
1J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000338

OPEN ACCESS Freely available online

Correspondence to: Richard Biddle, Department of Computer Science and Engineering, University of Castilla-La Mancha, Ciudad Real, Spain, 
E-mail: richardbiddle@edu.es

Received: 14-Apr-2023, Manuscript No. JITSE-23-24873; Editor assigned: 19-Apr-2023, PreQC No. JITSE-23-24873 (PQ); Reviewed: 03-May-2023, 
QC No. JITSE-23-24873; Revised: 10-May-2023, Manuscript No. JITSE-23-24873 (R); Published: 17-May-2023, DOI: 10.35248/2165-7866.23.13.338 

Citation: Biddle R (2023) Indispensable Evolution of Software Component Connectivity between Programmers and IT Operations in Modern 
Applications. J Inform Tech Softw Eng. 13:338. 

Copyright: © 2023 Biddle R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Journal of Information Technology & Software 
Engineering

Opinion Article

Indispensable Evolution of Software Component Connectivity between 
Programmers and IT Operations in Modern Applications
Richard Biddle*

Department of Computer Science and Engineering, University of Castilla-La Mancha, Ciudad Real, Spain

DESCRIPTION 

In today's technology-driven world, software components play a 
pivotal role in shaping the landscape of software development. These 
building blocks of code have revolutionized the way applications 
are designed, developed, and maintained. By encapsulating 
specific functionalities and offering reusable solutions, software 
components enhance efficiency, accelerate development cycles, 
and foster collaboration among developers. Software components 
have a rich history that can be traced back to the advent of 
structured programming in the 1960s. As software systems grew 
in complexity, the need for modularization became evident. The 
concept of breaking down a program into reusable modules laid 
the foundation for software components. These early iterations 
focused on organizing code and improving code reusability within 
a single application. Fast forward to the late 1990s and early 2000s, 
the emergence of component-based development frameworks 
like the component object model and common object request 
middleware architecture marked a significant turning point. 
These frameworks facilitated inter-process communication and 
enabled components to be developed in different programming 
languages, fostering interoperability. This shift paved the way for 
component-based architectures and the rise of distributed systems. 
Over the years, software components have undergone remarkable 
advancements, driven by the ever-evolving needs of the software 
development industry. Key developments that have shaped the 
evolution of software components include:

Component-based architectures

Component-based development gained prominence with the 
rise of frameworks like JavaBeans and .NET, which introduced 
standardization and made components more accessible across 
different platforms. This architectural approach emphasized 
loose coupling, allowing developers to assemble applications by 
connecting independent and reusable components.

Open-source component libraries

The advent of open-source software and community-driven 
development brought forth a multitude of component libraries, 

such as jQuery, React, and Angular. These libraries offer pre-built, 
tested, and well-documented components, empowering developers 
to leverage existing solutions and focus on application-specific 
functionality. The open-source nature of these libraries promotes 
collaboration and knowledge-sharing within the developer 
community.

Microservices and Microservices and Service-Oriented 
Architectures (SOA)

The rise of microservices and Service-Oriented Architectures 
(SOA) further transformed the software component landscape. By 
decomposing applications into smaller, loosely coupled services, 
developers can achieve scalability, maintainability, and flexibility. 
Each microservice encapsulates a specific business capability, 
functioning as an autonomous software component that can be 
developed, deployed, and scaled independently.

Containerization and component deployment

Containerization technologies like Docker have revolutionized 
the deployment of software components. Containers provide a 
lightweight, isolated environment that encapsulates a component 
and its dependencies, ensuring consistency and portability 
across different platforms. Container orchestration platforms, 
such as Kubernetes, enable efficient management and scaling of 
component-based applications.

Adoption and benefits of software development

Reusability and productivity: Software components promote 
code reuse, allowing developers to leverage existing solutions and 
focus on higher-level functionalities. This reusability accelerates 
development cycles, reduces redundancy, and boosts overall 
productivity. Developers can build applications faster by assembling 
pre-existing components, freeing up time to concentrate on novel 
features and improvements.

The adoption of software components has brought forth numerous 
benefits to the software development ecosystem, which includes:



2

Biddle R OPEN ACCESS Freely available online

J Inform Tech Softw Eng, Vol.13 Iss.3 No:1000338

on demand, ensuring optimal resource allocation. Additionally, 
the modular nature of software components facilitates easy 
maintenance, updates, and enhancements, enabling applications 
to evolve and adapt to changing requirements.

Collaboration and specialization: Collaborative software development 
is the process of developers working together on open-source software 
while sharing knowledge to solve problems quickly and effectively. The 
majority of software development projects were traditionally outsourced 

to a tech business, which resulted in  teamwork. Applications of 
software systems development are the two main areas of expertise in 

software engineering. But within each of these fields, specific practice 
areas exist. Software developers may decide to specialize in a particular 
programming language or approach to development.

Utilizing the available technology can improve and ease the lives of 
individuals and businesses, which is why software development has 
grown to be such a crucial tool. Although design and development 
teams are essential for successful product development, customer 
service, marketing, and quality assurance are frequently involved 
in this task as well.

Scalability and flexibility: Component-based architectures, 
microservices, and containerization enable scalable and flexible 
applications. Components can be scaled independently based 


