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Introduction
Sociophysics [1] in the early nineteenth century and biophysics [2] 

in the early twentieth century, were attempts to formalize the social 
and life sciences, respectively, using computational techniques from 
physics. A major difficulty encountered was modeling the complexity 
of even the most familiar phenomena outside the physical sciences. 
Unlike linear phenomena, which have a spectral decomposition and 
are therefore tractible, complex phenomena have large numbers 
of entangled components that typically cannot be decomposed 
into fundamental modes. As pointed out in Ref. [3] complexity is a 
delicate balance between regularity and randomness; the stability and 
adaptability of a complex process can be lost through an imbalance 
favoring one over the other. Consequently, extending the early 
modeling of physical phenomena to the behavior of living organisms, 
either individually or collectively, was almost uniformly disappointing.

The initial successes of physics modeling relied in large part on 
Newton’s concept of a mechanical force, which seemed to have no 
direct correspondent in social sciences, except in a metaphorical 
sense, and to be of only selective utility in the life sciences. The lack 
of a physical force in these latter sciences is not surprising, given that 
the dynamical variables indigenous to their study are not physical in 
nature. Consequently, the genesis of a non-physical force, if there is 
one, must be traced to a non-physical source.

Physics has historically involved a search for the most parsimonious 
description of Nature’s behavior and as a science it has been wildly 
successful in doing this, when it comes to describing the dynamics of 
the inanimate. Consider, the empirical notion of energy conservation, 
which implies that energy can neither be created nor destroyed; it can 
only change its form, switching back and forth between potential and 
kinetic. An energy gradient in a conservative physical system defines a 
mechanical force. When a physical system becomes complex its natural 
description is given by thermodynamics, which introduces a non-
mechanical physical force; the entropic force. This latter force involves 
the gradient of the entropy
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where T is the temperature, X is the macroscopic state variable, 
with X0 the present state, and SX0 is the system entropy. An example 
of a physical process driven by an entropic force is osmosis. The 
entropy gradient is herein replaced with an information gradient in 
non-physical systems, or by a complexity gradient if you prefer, to 
define a non-mechanical force. This is an information force and is a 
consequence of the mismatch in complexity of two interacting systems, 
as we demonstrate.

The mathematician who initiated the science of the man-machine 
interface, Norbert Wiener, speculated that the complex networks 
within the social and life sciences behave differently from, but not 
in contradiction to, those in the physical sciences, with control 
emanating from the flow of information, not the flow of energy [4]. 
He conjectured that a system high in energy coupled to one low in 
energy, but extremely high in information, can be coupled such that 
the information, which he, following Schrödinger [5], referred to as 
negative entropy, passes from the system at low energy to the system at 
high energy and subsequently determines the organization of the latter, 
cf. Figure 1. The significance of his conjecture cannot be overstated. 
Wiener’s speculation implied that the force laws and control in social 
phenomena do not follow the negative gradients of energy potentials 
(even if they could be defined), but rather they follow gradients 
produced by information imbalance. We refer to this as Wiener’s Rule 
(WR) (Figure 2).

fthFU4.8427in3.2461in0pt Wiener’s Rule: The upper panel 
denotes the familiar thermodynamic situation of an energy-dominated 
interaction. The lower panel depicts the counter-intuitive information 
dominated interaction. Adopted from Ref. [6] (Figure 2) wienerwiener 
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forces resulting from gradients in the complexity of the phenomenon being studied.
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The thermodynamic concept of entropy has recently been applied 
in a biological context by Demetrius et al. [7] to explain Darwinian 
evolution. They introduced ‘evolutionary entropy’ to provide a context 
in which allometry relations, between body size and metabolic rate, 
as well as, body size and maximal life span, can be predicted. This is 
one of the more recent contributions in an ongoing strategy to offer an 
alternative to energy as the fundamental tool for the understanding of 
complexity, order and organization in biosystems. In 1953 one of the 
first meetings was held to explore the importance of entropy to quantify 
the information content in a living system [8], from macroscopic 
biodynamics down to protein structure. Some three decades later, 
entropy was offered as a unifying principle for biological evolution 
by Brooks and Wiley [9]. Similar attempts have been made to explain 
social organizations using theories of social entropy [10,11]. All these 
efforts and many more went unaware of Wiener’s contribution to the 
discussion.

WR remained speculation for over sixty years. It was only with the 
recent activity to develop a science of networks that an extension of 
this rule was established. The proof relies on generalizing some of the 
fundamental ideas of non-equilibrium statistical physics, in particular 
linear response theory (LRT) to non-stationary phenomena [12,13]. 
The science of thermodynamics explains the movement of heat and 
other irreversible phenomena in the physical world and statistical 
physics seeks to explain the thermodynamic formalism, using the 
microscopic dynamics of physical systems. The network dynamics of a 
person or of a group of individuals are very different, however.

As the networks in which we are immersed become increasingly 
complex, a number of apparently universal properties begin to emerge. 
One of those properties is a generalized version of WR having to do 
with how complex networks, perhaps involving phenomena from very 
different scientific disciplines, exchange information with one another; 
this is described by the Principle of Complexity Management (PCM). 
The efficiency of the information transfer is dependent on the relative 
complexity of the two networks, and the complexity gradient gives rise 
to a complexity-induced information force.

On a larger stage Karl Marx [14] talked about class conflict as 
the driver of social evolution, whereas Adam Smith [15] invoked an 
invisible hand to visualize the unintended social benefit resulting from 
individual actions of self-interest and Freud [16] argued for instinct, 
as the primary cause of human behavior. At both the level of the 
individual and the collective these exemplify what could be included 
under the general heading of information forces; non-physical forces 
resulting from gradients in the complexity of the phenomena being 
studied.

Methods
We adopt the probability density as the measure of the information 

content of a network in keeping with the determination of the negative 
entropy adopted by Wiener [17] and Shannon [18]. More specifically, 
we use the inverse power-law index as the statistical measure of 
complexity. The inverse power-law distribution is taken to be the 
signature of complexity by most, if not all, network scientists and is the 
asymptotic form of the hyperbolic survival probability:
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Where t is the time interval between events. Examples of 
phenomena represented by such a survival probability include the 
time interval between: breaths and heart beats, emails, and earthquakes 
of a given magnitude, see e.g., Ref. [3] for a more extensive list of 
phenomena. The average time between events can be determined using 
the probability density
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It is interesting that when the power-law index is in the interval 
2<µ<3 the distribution has a finite first moment and the network’s 
time series has ergodic statistics, subsequently we call this an ergodic 
network. In the situation µ<2, however, there are no finite integer 
moments and the ensemble and time averages are not necessarily 
equal; the statistics are non-ergodic. Consequently, we have a non-
ergodic network. In either case the generalized linear response theory 
(GLRT) [13] yields:
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Where x(t,t′) is the generalized linear response function (GLRF) 
given by [12,13]:
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and RS(t) is the rate at which events are produced by a network S 
prepared to have an event at t=0, i.e., the bits per second encoded in 
ξS(t). Here <ξS(t)> denotes the Gibbs ensemble average over infinitely 
many responses of ξS(t) to ξp(t). The variable ξp(t) is the time-dependent 
stimulus generated by the network P and ε<<1 is the stimulus strength.

For simplicity we take both signals ξS(t) and ξP(t) to be dichotomous 
and fluctuating between values ± 1. The time intervals between 
two consecutive crucial events is referred to as laminar regions. It is 
important to remark that Equation (4), for the response of the network 
S to the perturbing network P, is valid when the network is prepared 
at time t=0 and placed at the beginning of a laminar phase, and the 
interaction with the perturbation P is turned on at the same time. The 
network P exerts its influence on S as follows: if S has an event at time t 
and if its next laminar region will be assigned a value with the same sign 
of the value of ξP(t), then S is perturbed so that its next laminar region 
will tend to be longer, by assigning to its parameter T in Equation (3) 
the value T+=T(1+ε). On the contrary, if the next laminar region of S 
will have a value with the opposite sign of ξP(t), then the value T-=T(1-ε) 
will be used, thus tending to make the next laminar region shorter.

The cross-correlation function measures the transfer of information 
between the two complex networks. It can be constructed by inserting 
Equation (5) into Equation (4), multiplying the resulting expression by 
ξP(t) and averaging over an ensemble of realizations of ξP(t) to obtain:
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The stimulating network is characterized by the non-stationary 
autocorrelation function p(t-t′), which depends separately on the time 
of the last perturbation t′ and the time of the measurement t. Equation 
(6) is the basis for the cube depicted in Figure 1.
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In the context of one complex network stimulating another, e.g., 
the transportation system and the brain, it is possible to prove that the 
response of the brain to the noise fades as an inverse power law :

2
1( ) .S S

D t
t µ−∝                (7)

The response to the stimulus fades to zero and asymptotically 
approaches region II of the cube. This non-ergodic condition of the 
brain is asymptotically unresponsive to ergodic and/or periodic stimuli: 
the complexity of the neural network essentially swallows up simple 
signals through its complex dynamic interactions. But even when the 
brain is in the ergodic regime 2<µS<3 its response decays to a constant 
value determined by 
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which is less than the full response of region III in Figure 1, but it 
does not vanish altogether.

fthFU4.8526in4.1137in0pt The cross-correlation (magic) cube: 
The asymptotic cross-correlation function is graphed as a function of the 
two power-law indices of the stimulating network P and the responding 
network S for infinite time. The cube graphically displays the properties 
of the Principle of Complexity Management. The figure is adapted 
from [13]. Figure 1 cubecube.tiflanguage “Scientific Word”;type 
“GRAPHIC”;maintain-aspect-ratio TRUE;display “USEDEF”;valid_
file “F”;width 4.8526in;height 4.1137in;depth 0pt;original-width 
2.8717in;original-height 2.4317in;cropleft “0”;croptop “1”;cropright 
“1”;cropbottom “0”;filename ’cube.tif’;file-properties “XNPEU”;

Results
The complexity of networks is herein quantified, as previously 

mentioned, by inverse power-law distributions and consequently by 
their power-law indices. These inverse power laws are a consequence 
of the often non-stationary and non-ergodic fluctuations, generated by 
nonlinear dynamics. Such temporal complexity has been shown to be 
a consequence of criticality, resulting from network dynamics [19] and 
was used to determine the efficiency of information transfer between 
two interacting complex networks. However, because of the ubiquity 
of such inverse power-law networks [20] the imposed restriction is 
not overly severe and so we need not restrict our remarks to a specific 

network model. We consider two temporally complex networks 
exchanging information, for example, two people taking turns talking 
to one another [21], or the excitation of the human brain engaged in 
simple tasks such as finger tapping in response to stimuli [22]. Each 
complex network considered here has its own characteristic exponent 
that is a consequence of its dynamics and not its topology. The efficiency 
of the information transfer between two such networks is determined 
by the relative values of their complexity indices [20].

One measure of the information transfer between two complex 
networks is the cross-correlation of the output of a complex network P 
with that of a complex network S, being stimulated by P. The dynamics 
of the responding time series is represented by a dichotomous time 
series ξS(t) as is that of the stimulating time series by ξP(t). Both time 
series have inverse power-law distributions of time intervals between 
events, an event being a switch between values. The time series is 
ergodic when the time average and ensemble average are equal, which 
occurs when the power-law index µ, with an appropriate subscript, is in 
the interval 2<µ<3. The time series is non-ergodic, the two averages are 
not equal, when the power-law index is in the interval 1<µ<2, and the 
average time between events diverges, see Equation (3). Consequently, 
there is no characteristic time scale for a non-ergodic process. Note 
that most of non-equilibrium statistical physics literature assumes the 
dynamics of the systems of interest to be ergodic. But what happens to the 
information transfer when one network is ergodic and the other is not?

The simplest measure of the lasting influence of network P on 
network S is given by the asymptotic cross-correlation function. In 
Figure 1 the asymptotic cross-correlation function, normalized to one, 
is graphed as a function of the power-law indices of the two networks 
to form the cross-correlation cube. This cube displays a number of 
remarkable properties:

1) The upper plateau, region III, indicates that when P is non-ergodic,
1<µP<2, and S is ergodic, 2<µS<3, the time intervals between
stimulating P-events can be very long and the time intervals between 
unperturbed S-events are much shorter, on average. Consequently, 
more S-events occur in response to the P-events than would occur
naturally and therefore the greater information in the P network
dominates the process, producing complete correlation, between
stimulus and response. An example of the kind of physical process
captured by this region of the cube is a leaky faucet (P network)
keeping a person (S network) awake at night, see Section 4.

2) The lower plateau, region II, indicates that when P is ergodic,
2<µP<3, and S is non-ergodic, 1<µS<2, the time intervals between
S-events are much longer than those of the P-event stimuli, on
average. Consequently, the sporadic disruptions of S-events are not
detectable asymptotically. The information-rich S network washes
out the influence of the stimulus. An example of the kind of physical
process captured by this region of the cube is the sound of traffic (P
network) that fades from consciousness as a person (S network) falls
asleep, see Section 4.

3) When the power-law indices are both equal to two, there is an
abrupt jump between region II, with no correlation, and region
III, with perfect correlation, at the center of the cube; the spectrum 
associated with this exchange is exactly 1/f. This matching of
complexity, between two interacting complex networks, may well
be the origin of the ubiquity of the mythic 1/f-noise [3], see Section 4.

Discussion
It is noteworthy that property-1 captures WR and shows that a 

network with the greater information can organize and control one 
with lesser information, essentially independently of the relative 

Figure 1:  Cross-Correlation Cube.
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energy content. It should also be emphasized that property-2 describes 
the well-known psycho-physical phenomenon of habituation [23]. As 
humans we respond to a strong stimulus, but if the stimulus remains 
unwavering, such as a pungent odor in a deli, or random traffic noise, 
then after a relatively short time the response fades; we no longer smell 
the strong odor or hear the drone of a monotonous speaker. Finally, 
and perhaps most importantly, we have the ubiquitous phenomena of 
1/f-noise described in property-3. This property has been determined 
to result from the interaction at the interface of the two complex 
networks being in a kind of statistical resonance [3].

The Principle of Complexity Management (PCM), embodied in 
the cube [12,13], indicates how one complex network responds to 
stimulation from a second complex network as a consequence of the 
relative information content of the two networks. WR described the 
influence of the stimulus as it appears on the upper plateau region of 
the cube, where the information in the stimulus exceeds that in the 
response. In all regions, except the lowest one, the weak stimulus 
significantly modifies the properties of the responding network. In the 
upper plateau, region III, the stimulus actually dominates the properties 
of the response and reorganizes it, just as Wiener predicted it would. 
However, WR is now part of the more general PCM, which quantifies 
WR by introducing a measure of information in complex networks 
that enables comparison of the level of information in interacting 
networks. This measure is the power-law index of the distribution, 
which in combination with GLRT, enable the construction of the cube 
to determine the degree of asymptotic influence one network exerts on 
the other, see Section 2. Thus, the veracity of the speculative WR has 
been established mathematically [13], as well as, its extension to the 
entire domain captured in Figure 2.

The various quadrants of the cross-correlation cube are related to 
the habituation phenomenon, in one form or another. Habituation is a 
primitive form of learning, through which humans and other animals 
learn to disregard stimuli that are no longer novel, thereby allowing 
them to attend to new stimuli [23]. A repeating stimulus of unvarying 
amplitude and frequency content induces a response that fades over 
time, since no new information is being presented to the animal. The 
lack of new information allows the brain to shift its focus from the more 
to the less familiar, the latter providing new information that may have 
survival value. However, we know that the brain does not habituate to all 
external stimuli, so we consider two distinct forms of stimulation: one 
ergodic 2<µP<3 and another non-ergodic 1<µP<2. Consider highway 
noise coming in through the window of your motel room as you lay in 

bed. This noise is typically a broad band, uncorrelated random process 
and consequently it is ergodic. Most people habituate to this noise, 
meaning that the brain’s neurons no longer fire in response to this 
excitation and they soon fall asleep. The rate of decay to region II of the 
cube is given by Equation (7).

The next stimulus we consider is the sound of water dripping 
from a faucet and splashing in the basin below. Unlike the traffic noise 
that can lull one to sleep, the sequence of crashes from the drops of 
water striking what sounds like a drum head, often induces insomnia. 
Experiments have determined that the distribution of time intervals 
between water droplets is Lévy stable, which asymptotically becomes 
an inverse power law with index µP ≈ 1.73 [24,25]. The precise value of 
the index depends on the conditions of the experiment, but typically 
the index falls in the domain 1<µP<2. Over the interval 1<µS<2 the 
brain response increases linearly with increasing µS, until it reaches the 
upper plateau. Over the interval 2<µS<3 the asymptotic brain response 
to the intermittent splashes given by the cross-correlation function is 
uniformly maximum. The upper plateau depicts the parameter domain 
where the brain is ergodic and tracks the sound of every intermittent 
drop of water and being unable to predict, even approximately, when 
the next splash will occur, the general response is annoyance and 
wakefulness.

Property-3 focused on the precipitous drop from the upper to the 
lower plateau regions in the center of the cube. The striking difference 
between the response to a simple (ergodic) stimulus and the response to 
a complex (non-ergodic) stimulus is intimately related to the emergence 
of 1/f-noise. We have shown elsewhere [13] that the spectrum of the 
P-network is 1/f 3-µP, where f is the frequency of the spectral component 
of the non-ergodic stimulus. Only at the crucial condition µP=2 does
the ideal case of 1/f-noise occur, where the maximal information
transmission rate is achieved.

These results strongly suggest that, just as physical forces are the 
consequence of the variation of energy, so too “ information forces” 
are the consequence of the variation of information or equivalently of 
complexity. In a strictly physical and in some biological systems, these 
two types of forces coalesce into the entropic force, such as observed 
in the elasticity of a freely-jointed polymer molecule [26], in entropic 
crystals [27] and the force between biological membranes [28]. 
However, in the social and psychological realms, the force results from 
the structure and stochastic nature of the complexity associated with a 
network’s information content and therefore it might be viewed as an 
information force, rather than an entropic force.

The existence of an information force is a new concept requiring 
significant research to determine if it is merely a metaphor, based on 
the identification of entropy with information, as originally made by 
Maxwell [29], or whether it is a viable source for controlling, as well 
as understanding, organization in non-physical systems. The cross-
correlation cube suggests the existence of this phenomenological force 
as a consequence of the PCM; a force resulting from the statistical 
tendency of a complex network to decrease its information content, as 
distinct from a force arising from a specific energy gradient.

Conclusion
The excellent review of thermodynamics and information [29] 

lays out the arguments for information being physical, in the same 
way that entropy is physical. The use of Maxwell’s demon in the 
argument almost certainly restricts the information being considered 
to physical processes. The only scientific discipline brought into their 
discussion from outside the physical sciences was biology, where the Figure 2: Wiener’s Rule.
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interleaving with physics was quite clear. Consequently, the argument 
for the physicality of information is still not obvious in the myriad of 
applications of information to phenomena in psychology and sociology. 
It is probably this distinction that Shannon had in mind when he 
stipulated that his use of entropy as the measure of information would 
not include the meaning of the message being communicated, since 
meaning could not be quantified.

When a person says they are “being forced to do something”, it is 
usually not a physical force that is being applied to illicit that response, 
although an image invoking that metaphor may come to mind. What is 
meant is that another person or organization, with greater information 
concerning their future well being, is determining that they do 
something, which, left to their own devices, they would not do. And, of 
course, in order for this force to be effective they must have the person’s 
consent. Recall the experiments of Milgrim [29] on a person’s blind 
obedience to authority.
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