new transcriptional enhancer located between the
Traj3 gene segment and Cα, called E3´-Jα, that is active in thymic and
peripheral αβ T cells as assessed using transgenic mice [28,42].

Developmental Control of the Tcra/Tcrd Locus
Recombination by Eα and Eδ

Eδ is essential for normal Tcrd V(D)J recombination and generation
of γδ T lymphocytes [43]. Eδ functions as a local enhancer important
to confer the accessibility of the Trdv5, Trdd, and Trdj gene segments
to the recombinase machinery in a 10-20-kb region of adult DN3a
thymocytes, while Eα influences a 500-kb region including the
proximal 1/3 of the Trav/Trdv (3´-Trav/Trdv) and Traj gene segments
in DP thymocytes (Figure 2) [44,45]. Eδ and Eα are responsible for the
specificity of the Tcrd and Tcra gene segment rearrangement,
respectively; across the developmental stages by regulating the
germline transcription and chromatin structure that mediates the
accessibility of the recombinase machinery to each specific gene [46].
To permit the generation of functional Tcrd VDJ recombination and
expression of the TCRδ chain in DN2/3a, Eδ is active whereas Eα
remains inactive in these cells [14,46]. Tcrd VDJ recombination is
accomplished through the activation of the Eδ-dependent promoters
associated with the Trdd and Trdj gene segments, which opens up the
chromatin structure to provide accessibility for the recombination
machinery in DN2/3a thymocytes (Figure 2) [43,47]. During β-
selection, Eα is activated to induce the Tcra VJ recombination in DP
thymocytes whereas Eδ becomes inactivated [14,34,46]. During γδ-
selection, Eα is also activated to contribute to the transcription of the
rearranged Tcrd locus, being required for normal expression of the
TCRδ chain in γδ T lymphocytes (34). Interestingly, Eδ is inactivated
during β-selection but presumably not during γδ-selection [14,43].
Therefore, both Eδ and Eα are relevant enhancers to dictate the
patterns of the Tcrd and Tcra gene germline transcription and V(D)J
recombination during thymocyte development [14,34,43,46].

The Tcra VJ rearrangements are accomplished through activation of
germline transcription, which is initiated at Eα-dependent promoters
associated with the most 3´-Trav/Trdv and 5´-Traj gene segments and
opens up the chromatin structure to provide accessibility for the
recombination machinery in eDP thymocytes (Figure 2) [48-50]. These
initial Tcra VJ gene segment rearrangements occur in eDP thymocytes
and are known as primary Tcra VJ recombination (Figure 2) [50]. As a
consequence of the nested organization of the Tcra/Tcrd locus, the
primary Tcra VJ recombination results in the deletion of the
rearranged Tcrd locus in an extra-chromosomal circle (Figure 2) [4].
These extra-chromosomal circles will remain present in all DP and SP
thymocytes, as well as in naïve αβ T lymphocytes [4]. If the primary
Tcra VJ recombination is not productive, then the secondary Tcra VJ
recombination involving the more 5´-Trav/Trdv and 3´-Traj gene
segments will occur in lDP thymocytes (Figure 2) [51]. This strategy of
successive Tcra VJ gene segment rearrangements using the further 5´-
Trav/Trdv and 3´-Traj gene segments permits multiple VJ gene
segment rearrangements at each Tcra allele to assure the expression of
a productive TCRα chain in all lDP thymocytes and to provide a
greater probability that positive selection and further αβ T lymphocyte
maturation can occur.
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Eδ is formed by seven protein-bound elements known as δE1, δE2,
δE3, δE4, δE5, δE6, and δE7, in a 380-bp DNA fragment [46].
Although this fragment is functional in activating transcription of
reporter constructs in transient transfection experiments, it is not able
to activate rearrangement of a reporter construct in single-copy
transgenic mice requiring the presence of two flanking matrix
attachment regions for such function [52]. Eδ activity depends
critically on the binding of the transcription factors (TFs) Runx1 and
c-Myb to δE3 [53-55]. These TFs are dissociated from Eδ in the
transition from DN3a to DP thymocytes, which is concomitant with
the inactivation of the enhancer [14].

Eα is formed by four protein-bound elements known as Tα1, Tα2,
Tα3, and Tα4, in a 275-bp DNA fragment that constitutes the minimal
Eα with the correct temporal regulation during thymocyte
development [46]. The 116-bp Tα1-Tα2 fragment constitutes the core
enhancer with essential binding sites for the constitutive TFs CREB/
ATF, TCF-1/LEF-1, Runx1, and Ets-1 that bind cooperatively in an all-

or-none fashion [36,56-58]. These TFs are bound to a primed Eα prior
to its activation in DN3a thymocytes as well as when the enhancer is
fully active in eDP and lDP thymocytes [14,46,59]. Although the Tα1-
Tα2 fragment is efficient in activating transcription and gene segment
recombination at short distances in the context of a transgenic
recombination reporter construct, is not sufficient to activate
endogenous Tcra VJ recombination at large distances [36,60]. In
addition, it does not display the proper Eα developmental regulation
because it is activated prematurely in DN3a thymocytes, being
necessary additional Tα3-Tα4-binding TFs including Sp1, GATA-3,
E2A, and/or HEB for proper temporal activation of the enhancer
[36,37]. Pre-TCR signaling triggers the activation of Eα through the
binding of the inducible TFs NFAT, AP-1, and Egr-1 in eDP
thymocytes, which are recruited to a pre-assembled Eα enhanceosome
formed by the Eα-bound constitutive TFs [18]. In lDP thymocytes,
prior to positive selection, Eα remains fully active through the
induction of strong binding of constitutive TFs such as E2A [18].

Figure 3: Different chromatin loops are formed at the 3´-Tcra/Tcrd locus in DN3a and DP thymocytes. The V, D, and J gene segments are
represented by black narrow rectangles. The Cδ and Cα regions are represented by black large rectangles. The diagram indicates the 5´- and
the 3´-Trav/Trdv gene segments, the Trdd and Trdj gene segments, the Cδ region, the Trdv5 gene segment, the Traj gene segments, and the Cα
region. The red lines indicate the areas occupied by 5´-Trav/Trdv, 3´-Trav/Trdv, Trdd and Trdj, and Traj gene segments. The position of the
functionally relevant described regulatory elements is indicated as follows: INT1/2 as green circles, Eδ as a blue circle, TEAp as a purple circle,
E3´-Jα as an orange circle, LCR as a pink line, Eα as a red circle, HS-1´as a black rectangle, and HS2-6 as brown ovals. Curved arrows represent
the looping interactions between the regulatory elements demonstrated by 3C and 4C experiments [27,28]. In Rag-/- DN3a thymocytes, high-
frequency looping interactions occur between the INT1/2 elements and the TEAp CTCF sites. In Rag-/- DP thymocytes, high frequency
looping interactions occur between the Eα-, TEAp-, and the 3´-Trav/Trdv promoters-associated CTCF sites and bound TFs. These interactions
are thought to promote the nucleation of recombination centers that facilitate both the Tcrd VDJ recombination in DN2/3a thymocytes and
the Tcra VJ recombination in DP thymocytes involving distant gene segments.
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Developmental Chromatin Dynamics at Tcrd/Tcra
Three-dimensional fluorescence in situ hybridization experiments

revealed the Tcra/Tcrd locus changes its configuration in DN3a and
DP thymocytes [5,61]. In DN3a thymocytes, the Tcra/Tcrd locus
adopts a fully contracted configuration [61]. In DP thymocytes, the
locus adopts a contracted configuration across the most 3´-region of
the locus, including the 3´ Trav/Trdv and the Traj gene segments, as
well as the Cα region, in a region of approximately 0.5-Mb; whereas it
adopts an extended configuration across the 5´-region of the locus,
including the centrally and upstream position Trav/Trdv gene
segments (5´-Trav/Trdv) in a region of over 1-Mb [61]. The fully
contracted locus configuration in DN3a thymocytes is thought to
facilitate the Tcrd VDJ recombination using the disperse Trdv gene
segments across the entire locus, whereas the Tcra/Tcrd configuration
in DP thymocytes is believed to facilitate the sequentially ordered
primary and secondary Tcra VJ recombination (Figure 2) [5,61]. The
molecular mechanism involved in the regulation of the different
configurations adopted by the Tcra/Tcrd locus during thymocyte
development is currently unknown.

Although the 3´-end of the locus remains similarly contracted in
DN3a and DP thymocytes, chromosome conformation capture
experiments (3C and 4C) have distinguished two distinct functional
chromatin interactions within this 0.5-Mb region of DN3a and DP
thymocytes using recombinase activating gene-deficient (Rag-/-) mice
(Figure 3) [5,27,28]. In Rag-/- DN3a thymocytes, a functionally
relevant discrete chromatin loop mediated by CTCF-bound INT1/2
and CTCF-bound TEAp has been recently identified [28]. Active Eδ is
present within this chromatin loop attached to the Trdd and Trdj gene
segments constituting a recombination center capable of recruiting the
distant Trdv gene segments in DN2/3a thymocytes [5,28]. In addition
to CTCF, other factors are required for loop formation because it is not
present in B lymphocytes where occupancy of the relevant CTCF sites
remains intact [28]. Interestingly, the formation of this chromatin loop
favors the use of the diverse Trdv gene segments for Tcrd VDJ
recombination in DN2/3a thymocytes and indirectly increases the
diverse use of the Trav/Trdv gene segments for Tcra VJ recombination
in DP thymocytes [28]. In Rag-/- eDP thymocytes, binding of the pre-
TCR inducible TFs to Eα triggers the formation of a chromatin hub
through the physical interactions of the Eα-bound TFs, TFs bound to
the promoters associated with the most 3´-Trav/Trdv gene segments
and TEAp, and the CTCF bound to HS-1´ and each Eα-dependent
promoter (Figure 3) [27,31]. This chromatin hub creates an additional
recombination center at the 3´-Trav/Trdv and 5´-Traj gene segments to
activate the primary Tcra VJ recombination in DP thymocytes [5].

Eα and Eδ in mature αβ and γδ T lymphocytes
Once the TCRαβ or TCRγδ is assembled on the thymocyte surface,

Eα becomes active in γδ T lymphocytes and is essential for normal
transcription of the rearranged Tcrd locus in these cells, but
surprisingly this enhancer is significantly inhibited in SP thymocytes
and αβ T lymphocytes (Figure 4) [34,62]. Although Eδ is accepted to
be active in γδ T lymphocytes, its contribution toward the
transcription of the rearranged Tcrd locus is negligible due to the
strong activity of the Eα enhancer in these cells (Figure 4) [43].

In support of inhibition of Eα activity in the transition from DP to
SP thymocytes and in αβ T lymphocytes, Eα inhibition is evidenced
not only when it is located in its natural location at the unrearranged
Tcra locus and also when positioned at an ectopic location [62].

Figure 4: Regulation of transcription of the rearranged Tcrd and
Tcra genes by distant enhancers in γδ and αβ T lymphocytes,
respectively. The V, D, and J gene segments are represented by black
narrow rectangles. The Cδ and Cα regions are represented by black
large rectangles. Red lines indicate the areas occupied by Trav/Trdv
and Traj gene segments. The rearranged Tcrd VDJ and Tcra VJ
transcripts are written in bold blue characters. The position of the
functionally relevant described regulatory elements is indicated as
follows: Eδ as a blue circle, TEAp as a purple circle, E3´-Jα as an
orange circle, LCR as a pink line, Eα as a red circle, HS-1´as a black
rectangle, and HS2-6 as brown ovals. Curved arrows represent the
predicted enhancer-promoter interactions based on the functional
experiments [34,43,62]. In γδ T lymphocytes, Eα, and also
presumably Eδ, functionally interact with the rearranged Trav/Trdv
promoter. The black arrow represents the functionally relevant
interaction between Eα and the rearranged Trav/Trdv promoter in
comparison to the presumed interaction between Eδ and the
rearranged Trav/Trdv promoter, which is represented in grey. In αβ
T lymphocytes, Eα is strongly inhibited and its contribution to the
transcription of the rearranged Tcra locus is uncertain. The
contribution of the recently described E3´-Jα enhancer to the
transcription of the rearranged Tcra locus is also unknown. The
putatively weak or uncertain interactions between these enhancers
and the rearranged Trav/Trdv promoters are represented as dashed
light lines.

Furthermore, expression of reporter transgenes directed by the 7.4-
kb LCR containing Eα is significantly inhibited in splenocytes and αβ T
lymphocytes compared to thymocytes [30,63]. The transcriptional
inhibition of the unrearranged Tcra locus by Eα in SP thymocytes and
αβ T lymphocytes suggests this enhancer does not contribute to the
transcription of the rearranged Tcra locus in these cells [62]. In
support of this hypothesis, transgenic rearranged Tcra constructs
containing the 3-kb region from the downstream Cα, including Eα and
HS1´, are expressed at very low and variable levels, ranging from 1 to
20% in αβ T lymphocytes [29,64]. Two main questions rise from these
findings: How is Eα inactivated and what is the molecular mechanism
for transcribing the rearranged Tcra locus in SP thymocytes and αβ T
cells?

Recent experiments using chromatin immunoprecipitation to
compare the active and inactive Eα enhanceosomes assembled in DP
thymocytes and αβ T lymphocytes, respectively, have revealed that the
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presence of the E2A and HEB TFs is highly diminished in αβ T
lymphocytes (Figure 5) [62].

Figure 5: Different Eα enhanceosomes are assembled in lDP
thymocytes and αβ T lymphocytes. The diagram depicts the TFs
that are bound to Eα in the indicated cell stages based on genomic
footprinting and chromatin immunoprecipitation experiments, as
well as in vitro experiments [14,57-59,62,76]. The TFs are
represented by colored ovals and their identity is indicated. The Eα
enhanceosome assembled in αβ T lymphocytes lacks bound E2A
and HEB TFs compared to those assembled in lDP thymocytes
[62,76].

No differences in the binding of CTCF to HS-1´ were detected
between DP thymocytes and αβ T lymphocytes, indicating the binding
of this factor is not involved in the inhibition of Eα function in αβ T
cells [31,33,62]. These results suggest strong binding of E2A and HEB
might be essential for Eα activity. The forced expression of E2A in αβ T
lymphocytes through retroviral transduction cannot recover the
enhancer activity of Eα, neither alone nor in combination with the
upregulation of other TFs in the context of T-cell activation or T helper
differentiation [62]. Future experiments are necessary to reveal the
molecular mechanism of enhancer inactivation in mature αβ T-cells by
evaluating the simultaneous functional effect of E2A and HEB on Eα
activity, the analysis of the molecular consequences of different
signaling pathways mediated by the pre-TCR and TCRα on Eα
function, and a detailed comparison of the Eα enhanceosomes
assembled in αβ and γδ T lymphocytes.

The inhibition of Eα in SP thymocytes and αβ T lymphocytes does
not preclude the enhanced transcription of the rearranged Tcra locus
in these cells compared to the unrearranged Tcra locus in preselected
DP thymocytes in the presence of a fully active Eα [62]. The molecular
basis for the transcription of the rearranged Tcra locus is currently
unknown. Although a possible contribution of Eα to the transcription
of the rearranged Tcra locus cannot be totally rejected, the inhibition of
its activity through the disruption of the functional long-range
enhancer-promoter interactions, the loss of activating histone

modifications, and the decreased transcription of the unrearranged
Tcra locus in αβ T lymphocytes compared to lDP thymocytes suggests
the existence of an Eα-independent mechanism to activate
transcription of the rearranged Tcra locus in αβ T cells [62]. In support
of this, Eα is not required for copy number-dependent transgenic
expression in splenocytes [30]. It is possible that different
conformations of the unrearranged and rearranged Tcra locus, due to
the deletion of intergenic sequences, may reveal a novel enhancer or
activate an enhancer-independent activity in the rearranged Tcra V
promoters. The putative novel enhancer must be located upstream of
Trav1 or downstream of Traj2 gene segments to ensure its retention
upon Tcra VJ recombination. Interestingly, transcription of reporter
transgenes controlled by the LCR is also significantly inhibited in
splenocytes and αβ T lymphocytes compared to thymocytes,
suggesting the additional sequences required for proper transcription
the rearranged Tcra locus in αβ T lymphocytes are not contained
within the 7.4-kb LCR fragment [30,31,63]. A new putative enhancer,
E3´-Jα, located between the Traj3 gene segment and Cα region, and is
active in both thymocytes and peripheral αβ T lymphocytes has been
recently described (Figures 2-4) [42]. However, transgenic constructs
containing a rearranged Tcra locus with an intact Traj2 to HS1´ are
expressed at very low and variable levels in αβ T lymphocytes,
suggesting the genomic region containing E3´-Jα, Eα, and HS1´ is not
sufficient to allow for the strong and stable transcription of the
endogenous rearranged Tcra locus [29,64]. It will be important to test
the relevance of Eα and other putative relevant sequences in the
transcription the rearranged Tcra locus by their conditional deletion in
peripheral αβ T lymphocytes and in transgenic mice.

Consequences of Defects in Tcra/Tcrd Locus
Transcription and Recombination

Although beneficial, V(D)J recombination is a dangerous process.
Defects in this process at the TCR loci cause for immunodeficiencies
and chromosomal translocations that lead to lethal leukemia [4,65,66].
The most common T-lymphocyte leukemia, T-cell acute lymphoblastic
leukemia (T-ALL), is composed by a heterogeneous group of acute
leukemias derived from the transformation of thymocytes that are
arrested at various developmental stages. 35% of human T-ALLs carry
chromosomal translocations involving TCR loci in thymocytes. These
aberrant translocations frequently involve the juxtaposition of a strong
promoter or enhancer from a TCR gene with a TF gene or a gene
involved in cell signaling or differentiation. These illegitimate TCR
gene translocations lead to the aberrant expression of their
corresponding proteins, resulting in abnormal proliferation and
differentiation processes. Among all the aberrant translocations of
TCR genes during thymocyte development, those involving the Tcra/
Tcrd locus have been found in a high percent of human T-ALLs. For
example, 5-10% of pediatric and 30% of adult T-ALLs show
translocations of the TLX1 and TLX3 genes into the Tcra/Tcrd locus.
These translocations result in the overexpression of the TFs TLX1 and
TLX3 and the arrest of DP thymocyte maturation. This arrest is a
direct consequence of the recruitment of these TFs to Eα [67]. Binding
of TLX1/TLX3 to Eα interferes with the recruitment of Ets-1 and
results in reduced enhancer activity as evidenced by decreased gene
chromatin accessibility and a drastic inhibition of Tcra gene segment
recombination. The expression of a functional TCRα chain is needed
for the assembly of the TCRαβ and the maturation of DP to SP
thymocytes [34,68]. Other important aberrant translocations involving
the Tcra/Tcrd locus include those that result in ataxia-telangiectasia
(A-T) syndrome, which is rare immunodeficiency disorder due to
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mutations in the A-T mutated kinase (ATM) that cause chromosome
instability and defects in DNA repair [69]. An important percent of A-
T syndrome patients develop the disease due to translocations and
inversions involving specific breakpoints at the Tcra/Tcrd locus and
most of all ATM-/- mice die due to thymic lymphomas derived from
and incorrect repair of the breaks that result from V(D)J
recombination and aberrant Tcra/Tcrd locus translocations [70-75].
The knowledge of the precise mechanisms by which the Tcra/Tcrd
locus transcription and recombination are regulated is important to
understand the defective control of these processes that results in
disease.
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