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Abstract
Agriculture is an indispensable part of every person’s life, ensuring that nutritious and inexpensive food is readily available. 

As any other organisms, plants are subject to numerous parasitic infections. Biological evolution has allowed plants to produce 
a variety of toxic compounds to deal with their pathogens. American pokeweed plant (Phytolacca americana) manufactures 
pokeweed antiviral protein, a ribosome inactivating protein that disrupts protein synthesis and lowers infectivity of many 
plant and animal viruses. The intricate mechanism of PAP antiviral activity entails a delicate coordination and interplay of 
several factors, allowing the plant to battle its invaders. Here, we examine the molecular mechanism of this plant peptide, and 
describe a molecular model of pokeweed’s antiviral activity.
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Introduction
Agriculture continues to be confronted by epidemics, having 

devastating effects on economies and the plant sources essential for 
human and animal life. Plants are essential for human and animal life, 
and encompass natural and landscaped spaces, including forests, crops, 
nurseries and orchards. Multitudes of microbial pathogens invade and 
colonize plants, while metabolizing their tissues and disrupting a delicate 
balance of hormones and nutrients, and in some cases, suppressing 
gene activity [1-3]. Many plants have evolved to produce natural 
defense mechanisms that aid in the battle with foreign pathogenic 
invaders. Plant defense mechanisms include myriad physical and 
chemical defenses, which prevent pathogens from entering the plant 
cell, limit their availability, and/or restrict the nutrients necessary for 
the growth and replication of the pathogen [4-8].

Ribosome Inactivating Proteins (RIPs)
Ribosome inactivating proteins (RIPs) are a group of cytotoxic 

proteins possessing extremely specific rRNA N-glycosidase activity, 
and proficient in catalytically inactivating ribosomes, inducing cellular 
death [9]. The biological effects credited to these protein toxins go 
back to early times, owing to the high toxicities of the castor bean and 
jequirity bean [10]. Yet other plants, such as American pokeweed (P. 
americana) and common soapwort, synthesize pokeweed antiviral 
protein (PAP) and saporin, that impose lower toxicity on intact cells 
while inhibiting protein production in cell-free lysates [11-13]. RIPs 
exert their cytotoxicity by impairing ribosomes [14]; specifically they 
interfere with the advanced stages of translation [15-19]. While all 
RIPs exert N-glycosidase activity toward ribosomes, their substrate 
specificity is greatly diversified. For instance, ricin exhibits vigorous 
activity toward mammalian and yeast ribosomes while virtually 
having no significant effect on bacterial or plant ribosomes [20-23]; 
PAP however is able to depurinate ribosomes from plants, bacteria, 
yeast, as well as lower and higher animals [15,24-27]. Contribution of 
the substrate specificity comes from both RIPs and ribosomes alike. 
RIPs depurinate specific adenines within the sarcin/ricin loop of large 
rRNA; this introduced lesion interferes with the advanced stages of 
translation [15,28].

Activities Attributed to PAP
In addition to ribosomal depurination, some RIPs act on naked rRNA 

(rRNA devoid of ribosomal proteins); some remove multiple adenines 
and guanines from various nucleic acid substrates including DNA, 
poly(A), rRNA, and even viral RNA [29-32]. Viral RNA depurination 
is a matter that is worthy of attention. Duggar and Armstrong [33] 
have observed that a protein from P. americana possessed an antiviral 
activity, and inhibited transmission of tobacco mosaic virus (TMV) 
in plants; though, not until 1978 PAP was accepted as an inhibitor of 
protein synthesis [25]. While the mechanism of PAP antiviral activity is 
somewhat unclear, recent findings, produced by the Hudak and Tumer 
laboratories, show that this activity is not dependent exclusively on 
inactivation of ribosomes [34,35]. It has been postulated that a direct 
interaction of PAP with viral RNA (or DNA) is an alternative antiviral 
mechanism in play. The pokeweed plant produces several isozymes 
of PAP, all exerting potent antiviral properties [11,13,36-42]. PAP 
isozymes evoke depurination of genomic HIV-1 RNA [43-45], TMV 
RNA [46], poliovirus [47], herpes simplex virus (HSV) [48], influenza 
virus [49], and brome mosaic virus (BMV) [50], among many others, 
showing a broad spectrum of antiviral activity [13]. This depurination 
is concentration dependent.

PAP Inhibits Replication of Capped Viruses
Recent findings have put forward an interesting mechanism for 

the translation inhibition by PAP [51], where PAP specifically targets 
and depurinates capped mRNA directly. Hudak et al. [51] generated 
several PAP mutations (PAPx, an active site mutant (E176V); PAPn, a 
mutant with a substitution (G75D) in the N-terminal sequence; PAPc, 
a mutant lacking the C-terminal 25 amino acid residues) and showed 
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that these PAP mutants do not depurinate rabbit or tobacco ribosomes, 
yet inhibit the in vitro translation of potato virus X and BMV with no 
notable depurination of ribosomes. These studies showed that PAP 
is proficient in differentiating capped from uncapped mRNAs, since 
wild type (WT) PAP, and several of its mutants, prompted inhibition 
of only capped (but not uncapped) luciferase transcripts. The presence 
of cap analog decreased the ability of PAP and PAP mutants to inhibit 
translation of viral RNA, meaning that these toxic proteins are able to 
identify the cap structure at the 5ʹ end of the mRNA. Examination of the 
PAP-treated luciferase transcripts reveled that only the capped RNAs 
were subject to cleavage by acidic aniline, and hence were depurinated 
in vitro. Based upon these important findings, it was concluded that 
PAP binding to the cap structure, with subsequent RNA depurination, 
was the main mechanism for the translation inhibition; depurination of 
capped viral RNA perhaps, is the primary mechanism for the antiviral 
activity of PAP [52]. Furthermore, Friedland team have examined 
interactions between PAP and m7GTP cap analog employing direct 
fluorescence titrations [53]; this led to quantitative characterization of 
these interactions. 

PAP Inhibits Replication of Uncapped Viruses
Although only less than twenty percent of plant positive strand 

RNA viruses are similarly structured to host mRNA (with a 5ʹ-m7G cap 
and poly(A) tail) [54], the majority lack one or both of these moieties. 
Interestingly, PAP also exerts its inhibitory effects on the replication 
uncapped viruses such as influenza and poliovirus [47,49]. Vivanco 
et al. [55] have inspected PAP activity against a set of capped and 
uncapped viral RNAs, demonstrating that PAP does not depurinate 
every capped RNA, while inhibiting translation of uncapped viral 
RNAs in vitro without causing measurable depurination at multiple 
sites. PAP did not depurinate uncapped luciferase mRNA, while 
depurinating TMV and BMV transcripts, demonstrating that PAP is 

able to discriminate between capped and uncapped RNAs. No evident 
depurination of capped alfalfa mosaic virus (AMV) RNA was recorded 
either. This indicates that the recognition of the cap feature alone is not 
enough to cause multiple site depurination of RNAs [55]. Furthermore, 
the team did not record any evident depurination of uncapped satellite 
panicum mosaic virus (SPMV) RNA, tomato bushy stunt virus (TBSV) 
RNA, nor uncapped RNA encompassing a poliovirus internal ribosome 
entry site (IRES); yet, in vitro translation experiments illustrated PAP 
inhibiting translation of the above viral RNAs [55].

Interactions with Translation Initiation Factors (eIFs) 
and Effects of Structured RNA

Work published by Wang and Hudak [56] presents confirmation 
that PAP is able to bind eukaryotic translation initiation factor eIF4G 
and its isoform eIFiso4G. Studies show that PAP binds specifically to 
each form, and biochemical and genetic analyses present confirmation 
that the region of the protein between amino acids 511 and 624 is 
needed for PAP binding activity [56]. PAP binds to m7GTP-Sepharose; 
this binding does not reduce the binding of PAP to purified eIFiso4G, 
indicating that PAP simultaneously forms a complex with eIFiso4G 
and the cap moiety. In wheat germ lysate translational system, PAP 
depurinated uncapped transcripts containing a functional WT 3ʹ 
translational enhancer element (3ʹ TE), but did not depurinate 
messages containing a non-functional mutant 3ʹ TE [56]. These 
findings supports a previously postulated hypothesis that binding of 
PAP to eIF4G (or eIFiso4G) may offer an alternative mechanism for 
PAP to access both uncapped and capped viral RNAs for depurination. 
Baldwin et al. [53] have demonstrated that PAP not only binds to 
the initiation factor eIFiso4G, but that binding of the cap analog to 
PAP is amplified by this macromolecular interactions, supporting 
previous findings. This suggests a novel mechanism: PAP interacts 
with eIFiso4G/eIF4G (as part of eIFiso4F/eIF4F) and interacts with the 

 
 Figure 1: Schematic diagram of the proposed model for PAP interaction with initiation factors and capped (A) or uncapped (B) RNA. A) Step 1: PAP binds to 5ʹ-m7G 

cap; eIF4G/eIFiso4G associates with PAP; eIF binding increases PAP-RNA affinity; Step 2: eIF4E/eIFiso4E or eIF4F/eIFiso4F displaces PAP from 5ʹ-m7G cap; 
Step 3: PAP/eIF4G/eIFiso4G complex translocates to depurination sites; Step 4: PAP depurinates RNA. B) Step 1: PAP binds 5ʹ- or 3ʹ-UTRs (untranslated regions) 
containing TEs (translational enhancer sequences), or IRES (internal ribosome entry site); Step 2: eIF4G/eIFiso4G or eIF4F/eIFiso4F bind to PAP or 5ʹ- and/or 
3ʹ-UTRs, increasing PAP-RNA affinity; Step 3: PAP/eIF4G/eIFiso4G or PAP/eIF4F/eIFiso4F complex translocates to depurination sites; Step 4: PAP depurinates RNA.
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overcome this plant defense mechanism. A valid question to ask would 
be: If PAP depurinates both ribosomal and viral RNA, how does the 
pokeweed plant prevent its own death? Recent study shows that PAP is 
able to form a homodimer complex in the cytosol of pokeweed plant, 
while its monomeric form is predominantly found outside the cell, the 
apoplast [66]. The PAP homodimer was shown to be much less active 
on rRNA in comparison to the monomeric PAP. Hudak et al. have 
shown that PAP dimerization involves an active site Tyr123; mutations 
of this aromatic residue prevented dimerization of PAP in vivo, 
supporting the biological role of homodimerization as a mechanism to 
limit toxicity to cells synthesizing PAP [66]. 
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Conclusion
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