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Abstract

Among hand injuries, �exor tendon lacerations remain a challenge for hand surgeons. There are presently no 
therapeutic agents available for the prevention of tendon adhesions. It is already known that TGF-β1 plays a role in 
tendon healing as well as in adhesion formation. Anti-TGF-β1 therapies are not e�ective in preventing adhesion 
formation. The goal of the present study was to identify possible genes that are affected by TGF-β1 in human Flexor 
Digitorum Profundus (FDP) tendon cells (tenocytes) in vitro. Tenocytes were isolated from human FDP tendons and treated 
with TGF-β1 in low-serum cell culture medium. Gene expression was assessed at 6h and 24h using RT-PCR. TGF-β1 caused 
upregulation of several genes ( SERPINE1, PLAU, ACTA2, CTGF, FN1, COL1A1, COL3A1, LOX, COMP, MMP13, 
TIMP1, TIMP3, BGN, SCX, POSTN, SMAD7, IL6, IGF1), downregulation of MMP9, DCN and ACAN, and had no effect 
on MMP2 and TIMP2. Targeting TGF-β1-affected genes may be an alternative therapeutic approach in controlling adhesion 
formation that may lead to optimal healing of injured FDP tendon or FDP tendon graft.
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Methods and Materials

Isolation of tendon cells from FDP and their culture in vitro
Human FDP tendon specimens, discarded for surgical reasons, were 

obtained from the University of Rochester Medical Center (Rochester 
NY USA) from patients following a protocol that was approved by 
University ethics committee. The normal part of the tendon specimen 
was used to isolate tendon cells known as tenocytes or tendinocytes. 
The tissue was transported to the laboratory in sterile DPBS 
(ThermoFisher Scientific #14287072) at room temperature. Specimen 
were stripped of surrounding tissue, washed in DPBS containing 1%
Penicillin-Streptomycin (10,000 U/mL; ThermoFisher 
Scienific#15140122), and minced into ~1-mm pieces with sterile 
scalpels. The minced tissue pieces were treated with trypsin (0.25%
trypsin; #25200056, ThermoFisher Scientific) for 30 min at room 
temperature under a sterile cell culture Biosafety Cabinet. The tendon 
pieces were than transferred into 100-mm cell culture dishes 
containing cell culture medium composed of MEM-alpha 
(ThermoFisher Scientific #12571) supplemented with 20% heat-
inactivated fetal bovine serum (Sigma-Aldrich, #F6178), 1% Penicillin-
Streptomycin, and 100 µM 2-mercaptoethanol (Sigma-Aldrich, 
#M7522). Medium was changed gently every 3 days without loosing 
minced tissue pieces. Tenocytes proliferated from tendon pieces by 
day-10, and the monolayer of cells was obtained by day-16. The cells 
were expanded further upto passage 3. For experimental purpose, a 
total of 0.6x106 cells were plated in 100 mm cell culture dishes in 10%-
FBS medium for 48h. Medium was replaced by 1%-FBS medium. After 
serum starving for 16h, medium was replaced by fresh 1%-FBS 
medium (control) or 1%-FBS medium containing 5 ng/ml rhTGFb1 
(Recombinant human TGF-beta 1 protein; TGF-β1; #240-B-010, R&D 
Systems). The cell culture experiment was terminated at 6h and 24h.

We used 5 ng/ml concentration since it is in the accepted physiological
range as shown in literature [16].

RNA extraction and real-time reverse transcription
polymerase chain reaction

For total RNA isolation, medium was removed from the dishes. The
monolayer of tenocytes was first scraped with a tissue scraper and than
resuspended in 1 ml of Trizol reagent (ThermoFisher Scientific
#15596018) and homogenized using a hand-driven glass homogenizer,
and total RNA was isolated using manufacturer’s protocol.
Complementary DNA (cDNA) was prepared from 1 μg total RNA in a
20 μL of reaction mixture in 0.2-mL tubes (Bio-Rad) using MMLV
Reverse Transcriptase system (ThermoFisher Scientific#28025013) and
following the manufacturer’s protocol. A fixed volume of 0.5 μL cDNA
was used for real-time reverse transcription polymerase chain reaction
(RT-PCR) using SYBR Green (Applied Biosystems#: 4309155) and
specific primers for human genes (Table 1). The mRNA expression of
several genes at different time-points was assessed (Figures 2-4). The
amplification was monitored real time using the 96-well iCycler iQTM
Real-Time PCR Detection System (Bio-Rad, Hercules, California,
USA). The threshold cycle (Ct) values were related to a standard curve
made with the cloned PCR products, and specificity was confirmed by
melting curve analysis after amplification. The general range of Ct
values were 15-30. Beta-actin gene Actb was chosen as an internal
control. Data at different time-points (6h and 24h) of TGF-β1-
treatment groups, in triplicates, are presented as the mean fold
induction over untreated groups. Data at each time-point, in
triplicates, were presented as the mean fold induction ±SD; p-value less
than 0.05 to differ treatment from control, was considered as
significant.

Gene Primer sequence (5’è3’) NCBI Ref. No. Sequence Size

ACAN (aggrecan)
F CCCAACCAGCCTGACAACTTT

NM_013227.3 216
R GTACCGCACCAGGGAATTGAT

ACTA2 (alpha 2, smooth muscle, aorta)
F CAGGGCTGTTTTCCCATCCAT

NM_001141945.1 142
R GCCATGTTCTATCGGGTACTT

ACTB (actin, beta)
F CATGTACGTTGCTATCCAGGC

NM_001101.3 250
R CTCCTTAATGTCACGCACGAT

BGN (biglycan)
F GAACAGTGGCTTTGAACCTGG

NM_001711.5 178
R CAGCTTGGAGTAGCGAAGCA

COLIA1 (collagen, type I, alpha 1)
F GCCGTGACCTCAAGATGTG

NM_000088 208
R GCCGAACCAGACATGCCTC

COL3A1 (collagen, type III, alpha 1)
F GGTGCTCGGGGTAATGACG

NM_000090.3 84
R TCCAGGGAATCCGGCAGTT

COMP (cartilage oligomeric matrix protein)
F CGAGTCCGCTGTATCAACACC

NM_000095.2 170
R GAGTTGGGGACGCAGTTATGT

CTGF (connective tissue growth factor)
F GGCAAAAAGTGCATCCGTACT

NM_001901.2 113
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DCN (decorin)
F AGTTGGAACGACTTTATCTGTCC

NM_133503.3 160
R GTGCCCAGTTCTATGACAATCA

FN1 (fibronectin)
F GAAGGCTTGAACCAACCTACG

GeneBank: AB191261.1 96
R TGATTCAGACATTCGTTCCCAC

IGF1 (insulin-like growth factor 1)
F GGAGCTGTGATCTAAGGAGGC

NM_001111283.1 119
R GGGCTGATACTTCTGGGTCTT

IL6 (interleukin 6)
F AAATTCGGTACATCCTCGACGG

NM_000600.3 112
R GGAAGGTTCAGGTTGTTTTCTGC

LOX (lysyl oxidase)
F GCCCGTCACTGGTTCCAAG

GeneBank: EF094938.1 164
R TAGGGGTTGTAAGGGTCGTCG

MMP2 (matrix metallopeptidase 2)
F GCCCCAGACAGGTGATCTTG

NM_001302510.1 101
R GCTTGCGAGGGAAGAAGTTGT

MMP9 (matrix metallopeptidase 9)
F TGGCAGAGATGCGTGGAGA

NM_004994.2 229
R GGCAAGTCTTCCGAGTAGTTTT

MMP13 (matrix metallopeptidase 13)
F ACTGAGAGGCTCCGAGAAATG

NM_002427.3 103
R GAACCCCGCATCTTGGCTT

PLAU (plasminogen activator, urokinase type)
F GTGAGCGACTCCAAAGGCA

NM_002658.3 117
R GCAGTTGCACCAGTGAATGTT

POSTN (periostin, osteoblast specific factor)
F CTTGGCTCATAGTCGTATCAGGG

NM_006475.2 69
R CCCAAAATCTGTTGAAGGGCA

SCX (basic helix-loop-helix transcription factor
scleraxis)

F GCACGCTGATCCCCACCGAG
NM_001080514.2 95

R CACGTTGCCCAGGTGCGAGA

SERPINE1 or PAI1 (serpent peptidase inhibitor, clade E
(nexin, plasminogen activator inhibitor type 1), member
1

F CATCCCCCATCCTACGTGG
NM_000602.4 109

R CCCCATAGGGTGAGAAAACCA

SMAD7 (SMAD family member 7)
F TTCCTCCGCTGAAACAGGG

NM_001190821.1 116
R CCTCCCAGTATGCCACCAC

TIMP1 (TIMP metallopeptidase inhibitor 1)
F CTTCTGCAATTCCGACCTCGT

NM_003254.2 127
R CCCTAAGGCTTGGAACCCTTT

TIMP2 (TIMP metallopeptidase inhibitor 2)
F AAGCGGTCAGTGAGAAGGAAG

NM_003255.4 136
R GGGGCCGTGTAGATAAACTCTAT

TIMP3 (TIMP metallopeptidase inhibitor 3)
F CCCAGTGATGCTTGTGTTGAC

NM_000362.4 101
R GGCAGATGTTTAAGTCTTCACCA

Table 1: Human primer sequences used in RT-PCR.

The experiment was repeated three times to observe the consistency
of RNA data. Data were analyzed using one-way ANOVA followed by
Tukey’s all-pair comparisons at alpha = 0.05. A computer software

KaleidaGraph was used to analyze the data and MS office Excel was
used to draw graphs.
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Results
A diagrammatic sketch of a human finger is shown to demonstrate

the location of FDP tendon (Figure 1A). Also hematoxylin & Eosin-

stained paraffin section of human FDP tendon is shown (Figure 1B).
Gene expression data is shown as below and in Table 2.

Gene
Expression at 6h Expression at 24h

(fold change) (fold change)

ACAN (aggrecan) 2.9*↓ 3.9*↓

ACTA2 (alpha 2, smooth muscle, aorta) NS 6.5*↑

BGN (biglycan) NS 2.0**↑

COLIA1 (collagen, type I, alpha 1) NS 2.5*↑

COL3A1 (collagen, type III, alpha 1) NS 1.6**↑

COMP (cartilage oligomeric matrix protein) 3.4**↑ 17.1*↑

CTGF (connective tissue growth factor) 5.2*↑ 13.0*↑

DCN (decorin) 2.9*↓ 2.9*↓

FN1 (fibronectin) NS 2.0**↑

IGF1 (insulin-like growth factor 1) 5.3*↑ 14.1*↑

IL6 (interleukin 6) 9.6*↑ 12.3*↑

LOX (lysyl oxidase) NS 2.2*↑

MMP2 (matrix metallopeptidase 2) NS NS

MMP9 (matrix metallopeptidase 9) 2.2*↓ 2.1**↓

MMP13 (matrix metallopeptidase 13) 2.2*↑ 3.0*↑

PLAU (plasminogen activator, urokinase type) 2.9**↑ 4.2*↑

POSTN (periostin, osteoblast specific factor) NS 1.8*↑

SCX (basic helix-loop-helix transcription factor scleraxis) 5.0*↑ 11.3*↑

SERPINE1 or PAI1 (serpent peptidase inhibitor, clade E (nexin, plasminogen activator
inhibitor type 1), member 1 6.7*↑ 17.0*↑

SMAD7 (SMAD family member 7) 1.9*↑ 2.0*↑

TIMP1 (TIMP metallopeptidase inhibitor 1) NS 1.3**↑

TIMP2 (TIMP metallopeptidase inhibitor 2) NS NS

TIMP3 (TIMP metallopeptidase inhibitor 3) 1.9*↑ 6.6*↑

Table 2: Summary of fold change in gene expression in FDP tendon cells in culture in response to TGFβ1 treatment.

Note: Significance: *P<0.01; **P<0.05

TGF-β1 caused an increase in SERPINE1, PLAU, ACTA2 and
CTGF gene expression

SERPINE1 gene expression increased 6.7 fold at 6h and 17.0 fold at
24h of TGF-β1 treatment to FDP tenocytes in cell culture (P<0.01,

Figure 2a). PLAU gene expressed 2.9 fold higher at 6h (P<0.05) and 4.2
fold higher at 24h (P<0.01) respectively (Figure 2b). ACTA2 gene
expression was higher at 24h and that was 6.5 fold (P<0.01, Figure 2c).
CTGF gene expression was 5.2 fold higher at 6h and 13.0 fold higher at
24h as compared to their respective controls (P<0.01, Figure 2d).
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Figure 1: (A) A diagrammatic sketch of human finger (lateral view) showing the location of Flexor Digitorum Profundus (FDP) tendon and
Flexor Digitorum Superficialis (FDS) tendon. (B) Hematoxylin and eosin-stained histological paraffin section (longitudinal) of FDP tendon
showing collagen fibers and tenocyte nuclei (blue stained).

TGF-β1 caused an increase in FN1, COL1A1, COL3A1, LOX
and COMP gene expression

TGF-β1 caused 2-fold increase in FN1 gene expression at 24h
(p<0.05; Figure 2e). It caused 2.5-fold increase in COL1A1 gene
expression at 24h (p<0.01; Figure 2f), and 1.6-fold increase in COL3A1
at 24h (P<0.05, Figure 2g). LOX gene expression increased 2.2 fold at
24h due to TGF-β1 treatment to FDP tenocytes in cell culture (P<0.01,
Figure 2h). TGF-β1 caused a sharp increase of COMP gene expression.
The level raised 3.4 fold at 6h (P<0.05) and 17.1 fold at 24h (P<0.01,
Figure 2i).

TGF-β1 caused decrease in MMP9, increase in MMP13,
whereas it has no effect on MMP2 gene expression

MMP2 gene expression was not affected by TGF-β1 treatment
(Figure 3a). TGF-β1 caused a 2.2- and 2.1-fold reduction in expression
reduction in MMP9 gene expression at 6h (P<0.01) and 24h (P<0.05)
as compared to their respective control values (Figure 3b), respectively.
On the other hand, TGF-β1 caused a 2.2 and 3.0 fold increase in
expression of MMP13 at 6h (P<0.01) and 24h (P<0.01), respectively
(Figure 3c).

TGF-β1 caused an increase in TIMP1 and TIMP3 but did not
affect TIMP2 gene expression

TGF-β1 caused 1.3-fold increase in TIMP1 gene expression at 24h
(P<0.05, Figure 3d). TIMP3 gene expression increased 1.9 fold at 6h
(P<0.01) and 6.6 fold at 24h (P<0.01) in response to TGF-β1 treatment
to FDP tenocytes (Figure 3f). TIMP2 gene expression was not affected
by TGF-β1 treatment to FDP tenocytes in culture (Figure 3e).

TGF-β1 caused increased BGN and decreased DCN gene
expression

BGN gene expression increased 2-fold (P<0.05) at 24h of TGF-β1
treatment (Figure 3g), whereas, DCN gene expression decreased 2.9-

fold at 6h and at 24h of TGF-β1 treatment to FDP tenocytes in cell
culture (P<0.01, Figure 3h).

Figure 2: mRNA expression of SERPINE1 (a), PLAU (b), ACTA2
(c), CTGF (d), FN1 (e), COL1A1 (f), COL3A1 (g), LOX (h), and
COMP (i), at 6h and 24h of post-TGF-β1 treatment (5ng/mL) of
human FDP tenocytes, in monolayer cell culture. ±S.D., n = 3.
*P<0.01; **P<0.05.
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Figure 3: mRNA expression of MMP2 (a), MMP9 (b), MMP13 (c),
TIMP1 (d), TIMP2 (e), TIMP3 (f), BGN (g), and DCN (h), at 6h
and 24h of post-TGF-β1 treatment (5ng/mL) of human FDP
tenocytes, in monolayer cell culture. ±S.D., n = 3. *P<0.01;
**P<0.05.

TGF-β1 caused varied effect on the expression of other genes
TGF-β1 caused sharp increase of SCX gene expression (P<0.01).

The level raised 5.0 fold at 6h and 11.3 fold at 24h (Figure 4a). POSTN
gene expression increased 1.8 fold at 24h (P<0.01, Figure 4b). ACAN
gene expression was lower at 6h (P<0.01) and 24h (P<0.01) due to
TGF-β1 treatment. The expression was 2.9 fold and 3.9 fold lower than
their respective control (Figure 4c). SMAD7 was expressed 1.9 times
higher at 6h (P<0.01) and 2 times higher at 24h (P<0.01) in response to
TGF-β1 treatment (Figure 4d). Interleukin 6 (IL6) was expressed 9.6-
fold higher at 6h (P<0.01) and 12.3-fold higher at 24h (P<0.01) due to
TGF-β1 treatment (Figure 4e). TGF-β1 caused an increase in IGF1
gene expression (Figure 4f). The increase was 5.3-fold at 6h and 14.1-
fold at 24h (P<0.01).

Discussion

SERPINE1, PLAU
Plasminogen activator inhibitor 1 (PAI-1) is a single-chain

glycoprotein and is encoded by SERPINE1 gene. It is present in plasma
as well as synthesized by many tissues. It inhibits uPA and tPA (tissue-
type plasminogen activator) and is a regulator of plasminogen
activation and plays primary role in fibrinolysis and is involved in the
regulation of cell adhesion, cell migration, and invasion [17]. Skin
wound healing is accelerated in PAI-1-deficient mice [18]. PAI-1
deficiency reduces hepatic fibrosis after bile duct obstruction mainly
through the activation of tPA and Hepatocyte Growth Factor (HGF)
[19]. Earlier we showed that during inflammatory phase of mouse

Flexor Digitorum Longus (FDL) tendon graft healing, Serpine1 gene
expression was higher along with TGF-β1 gene expression [20]. In the
current study, TGF-β1 upregulated SERPINE1 gene expression in FDP
tenocyte cell culture (Figure 2a). This may indicate that SERPINE1
gene is regulated by TGF-β1 and may be involved in FDP tendon
repair and adhesion in vivo.

Figure 4: mRNA expression of SCX (a), POSTN (b), ACAN (c),
SMAD7 (d), IL6 (e), and IGF1 (f), at 6h and 24h of post-TGF-β1
treatment (5 ng/mL) of human FDP tenocytes, in monolayer cell
culture. ±S.D., n = 3. *P<0.01; **P<0.05.

Urokinase-type plasminogen activator (uPA; gene: PLAU ) 
specifically cleaves the zymogen plasminogen to form the active 
enzyme plasmin. Specific cleavage of Arg-|-Val bond, in plasminogen 
to form plasmin, is inhibited by PAI-1 [21]. Urokinase-type 
plasminogen activator plays a vital role in early phases of wound 
healing by aiding fibrin dissolution, promoting migration, 
proliferation, and adhesion of various cells to the wound bed [17]. In 
wounded gingival granulation tissue, TGF-β1 caused an enhanced 
expression of uPA in cells expressing α-SMA indicating its role during 
wound healing [22]. Expression of PLAU  mRNAs was maximal at day 
4 and 7 following Achilles tendon injury [23]. In our earlier study, 
mouse Plau  mRNA expression was highest at day-3 of FDL tendon 
graft healing as compared to other days (day-4 onwards), indicating its 
role in early phase of healing. Farhat et al. [24] showed that TGF-β1 (at 
10 ng/ml) did not affect Plau gene expression signi icantly at 48h in 
mouse FDL tendon cells grown on collagen-coated dishes. In the 
present study, TGF-β1-induced a sharp increase in PLAU gene 
expression at 6h and 24h in human FDP tenocytes (Figure 2b), 
indicating that TGF-β1’s effects on PLAU expression could be more 
pronounced in the irst 24h. TGF-β1-induced PLAU gene expression 
may play a role in the modulation of FDP tendon in lammation, 
adhesion and ibrosis in vivo .

ACTA2
Actins are highly conserved proteins that are involved in various

types of cell motility and are ubiquitously expressed in all eukaryotic
cells. α-actin-2 or α-SMA (gene: Acta2 in mouse or ACTA2 in human),
though mainly expressed in muscle, has been identified in fibroblastic
cells of normal tendons, ligaments, and myofibroblasts [25]. α-actin-2-
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expressing cells (myofibroblasts), in injured rabbit ligament (day 3 to
12-weeks post-injury), were identified at day 3 in medial collateral
ligament, and their density increased to day 21 [26,27]. In mouse FDL
tendon graft healing, Acta2 mRNA expression remained higher on all
the days as compared to day 3 post-surgery indicating its role in the
post-inflammatory events [20,28]. Cultured fibroblasts acquire
myofibroblast phenotype in the presence of TGF-β1 [29].
Myofibroblasts are characterized by large focal adhesions, prominent
stress fibers, and enhanced expression of contractile marker proteins
such as α-SMA [30]. TGF-β1 (at 10 ng/ml) caused an increase in
ACTA2 gene expression in rat embryonic fibroblasts in vitro at 48h
[31]. Subcutaneous administration of TGF-β1 to rats results in the
formation of a granulation tissue in which α-SMA expressing
myofibroblasts were particularly abundant [32]. A universal process in
fibrosis is the formation of myofibroblasts and the subsequent collagen
deposition by these cells. TGF-β1 plays a major role in the formation
of myofibroblasts, e.g., by activating fibroblasts. TGF-β1 caused
upregulation of ACTA2 gene at 48h in PDL (periodontal ligament)
stem/progenitor cell lines (PDLSCs) undergoing fibroblastic
differentiation [33]. In the current study, we showed that TGF-β1
caused an increase in ACTA2 gene expression at 24h in FDP tenocytes,
in cell culture (Figure 2c). That suggests a role for TGF-β1-induced
ACTA2 in FDP tendon healing and fibrosis in vivo.

CTGF
Connective tissue growth factor (CCN2/CTGF) is a growth factor of

38–40 kDa that acts as a potent fibroblast mitogen and angiogenic
factor. CTGF belongs to the CTGF, Cyr61 and Nov (CCN) family of
growth factors [34]. CTGF is best known as a molecule that mediates
the development of fibrotic disorders in a variety of tissues and organs
[35,36]. Inflammation, wound healing and fibrosis are mutually related
biological events. Inflammation occurs upon tissue injury and/or
invasion of pathogenic factors, which usually causes additional damage
to the tissues. The involvement of CTGF in this phase is well
represented by the fact that CTGF regulates the behavior of the
mediators of inflammation and vice versa. For example, CTGF is
induced by TGF-β1 and is repressed by TNF-α, whereas, this gene
product induces inflammatory IL-6, monocyte chemoattractant
protein-1 (MCP1) and Extracellular Matrix (ECM)-remodeling MMPs
[36-38]. In fact, elevated CTGF expression is observed in the inflamed
joints of patients with rheumatoid arthritis and osteoarthritis [39].
TGF-β1 stimulated the transcriptional activity of CTGF gene promoter
in NIH/3T3 fibroblasts [40]. After exposure to TGF-β1 (5 ng/ml), the
maximal level of luciferase activity reached at 12h and maintained to
24h by 2.76- and 2.20-fold, respectively. TGF-β1 stimulated CTGF
expression in airway smooth muscle cells [41]. In a lung fibrosis mouse
model, CTGF inhibition using an inhibitory antibody (FG-3019)
resulted in less fibrosis [42]. In human gingival fibroblasts and
Periodontal Ligament (PDL) cells, the expression of CTGF mRNA and
protein was significantly increased in a dose- and time-dependent
manner in the presence of TGF-β1 [43]. The current study showed that
TGF-β1 plays a role in the modulation of CTGF gene expression of
cultured human FDP tenocytes, suggesting that CTGF may play role in
FDP tendon healing and fibrosis in vivo (Figure 2d).

FN1
Fibronectin (FN) is a high-molecular weight (~440kDa)

glycoprotein of the ECM that binds to membrane-spanning receptor
proteins called integrins [44]. The FN1 gene in humans encodes it.

Similar to integrins, fibronectin binds ECM components such as
collagen, fibrin, and heparan sulfate proteoglycans (e.g., syndecans).
Fibronectin plays a major role in cell adhesion, growth, migration, and
differentiation, and it is important for processes such as wound healing
and embryonic development [44]. Altered fibronectin expression,
degradation, and organization are associated with a number of
pathologies, including cancer and fibrosis [45]. TGF-β1 increases the
expression of fibronectin. Based upon the 48-72h period required for a
maximal fibroproliferative response to dermal injections of TGF-β1,
human fetal lung fibroblasts were exposed to TGF-β1 for periods up to
48h in vitro. A 6-fold increase in fibronectin synthesis was observed at
24h [46]. Similar observations were also reported for fibroblastic cells
[47]. TGF-β1 induces fibroblast proliferation and transformation into
myofibroblasts and stimulates the accumulation of matrix proteins,
including laminin, collagens 1 and 3, as well as fibronectin [48]. In the
current study, TGF-β1 enhanced the FN1 mRNA expression at 24h in
human FDP tenocytes, in cell culture (Figure 2e). TGF-β1-induced
fibronectin may play role in physiology and pathology of FDP tendon
healing in vivo.

COL1A1, COL3A1, LOX
Collagens contribute to tensile strength to tendon and other tissues. 

Collagen, type I or [α1(I)]2 α2(I) and type III or [α1(III)]3, lays an 
important role in tendon healing process. During wound healing, one 
of the fibroblasts’ dominant functions is the production of collagen. 
Higher gene expression of all the collagen genes (Col1a1, Col1a2, and 
Col3a1 ) indicated their role during maturation and remodeling phase 
of FDL tendon graft healing [20,28]. In rat flexor tendon healing study, 
Col1a1  mRNA expression increased from day 3 to 28 with a peak at 
day 28, whereas Col3a1  expression increased from day 3 to the peak 
value at day 14 and then sharply decreased [49].

TGF-β1 at 1 ng/ml to 100 ng/ml caused significant increase in
COL1A1 gene expression at 24h in FDL tendon cells in collagen gels
[50]. Varga et al. [51] reported that TGF-β1 caused a marked
enhancement in the production of type I and III collagen, and
fibronectin by cultured normal human dermal fibroblasts. In another
instance, TGF-β1 increased the expression of COL1A1 in human
dermal fibroblasts and in human lung fibroblasts [52]. TGF-β1 caused
an increase in collagen I expression at 48h in two PDL stem/progenitor
cells lines [33]. Lung fibroblast cultures maintained in medium
containing TGF-β1 sustained an activated rate of collagen production
at 5 nmol/ml/24h for at least 72h [53]. We showed that TGF-β1
enhanced COL1A1 and COL3A1 mRNA expression at 24h in cultured
FDP tenocytes indicating the importance of TGF-β1-induced collagen
production in FDP tendon physiology, pathology and repair (Figure 2f,
2g).

Lysyl Oxidase (LOX) is a key extracellular enzyme responsible for
the post-translational modification of collagen I, and III to form
mature fibrillar collagen. LOX plays a key role in the post-translational
modification of collagens and elastin, catalyzing inter- and intra-
crosslinking reactions. Since the cross-linked ECMs are highly
resistant to degradative enzymes, it is considered that the over-
expression of LOX may cause severe fibrotic degeneration. Goto et al.
[54] showed that TGF-β1 upregulated the production of LOX in
kidney tubular epithelial cells of ICGN (The Institute of Cancer
Research (ICR)-derived glomerulonephritis) mice. As a result, the
highly cross-linked collagens induce an irreversible progression of
chronic renal tubulointerstitial fibrosis in the kidneys of ICGN mice.
Transfection studies showed that the Lox and Col1a1 promoters may

Citation: Juneja SC, Chen T, Farhat YM, Veillette C (2016) In Vitro Effect of Transforming Growth Factor-β1 (TGF-β1) on Gene Expression in
Human Flexor Digitorum Profundus Tendon Cells. Orthop Muscular Syst 5: 218. doi:10.4172/2161-0533.1000218

Page 7 of 14

Orthop Muscular Syst
ISSN:2161-0533 OMCR, an open access journal

Volume 5 • Issue 3 • 1000218



be regulated by similar negative and positive cis-acting elements,
which include TGF-β response element, reported for rat Col1a1 [55]
and for mouse Col1a2 promoters [56]. In vitro studies have shown that
TGF-β1 caused an increase in Lox mRNA expression in murine tail
tenocytes [57]. Increased expression of LOX is associated with fibrosis
and cardiac dysfunction [58]. Adult cardiac fibroblasts were isolated
from male rat hearts and were treated with TGF-β1. TGF-β1 treatment
upregulated LOX mRNA, and protein expression in cardiac fibroblasts.
Concomitant increases in collagen types I and III, and bone
morphogenetic protein 1 expression were found in response to TGF-β1
[58]. The current study showed that TGF-β1 increased LOX gene
expression at 24h in human FDP tendon cells in culture (Figure 2h).
That indicates that TGF-β1-induced LOX gene expression may play
role in FDP tendon healing in vivo.

COMP
Cartilage Oligomeric Matrix Protein (COMP) is a non-collagenous 

glycoprotein expressed in the ECM of articular cartilage, tendon and 
ligaments [59], and is normally produced by chondrocytes, osteoblasts 
and synovial fibroblasts [60]. COMP plays role in the structural 
integrity of cartilage via its interaction with other ECM proteins such 
as the collagens and fibronectin. It mediates the interaction of 
chondrocytes with the ECM through interaction with cell surface 
integrin receptors. It plays role in the pathogenesis of osteoarthritis 
[61,62]. In the presence of TGF-β1, human dermal fibroblasts have 
been shown to increase COMP production in vitro  suggesting a 
correlation between TGF-β1 and COMP production [63]. COMP 
accumulates in Systemic Sclerosis (SSc) skin and is upregulated by 
TGF-β1. TGF-β1 treatment increased COMP and SMA-expressing 
cells. COMP  mRNA expression in lesional skin from patients with 
diffuse cutaneous SSc (dSSc) correlated with TGF-β1 staining [64]. 
Immunohistochemical analysis revealed that COMP was expressed in 
dense fibrotic regions of IPF lungs and co-localized with vimentin and 
around pSMAD3 expressing cells. Stimulation of normal human lung 
fibroblasts with TGF-β1 increased COMP mRNA and protein 
expression [65]. In cultured human FDP tenocytes, we showed that 
TGF-β1 induced COMP  mRNA expression 3.4 and 17.1 fold at 6h and 
24h respectively indicating its possible role in FDP tendon healing and 
fibrosis in vivo  (Figure 2i).

MMP2, MMP9, MMP13, TIMP1, TIMP2 and TIMP3
Matrix metalloproteinase-2 (MMP-2) protein, encoded by MMP2

gene, is a 72kDa type IV collagenase (72kDa gelatinase or gelatinase
A). It contains three-fibronectin type II repeats (FNII) in its catalytic
site that allow binding of denatured type IV collagen (the major
structural component of basement membrane), type V collagen and
elastin. Unlike most MMP family members, activation of this protein
can occur on the cell membrane. This enzyme can be activated
extracellularly by proteases, or intracellulary by its S-glutathiolation.
This protein is thought to be involved in multiple pathways including
roles in the nervous system, endometrial menstrual breakdown,
regulation of vascularization, and metastasis. Mutations in this gene
have been associated with Winchester syndrome and Nodulosis-
Arthropathy-Osteolysis (NAO) syndrome [66,67]. During wound
healing, fibroblasts transition from quiescence to a migratory state,
then to a contractile myofibroblast state associated with wound
closure. Howard et al. [31] found that the myofibroblast phenotype,
characterized by the expression of high levels of contractile proteins,
suppresses the expression of the pro-migratory gene, MMP2.

Fibroblasts cultured in a 3-D collagen lattice and allowed to develop
tension showed increased contractile protein expression and decreased
MMP-2 levels in comparison to a stress-released lattice. In 2-D
cultures, factors that promote fibroblast contractility, including serum
or TGF-β1, down regulated MMP-2. The current study showed that
TGF-β1 did not cause any significant effect on MMP2 gene expression
in FDP tenocytes, in cell culture (Figure 3a). In a previous study, in
mouse FDL tenocytes in collagen gel culture, the authors showed that
MMP2 gene expression was also not affected by TGF-β1 (at 1, 10 and
100 ng/ml) treatment at 6h until 48h post-treatment [50].

Matrix metalloproteinase-9 (MMP-9) protein, encoded by the
MMP9 gene, plays an essential role in local proteolysis of the ECM and
in leukocyte migration. It plays a role in bone osteoclastic resorption. It
cleaves type IV and type V collagen into large C-terminal three-
quarter fragments and shorter N-terminal one-quarter fragments. It
degrades fibronectin [68]. The decreased degradation of ECM is a
potential mechanism of renal fibrosis. Normal kidneys produce
proteases responsible for the hydrolysis of ECM, among which MMPs
are the most important ones, and their activity is subject to the
regulation of the TIMPs (Metalloproteinase inhibitors). MMP-9 is one
of the most important MMPs in the human body inducing enzymatic
degradation of ECM molecules; and TIMP-1 is specific for the
inhibition of MMP-9. The MMP-9/TIMP-1 ratio regulates the
aggregation and degradation of the ECM, which are closely related to
renal fibrosis [69]. A normal ratio of MMP-9 and TIMP-1 plays an
important role in the regulation of ECM secretion and accumulation in
glomerular mesangial cells [70]. The activation of hypoxia-inducible
factor 1α (HIF-1α)-dependent HGF-signaling can promote the
expression of TIMP-1 [71]. MMP-9/TIMP-1 ratio imbalance, by either
reduced MMP-9 expression or increased TIMP-1 expression, promotes
the progression of renal fibrosis. The mRNA and protein expression of
TIMP-1 decreased when TGF-β1 was low in Human amniotic (WISH)
cells, whereas those of MMP-9 elevated when TGF-β1 was low. The
disruption in the ratio of TIMP-1 and MMP-9 was related to the
pathology of the premature rupture of membrane [72]. The current
study showed that TGF-β1 decreased MMP9 gene expression and
increased TIMP1 gene expression in FDP tenocytes, in cell culture
(Figure 3b,3d), indicating that fibrotic behavior in FDP tendon healing
or repair may be modulated in vivo by TGF-β1 level.

Matrix metallopeptidase-13 (collagenase 3; MMP-13) is encoded by
MMP13 gene in humans. MMP-13 plays role in the degradation of
ECM proteins including fibrillar collagen, fibronectin, TNC and
ACAN. It cleaves triple helical collagens, including type I, type II and
type III collagen, but has the highest activity with soluble type II
collagen. It can also degrade collagen type IV, type XIV and type X and
may also function by activating or degrading key regulatory proteins,
such as TGF-β1 and CTGF. MMP-13 plays role in wound healing,
tissue remodeling, cartilage degradation, bone development, bone
mineralization and ossification. It is required for normal embryonic
bone development and ossification [73-75]. TGF-β1 induced a rapid
decrease in MMP13 mRNA within first 6h post-cytokine
administration and that was accompanied by a 2-fold increase in gene
transcription and reached maximum values by 48h [76]. Expression of
MMP-13 by human gingival fibroblasts cultured in monolayer or in
collagen gel was induced by TGF-β1 [77]. Leivonen et al. [78] reported
in Squamous Cell Carcinoma (SCC) cells of the head and neck that
specifically express MMP-13, the expression of which correlates with
their invasion capacity. TGF-β1 enhanced MMP-13 and MMP-1
expression and invasion of SCC cells. The current study showed that
TGF-β1 enhanced MMP13 gene expression at 6h and 24h post-TGF-
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β1 treatment in human FDP tenocytes, in cell culture. This may
indicate an active role of TGF-β1-induced MMP13 in FDP tendon
healing and fibrosis in vivo (Figure 3c).

Metalloproteinase inhibitor 2 (TIMP-2) complexes with
metalloproteinases (such as collagenases) and irreversibly inactivates
them by binding to their catalytic zinc cofactor. It is known to act on
MMP-1, -2, -3, -7, -8, -9, -10, -13, -14, -15, -16 and -19 [79,80]. MMP-2
and TIMP-2 expression were not altered by TGF-β1 [81]. In mouse
FDL tenocytes, Farhat et al. [50] showed that TGF-β1 did not affect
Timp2 gene expression upto 48h, in collagen gel culture. The current
study also showed that TGF-β1 did not alter human TIMP2 gene
expression at 6h and 24h in FDP tendon cells, in culture (Figure 3e).
Metalloproteinase inhibitor 3 (TIMP-3) is encoded by the gene TIMP3
and forms part of a tissue-specific acute response to remodeling
stimuli. It is known to act on MMP-1, -2, -3, -7, -9, -13, -14 and -15
[82,83]. Idiopathic Pulmonary Fibrosis (IPF) is characterized by
fibroblast expansion and ECM accumulation. TGF-β1 induced strong
upregulation of TIMP-3 at the mRNA and protein levels. In IPF
tissues, TIMP3 gene expression was increased and the protein was
localized to fibroblastic foci and ECM. Induction of TIMP-3 by TGF-
β1 could be a mediator in lung fibrogenesis [84]. TGF-β1 induced
expression of TIMP-3 in mouse embryonic fibroblasts. Inhibition of
Smad signaling by expression of Smad7 and dominant negative Smad3
completely abolished TGF-β1-elicited expression of TIMP-3 in human
fibroblasts, whereas overexpression of Smad3 enhanced it [85]. In the
current study, TGF-β1 increased TIMP3 gene expression at 6h and 24h
in human FDP tenocytes, in cell culture (Figure 3f). The study
supports that FDP tendon may be affected by TGF-β1-induced TIMP3
gene expression for inflammation, repair and fibrosis.

BGN and DCN
Biglycan and decorin belong to the SLRPs class I subfamily and are

encoded by BGN and DCN gene respectively in human. Both contain
12 LRRs [86]. Biglycan has two attached GAG chains and decorin has
one. Biglycan is found in several connective tissues, predominantly in
articular cartilage. It is a homodimer and forms a ternary complex with
microfibrillar-associated protein 2 and elastin and may be involved in
collagen fiber assembly. Biglycan binds to Col I in the gap zone of the
fibrils, and decorin competes for that interaction [86]. TGF-β1
differentially regulates DCN and BGN gene expression in skin and
gingival fibroblasts. TGF-β1 (at 5 ng/ml) increased BGN 24-fold and
inhibited DCN gene expression upto 70% [87]. Farhat et al. [50] also
reported that TGF-β1 increased BGN and decreased DCN gene
expression in mouse FDL tenocytes in collagen gels [50]. We showed
that TGF-β1 increased BGN and decreased DCN gene expression in
cultured human FDP tenocytes (Figure 3g), indicating that FDP
tendon function can be modulated by TGF-β1-induced biglycan
expression in vivo.

TGF-β1 and decorin have important interactions in tendon and
other tissues. Decorin has the ability to bind to TGF-β1, which is
involved in the regulation of cell proliferation, differentiation, ECM
production, wound healing, and tissue repair [88]. TGF-β1 is of crucial
importance in triggering excessive formation and deposition of
connective tissue matrix molecules. Decorin-TGF-β1 complex
formation may lead to inactivation of some cytokines and TGF-β1
itself in connective tissue [89]. To investigate, if scar formation could
be prevented by controlling decorin in tenocytes, rabbit Achilles
tendon cells were transfected with antisense decorin; the authors found
that it suppressed TGF-β1 production. The results showed that the

antisense approach is an attractive therapeutic strategy, not only for
preventing decorin deposition in scar tissue, which decreases collagen
fibril diameter, but also for controlling TGF-β1 production, which
leads to organ fibrosis [90]. In vitro studies showed that TGF-β1
suppressed DCN gene expression at 6h and 24h in human FDP
tenocytes, in cell culture (Figure 3h), indicating a possible modulatory
role of TGF-β1 in tendon function, scarring and pathology. Baghy et al.
[91] sought to take advantage of this TGF-β1-decorin relation in
treating hepatic fibrosis and cirrhosis. One of the natural inhibitors of
TGF-β1 is decorin, which binds with high affinity to TGF-β1 and
prevents its interaction with pro-fibrotic receptors. Decorin has a
protective role in liver fibrogenesis insofar as its genetic ablation in
mice leads to enhanced matrix deposition, impaired matrix
degradation, and “activation” of hepatic stellate cells, the main
producers of fibrotic tissue. Moreover, TGF-β1 exerts a stronger effect
when functional decorin is absent. Endogenous decorin prevents and
retards hepatic fibrosis; and thus boosting the endogenous production
of decorin, or systemic delivery of recombinant decorin could
represent an additional therapeutic modality against hepatic fibrosis
[91], and possibly could have a similar effect in the prevention of TGF-
β1-mediated tendon adhesions.

SCX
The basic helix-loop-helix transcription factor, scleraxis, is a specific

marker for all the connective tissues that mediate attachment of muscle
to bone, including limb tendons, and its expression marks the
progenitor cell populations for these tissues. Scleraxis is encoded by
SCX gene in humans [92,93]. Tendon healing is a regenerative process,
and tendon progenitor cells are expected to play a role in the healing
process. In our earlier study, we demonstrated higher Scx gene
expression during mouse FDL tendon graft healing, and that indicated
that scleraxis plays a role in the healing process [20]. In a murine
patellar tendon injury model, Scx mRNA expression was measured at
1-, 4- and 8-week time-points. The authors observed increased
expression at 4- and 8-week time-points [94]. Zeglinski et al. [95]
showed that TGF-β1 regulates scleraxis expression in primary cardiac
myofibroblasts by a Smad-independent mechanism. TGF-β1 (at 5
ng/ml) caused 6-fold higher expression at 24h [95]. TGF-β1 at 10ng/ml
has been shown to cause 4-fold induction of Scx gene expression in
mouse FDL tenocytes in collagen gels at 24h [50]. In the current study,
we showed that TGF-β1 (at 5 ng/ml) caused an increase in SCX gene
expression in human FDP tenocytes, in cell culture at 6h and 24h
(Figure 4a). That suggests that scleraxis is modulated by TGF-β1 in
injured FDP tendon and contributes to the healing and regeneration
process.

POSTN
Periostin, a secreted cell adhesion protein, is a matricellular protein

and is encoded by POSTN gene in human [86,96]. Periostin is
predominantly expressed in collagen-rich fibrous connective tissues
that are subjected to constant mechanical stress including heart valves,
tendons, and PDL [86,96]. Periostin binds to collagen I and plays a role
in collagen fibrillogenesis as evidenced by periostin knockout mice
[97]. We showed earlier that periostin plays a role in healing of FDL
tendon graft in mouse since Postn mRNA expression increased at
day-7 and remained higher until day-28, indicating its possible role in
tendon maturation, collagen fibril arrangement, and remodeling events
[20]. Periostin protein is strongly expressed in the human PDL. In
vitro, POSTN mRNA level is modulated by cyclic strain as well as
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TGF-β1 via FAK-dependent pathways [98]. In one study, to
understand the importance of masticatory forces, Manokawinchoke et
al. [99] showed that an intermittent compressive force regulates SOST/
POSTN gene expression by hPDL cells via TGF-β1 signaling pathway.
The current study showed that TGFβ1 increases POSTN gene
expression at 24h in human FDP tenocytes, in cell culture (Figure 4b),
supporting that TGFβ1 may be a regulator of periostin in FDP tendon
in vivo.

ACAN
Aggrecan, a core protein of a proteoglycan, is a major component of

cartilaginous ECM. It is encoded by gene ACAN in human. The major
function of this proteoglycan is to resist compression in cartilage. The
protein binds avidly to hyaluronic acid via an N-terminal globular
region [100]. The expression of ACAN decreased in nucleus pulposus
cells with the addition of 2.5 ng/ml TGFβ1 [101]. Aggrecan expression
was increased by the presence of TGF-β1 [102] or β3 [103] during
chondrogenic differentiation of mesenchymal stem cells. In human
FDP tendon cells, in cell culture, TGF-β1 suppressed ACAN gene
expression indicating that it has opposite effect than differentiating
cartilage cells (Figure 4c). One possible explanation of this is that
chondrocytes are required to impart cushionary properties to cartilage
in order to absorb repeated joint shock, whereas tendon needs to be
stiff and strong to tolerate the tension of daily activity.

SMAD7
Mothers against decapentaplegic homolog 7 (SMAD7), is an 

antagonist of signaling by TGF-β type I receptor superfamily members. 
It has been shown to inhibit TGF-β and activin signaling by associating 
with their receptors thus preventing SMAD2 access [104,105]. TGF-β1, 
bone morphogenetic protein 4, and oocyte-derived growth 
differentiation factor 9 were capable of inducing Smad7 expression, 
suggesting a modulatory role of SMAD7 in a negative feedback loop. 
Using a siRNA approach, this was further demonstrated that SMAD7 
was a negative regulator of TGF-β1. SMAD7 seemed to play role 
during follicular development via preferentially antagonizing and/or 
fine-tuning essential TGF-β superfamily signaling, which is involved in 
the regulation of oocyte–somatic cell interaction and granulosa cell 
function [106]. In mouse confluent dermal fibroblast, TGF-β1 (at 12.5 
ng/ml) caused an increase in Smad7 gene expression for 24h [107]. In 
the current study, we showed that TGF-β1 (5 ng/ml) caused an increase 
in the Smad7 gene expression in cultured FDP tenocytes, suggesting 
that TGF-β1 modulates SMAD7 in FDP tendon in vivo (Figure 4d).

IL6
Interleukin-6 (IL-6) is an interleukin that acts both as a pro-

inflammatory cytokine and an anti-inflammatory myokine. In human,
it is encoded by IL6 gene [108]. IL-6 is secreted by T-cells and
macrophages to stimulate immune response [109]. In addition,
osteoblasts secrete IL-6 to stimulate osteoclast formation [110]. IL-6
expression is stimulated by tumor-producing TGF-β1 in human
prostate cancer cells through multiple signaling pathways and
enhanced expression of IL-6 contributes to the oncogenic switch of
TGF-β1 role for prostate tumorigenesis [111]. TGF-β1 induced Smad2
phosphorylation, and blockade of Smad2/3 prevented both the TGF-β1
modulated IL-6 increase in asthmatic and non-asthmatic cells.
Understanding the mechanism of aberrant pro-inflammatory cytokine
production in asthmatic airways allows the development of alternative

ways to control airway inflammation [112]. While studying the
mechanism of subconjunctival fibrosis, in human Tenon’s fibroblasts,
TGF-β1 stimulates the expression of α-SMA protein and increase
mRNA expression levels of IL6. The autocrine IL-6 may participate in
the TGF-β1-induced trans differentiation of human Tenon’s fibroblasts
to myofibroblasts, which is known to be an essential step for
subconjunctival fibrosis [113]. IL-6 is an essential mediator of growth
factor-induced proliferation of lung fibroblasts. Eickelberg et al. [114]
showed that TGF-β1 is a potent inducer of IL-6 mRNA and protein in
primary human lung fibroblasts. The current study showed that TGF-
β1 enhanced IL6 gene expression multi-fold at 6h and 24h, in FDP
tenocytes cell culture, indicating possible in vivo role of TGF-β1-
induced IL6 in FDP tendon physiology or pathology (Figure 4e).

IGF1
Insulin-like growth factor I (IGF-I) has been shown to play a role in

wound healing and regeneration. Expression levels of IGF1 mRNA and
IGF-I protein increased in healing rabbit medial collateral ligament
[115], and in canine flexor tendon after laceration [116]. Mouse Igf1
mRNA expression upregulated, during day-7 through 35 of FDL
tendon graft healing, indicating its possible role in angiogenesis and
growth of cells [20]. During healing of deep flexor tendon repair in
rabbit, the expression of Igf1 mRNA was higher in tendon and sheath
at all the time-points (day-6 to 42) as compared to day-3 [117]. TGF-
β1 is a potent modulator of IGF-I production in mouse bone cells
where it is thought to act in the local regulation of bone remodeling
[118]. In liver, TGF-β1 has been postulated to play a role in
fibrogenesis related to disease [119]. Voci et al. [120] showed that TGF-
β1 increases IGF-I production in hepatocytes. The current study
showed that TGF-β1 caused an increase in IGF1 gene expression in
FDP tenocytes, in cell culture (Figure 4f); indicating that IGF-I may
play a role in tendon metabolism, regeneration or pathology, and may
be modulated by TGF-β1 in vivo.

Summary and Conclusion
The present study investigated the effect of TGF-β1 (5 ng/ml) on the

expression of several genes in FDP tenocytes in cell culture at 6h and
24h. The results showed that TGF-β1 modulates the expression of
genes involved in fibrinolysis (SERPINE1, PLAU), contraction
(ACTA2), angiogenesis, inflammation and fibrosis (CTGF), cell
adhesion, growth, migration, and differentiation (FN1), tensile
strength, maturation, remodeling and healing (COL1A1, COL3A1),
cross-linking in ECM fibrils (LOX), ECM (ACAN), mechanical
strength and fibrosis (COMP), remodeling (MMP9, MMP13, TIMP1,
TIMP3), collagen fiber assembly (BGN), cell proliferation,
differentiation, ECM production, wound healing, and tissue repair
(DCN), differentiation and neotendon formation (SCX), cell adhesion
and collagen fibrillogenesis (POSTN), regulation and fine tuning of
TGF-β signaling as a negative regulator (SMAD7), inflammation (IL6),
and wound healing and regeneration (IGF1). The expression of MMP2
and TIMP2 was not affected under these conditions. Future studies are
needed to identify whether the therapeutic modulation of these
downstream targets of TGF-β1 can improve the results of tendon
healing. In conclusion, TGF-β1 plays a pleotropic role in human FDP
tendon physiology, structure, regeneration and adhesion formation,
and the therapeutic targeting of these TGF-β1 affected genes may be a
novel approach to help improve FDP healing and reduce the formation
of adhesions.
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