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Introduction
Influence of maternal alcoholism on brain development in human 

embryos and fetuses, the possible mechanisms of its effect on the 
formation of neural tissue and the development of synaptic structures 
and receptor systems in the brain have received insufficient study [1,2]. 
It has been shown, that ethanol triggers apoptotic neurodegeneration 
[3] in the developing brain, when administered to infant rodents
during the period of synaptogenesis, also known as the brain growth
spurt period [4]. These induce lifelong neurobehavioral disturbances
associated with the human Fetal Alcohol Syndrome (FAS) [5,6].
Chronic alcohol exposure inhibits neurogenesis [7-9] and dendritic
growth of newborn neurons [6]. Ethanol’s harmful effects include
neuronal cell death, impaired differentiation, reduction of neuronal
numbers, and weakening of neuronal plasticity. These factors regulate
development and differentiation of neurons by acting through various
receptors and their signaling pathways [10]. Signaling mechanisms that 
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Abstract
Graphical Abstract: Influence of maternal alcoholism on the brain benzodiazepine receptor development in 

human’s embryo and fetus showed decreases their affinity and increases density as compensatory adaptation of the 
fetal nervous system to the effects of alcohol.

Abstract: Signaling mechanisms that are required for proper neuronal development and how these processes 
are impaired by ethanol resulting in harmful consequences to brain development are very important for our 
understanding. The aim of the present work was to study the development of synaptic Benzodiazepine Receptors 
(BzDR) (functionally associated with the brain GABAergic system) in the brains of embryos and fetuses aged 8-15 
weeks obtained from alcoholic female patients. 

Material and method: Abortive material (samples of brain tissue) was obtained from 33 women with grade II 
alcoholism (ICD-10 F10.201 and F10.202) and 30 control women were studied. The properties of BzDR were studied 
by radioreceptor binding with the selective ligand [3H]-flunitrazepam using a crude embryo brain synaptosomal 
fraction. 

Results: In contrast to controls, brain cells developing in conditions of prenatal alcoholization showed  formation 
of synaptic benzodiazepine receptors and alterations in their properties: decreases in their affinity and increases in 
their density. A decrease in the ability of receptors to bind agonist ligands impairs the ligand: receptor protein ratio, 
leading to decreased binding of the major neurotransmitter GABA and impairment to synaptic transmission. 

Conclusion: These are interpreted as compensatory reactions promoting adaptation of the fetal nervous system 
to the effects of alcohol and functional deficiency of the GABAergic system.

are required for proper neuronal development and how these processes 
are impaired by ethanol resulting in harmful consequences to brain 
development are very important for our understanding [11]. 

Developing networks follow common rules to shift from silent cells 
to coactive networks that operate via thousands of synapses. Some of 
these closely related to the neurotransmitter Gamma-Aminobuytric 
Acid (GABA), which operates primarily via chloride-permeable 
GABAA receptor channels. Neurons have a higher intracellular 
chloride concentration at an early stage leading to an efflux of chloride 
and excitatory actions of GABA in immature neurons. GABA signaling 
is also established before glutamatergic transmission, suggesting that 
GABA is the principal excitatory transmitter during early development 
and can modulate the cell cycle, cells formation [12,13] and its 
migration [14]. 

Many investigations suppose significant role of GABA and GABA-
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ergic neurotransmission in mechanisms of ethanol’s action and 
including GABA as a candidate of growth factor in Central Nervous 
System (CNS) [15,16]. An important point in the functioning of the 
GABA receptor complex is that this oligomeric protein complex 
contains various allosteric binding sites modulating the activity of 
the receptor. These allosteric binding sites are the targets for a variety 
of agents, including benzodiazepines and ethanol. Benzodiazepines, 
binding with specific sites – Benzodiazepine Receptors (BzDR) 
on GABA receptors – alter its conformation and affinity [17-20]. 
Substances acting on GABA type A receptors (GABAAR) ethanol, 
benzodiazepines, and barbiturates) are able to influence adversely 
on development of CNS. Benzodiazepine and alcohol, reinforcing 
activity of GABAAR also increase teratogenic effects in animals and 
human beings and give rise to defects of formation of neuronal tube. 
The early ontogeny of the benzodiazepine receptor was also evaluated 
in fluorographs ([3H]-flunitrazepam) and immunoblots using the 
alpha 1-subunit-specific monoclonal antibody (mAb) bd-24. Specific 
radiolabeled proteins with molecular weights of 53K and 59K were 
visible in cortical membranes from gestational week 8, the earliest time 
investigated [21].

 Because processes of  brain development have close association with 
functioning of GABAA – BzDR system, it is important to investigate the 
influence of GABA-active substances including ethanol on receptor’s 
formation in developing CNS. Our investigations continue study 
of influence of alcohol on the BzDRs and in particular receptors of 
developing human brain.

The aim of  this investigation was to study the dynamics of 
formation and development of BzDRs of brain synapses of embryos 
and fetuses aged 8-15 weeks of development, obtained from healthy 
women and alcoholic female patients.

Materials and Methods
The brains of human embryos and fetuses at 8-15 weeks of 

development were studied, obtained in compliance with the 
requirements of the Ethics Committee and with patients’ consent 
during pregnancy termination procedures for medical indications.

A total of 33 embryos and fetuses were obtained from female 
alcoholic patients and constituted the study group. Alcoholic patients 
were aged 26-39 years and the duration of illness was 3-13 years. In all 
cases, alcoholism was diagnosed (ICD-10 F10.201, F10.202). Diagnoses 
of alcoholism were established at the Addictive States Department, 
Mental Health Research Institute of Siberian Branch of Russian 
Academy of Medical Sciences.

The control group consisted of embryos and fetuses from healthy 
women with no history of neurological or mental illnesses. Women 
of the control group were of comparable age as alcoholic patients. 
Significant information was obtained by using embryonic material only 
from cases in which there were no harmful influences with additional 
effects on embryo brain development (radiation, chemical substances, 
certain medical drugs, and maternal diseases during pregnancy, i.e., 
influenza, rubella, toxoplasmosis etc.).

The properties of BzDR were studied by radioreceptor binding with 
the selective ligand [3H]-flunitrazepam (85 Ci/mol; “Amersham”) using 
a crude embryo brain synaptosomal fraction at a final concentration of 
0.2-10 nM in 0.25 ml samples of the incubation volume at 0°C for 60 
min. The final membrane protein concentration was 0.3 mg/ml in incubation 
volume. Nonspecific binding was performed in the presence of non-
radioactive flunitrazepam at a concentration of 10 nM.

 Bound ligand was separated by vacuum filtration through GF/B-
filters (“Whatman”); the filters were washed with 15 ml Tris-HCL (50 
mM, pH 7.4, 0°C), the filters were placed in glass vials containing 10 ml 
of scintillator. Radioactive analysis of the amount of bound ligands was 
carried out in scintillation β-counter - “Rack-beta” (LKB). Nonspecific 
binding (<10 %) was similar in control and test samples.

Radioanalysis of the quantity of bound ligand was performed in a 
Rack-beta (LKB) scintillation β-counter. The dissociation constant of 
the receptor-ligand complex (Kd) and maximum number of specific 
binding sites (Bmax) were determined by analysis of saturation 
curves in Scatchard coordinates and expressed in 10 nM and in mol/
mg protein respectively. Distributions of parameters did not deviate 
from the normal, so statistical analysis of the data was performed 
by parametric variational statistics (Student’s test) on Statistica 8.0; 
differences were regarded as significant at p<0.05. ). 

Experimental work was carried out in the Department of Clinical 
Neuroimmunology and Neurobiology of Mental Health Research 
Institute, SB RAMSci (Tomsk) and in the Laboratory of Clinical 
Biochemistry of Mental Health Research Center RAMSci (Moscow). 
All the studies were approved by the Ethics Committee of the Mental 
Health Research Institute SB RAMSci.

Results 
Study the kinetic characteristics of [3Н]-flunitrazepam binding 

(Kd and Bmax) to synaptosomal membranes prepared from brain 
tissue of human embryos and fetuses showed that absolute value of 
these parameters was increased during ontogeny in control and basic 
groups. These data support the general pattern consisting of an increase 
in receptor number in human brain during ontogeny. BDR affinity 
(inverse of the receptor dissociation constant - 1/Kd) also changed, 
reflecting a tendency to decrease with increasing developmental period, 
which was reflected in increasing values of Kd (Figure 1). 

Studies of the properties of human brain BDR at 8-9 weeks of 
development showed that specific [3H]-flunitrazepam binding site 
density (Bmax) was greater in the study group than the control group. 
At the same time a decrease in receptor affinity for the selective ligand 
[3H]-flunitrazepam, in the study group has been found, reflected in an 
increase in the absolute value of Kd (Table 1). The value characterizing 
receptor affinity was the inverse of the ligand-receptor complex 
dissociation constant – 1/Kd. This provides evidence for a reduction 

Figure 1: Statistical analysis of [3H] flunitrazepam binding parameters [Kd 
(nM) – constant of dissociation ligand-receptor complex] with synaptosomal 
membranes of human embryonic brain in the control (a) and basic groups (b) 
in dynamics.
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in receptor affinity, i.e., the affinity of BzDR, along with an increase in 
the number of BzDR in human embryo brains under the influence of 
maternal alcoholization. 

At 10-11 weeks of development, benzodiazepine receptor density 
(Bmax) in the control group increased with the increase in embryo 
developmental period, while there was a reduction in the affinity of 
receptors for their ligand, apparent as an increase in the absolute value 
of Kd. These data provide evidence of changes in receptor affinity and 
density with growth and development of the nervous system in embryo 
brains (Figure 2). 

The study group at this period showed the same tendency as in 
earlier periods of fetal development, which was apparent as an increase 
in receptor density and a decrease in receptor affinity as compared with 
controls. However, it should be noted that the dynamics of changes in 
receptor density was nonlinear. At 10 weeks of development, there were 
minor changes in [3H]-flunitrazepam binding characteristics in control 
and study groups. Receptor density increased slightly between the 
ninth and tenth weeks of fetal development; in the study group, where 
the developing brain was under the influence of alcohol, there were no 
significant differences in BzDR density in this period. There was some 
slowing in the increase in receptor density (Table 1), especially in the 
study group. 

These results that indicate that changes in BzDR density between 
8-9 weeks and 10-11 weeks were insignificant and it was only at 12-13 
and 14-15 weeks of development that more marked growth in absolute 
values of Bmax was seen, supporting a significant increase in synaptic 
BzDR density in this period. The increase in receptor density in the 
control group from 8-9 weeks to 14-15 weeks of development reached 
almost 200%, with some delay at week 10. 

Receptor density in the study group was greater than that in the 
control group in different development periods, the largest differences 
from controls being seen in later periods of development, i.e., 12-13 
and 14-15 weeks. These data support the general pattern consisting of 
an increase in receptor number with increases in the developmental 
period of human embryos and fetuses during ontogeny. 

BzDR affinity also changed, reflecting a tendency to decrease 
with increasing developmental period. Thus, the ligand affinity of 
receptors, which characterizes their sensitivity, was maximal in the 
earliest developmental periods, so that the early stages of human brain 
development are the most sensitive and vulnerable to the actions of 
alcohol.

The dynamics of changes in the affinity of BzDR for the selective 
ligand in the brains of human embryos and fetuses during ontogeny 
had developmental characteristics in the control group which were 
very close to the linear, apparent as decreases in receptor affinity with 
increases in embryonic and fetal developmental periods, approaching 
adult values. In the mature brain, the ligand affinity of receptors is 
somewhat lower than affinity at the earliest stages of development. In 
our study, receptor affinity in the brains of embryos and fetuses during 
development from 8-9 to 14-15 weeks decreased, i.e., Kd increased 
from 1.5 to 2.12 nM. In the study group, BzDR affinity in synaptosomal 
membranes isolated from the brains of human embryos and fetuses 
from alcoholic mothers was lower at all the developmental stages 
studied than in the control group, which was apparent as an increase in 
absolute Kd values from 8-9 to 14-15 weeks, i.e., from 1.59 to 2.45 nM. 
In addition, the dynamics of changes had a rather different nature, and 
Kd at the later period of development – 14-15 weeks – was greater than 
that in the control group: 2.12 and 2.45 nM, respectively. Fetal brain 
receptors in the study group in our experiments in developmental 
period 14-15 weeks had lower affinity than receptors in the normal 
mature human adult brain. A decrease in the ability of receptors to 
bind agonist ligands impairs the ligand: receptor protein ratio, leading 
to decreased binding of the major neurotransmitter GABA and 
impairment to synaptic transmission. 

Discussion 
Our investigations have shown that in contrast to controls, brain 

cells developing in conditions of prenatal alcoholization showed 
slowed formation of synaptic benzodiazepine receptors: decreases in 
their affinity and increases in their density. These are interpreted as 
compensatory reactions promoting adaptation of the fetal nervous 
system to the effects of alcohol and functional deficiency of the 
GABAergic system.

Fetal brain receptors in the study group in our experiments at 
developmental period 14-15 weeks had lower affinity than receptors in 
the normal mature human adult brain [22,23]. A decrease in the ability 
of receptors to bind agonist ligands impairs the ligand: receptor protein 
ratio, leading to decreased binding of the major neurotransmitter GABA 
and impairment to synaptic transmission. Simultaneous decrease 
in the affinity of synaptosomal BzDR, the tendency to an increase in 

Developmental 
period, weeks Control group Study group

Bmax(fmol/
mgprotein)‏ Kd(nМ) n Bmax(fmol/

mgprotein)‏ Kd(nМ) n

8-9 984,22 ± 
11,64

1,500 ±  
0,024 9 1210,00 ± 32,79*

p =0,0001
1,591 ± 0,023*

p =0,014 9

10-11 1156,00 ± 
15,22

1,700 ± 
0,019 8 1367,40 ± 30,38*

p =0,0001
1,792 ± ,019*

p =0,04 10

12-13 1456,29 ± 
24,17

1,900 ± 
0,023 7 1824,13 ± 33,51*

p =0,0001
1,982 ± 0,018*

p =0,014 8

14-15 1712,00 ± 
35,24

2,120 ± 
0,031 5 1938,17 ± 47,28*

p=0, 005
2,450 ± 0,068*

p =0,0027 6

Note: Bmax – [3H]-flunitrazepam binding density with synaptosomal BzDR; 
Kd – ligand-receptor complex dissociation constant ([3H]-flunitrazepam with 
synaptosomal BzDR); *statistically significant differences between study and 
control groups, p<0.01
Table1: [3H]-flunitrazepam binding properties with synaptosomal membranes from 
human embryo and fetus brains (8-15 weeks of development).

Figure 2: Statistical analysis of [3H] flunitrazepam binding parameters [Bmax 
(fmol/mg of protein) – density of binding sites] with synaptosomal membranes 
of human embryonic brain in the control (a) and basic (b) groups in dynamics.
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receptor density can be evaluated as a compensatory reaction directed 
at adapting the embryo and fetus nervous system to conditions of 
functional insufficiency of GABAergic neurotransmission.

The action of alcohol may lead to changes in BzDR conformation, 
with increases in affinity for the major agonist. The decrease in receptor 
affinity can be regarded as resulting from partial inhibition of BzDR 
due to formation of peptide DBI (diazepam-binding inhibitor) and 
its metabolites [20,24]. In addition, endogenous DBI peptide has been 
shown to have anxiogenic actions, i.e., to be an inverse agonist of BzDR 
[25]. Alcohol may stimulate the synthesis of an endogenous polypeptide 
interacting with BzDR and decreasing their binding affinity with the 
GABA agonist [3H]-flunitrazepam [25]. 

Against the background of the decrease the affinity of synaptosomal 
BzDR, the tendency to an increase in receptor density can be evaluated 
as a compensatory reaction directed at adapting the embryo and fetus 
nervous system to conditions of functional insufficiency of GABAergic 
neurotransmission [23,24]. 

Our results have shown that alcohol consumption by mothers 
influences on the properties of BzDRs linked with GABAARs in the 
developing brain of their offspring and may affect development of CNS 
of embryo and fetus through these receptors, that may explain reduction 
of efficacy of binding of BzD as a consequence of chronic alcohol 
consumption or as a possibility of alcohol dependence development. 
These results support the view that maternal alcohol consumption, 
which influences the processes of synaptosomal BzDR formation to 
modulate GABA receptor function, impairs the development of the 
embryo and fetus brain that can lead to various physical and mental 
disorders, including the development of FAS. 

Prenatal exposure to alcohol on the developing brain could lead to 
disturbances in the trophy actions of GABA on some neurotransmitter 
systems in the embryonic brain and produce alterations in GABAA-
BzD receptor expression and function. These processes could lead to 
disturbances in postnatal functions of GABAergic system, possibly 
with behavioral consequences [1]. Because alcohol acts on GABAA-
BzD receptor complex as an agonist, one may suppose that alcohol 
consumption descendants of women abusing alcohol may be a 
compensatory mechanism under conditions of deficit of GABAergic 
function. 
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