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Introduction
Oxidative stress induced by the free radicals has been gained 

a vital importance as it forms the root cause of about 200 human 
diseases [1]. Free radicals are highly reactive molecules with unpaired 
electrons and are produced during various cellular processes [2]. They 
represent an essential part of metabolism and aerobic life. Many of the 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) are 
grouped under free radicals. These include superoxide anions (O2.), 
hydroxyl radical (.OH), singlet oxygen, hydrogen peroxide (H2O2), 
ferric ion, nitric oxide (NO) and so on [3]. ROS and RNS are produced 
from both endogenous (inflammation, mental stress and cancer) 
and exogenous (pollutants, drugs and radiations) sources [4]. Under 
normal conditions ROS participate in many physiological functions 
such as protecting body from invading pathogens, regulates calcium 
concentration and act as second messengers [5]. They participate in the 
signal transduction of cytokine and tyrosine receptor, serine/threonine 
kinases and G protein-coupled receptors [3]. They are also essential in 
development and differentiation process [6].

Several degenerative changes in the cells and tissues due to 
oxidative stress can lead to many deadly diseases [7]. The oxidative 
stress damages nucleic acids, lipids and proteins in our body, alters 
cellular functions and finally results in apoptosis or necrosis [5]. Also it 
is responsible for the progression of diseases like diabetics, rheumatoid 
arthritis, myocardial infarction, cancer, post-ischemic perfusion 
injury, autoimmune pathologies, cardiovascular, neurodegenerative 
and inflammatory diseases [8]. Antioxidants can grant protection 
from oxidative damages and prevent the onset of many chronic 
diseases [9]. They are naturally present in our body (endogenous) 
and the additional supplementation can be done through the diet 
(exogenous). Natural antioxidants like ascorbic acid (vitamin C), 
α-tocopherol, and carotenoids are readily absorbed through diet [10]. 
Butyl hydroxyanisole (BHA) and butyl hydroxytoluene (BHT) are 
synthetic antioxidants but are proven to cause major side effects such 
as cancer [11]. The current trends in the pharmaceutical industries are 
the exploration of natural antioxidants to resolve such issues. Plants 
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have been widely investigated as the potent source of antioxidants. The 
dietary antioxidants such as α-tocopherol, ascorbic acid, carotenoids, 
amino acids, peptides, proteins, flavonoids and other phenolic 
compounds were proven effective in boosting antioxidant mechanism. 
The role of naturally occurring peptides in the biological system is well-
established [12]. Peptides capable of developing synthetic vaccines 
against diseases are reported [13].

The marine world is also a rich source of bioactive molecules 
[14]. Among the marine organisms, seaweeds are well-explored for 
various bioactive compounds such as secondary metabolites, dietary 
fiber, minerals, lipids, proteins, omega-3 fatty acids, essential amino 
acids, polysaccharides and vitamins [15]. These compounds impart 
numerous bioactivities such as anti-oxidative, anti-inflammatory, 
antimicrobial and anti-cancer potential to these algae [16]. Among 
different algal derived compounds, sulfated polysaccharides (SPS) 
gained a crucial attention by the pharmaceutical industries. They are 
complex group of molecules with varying structure and properties. SPS 
are present in brown, green and red marine algae [17]. The development 
of a standardized algal polysaccharide based product is challenging, as 
their structure and properties are influenced by seasonal and climatic 
variations. Their high molecular weight and low bioavailability also 
form hurdles [18]. 

Despite of these difficulties, scientists have succeeded in 
elucidating several biological significances for algal derived 
sulfated polysaccharides. SPS have been hailed for the antioxidant, 
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antitumor, immunomodulatory, anti-inflammation, anticoagulant 
and antimicrobial activities [18]. Fucoidan, a sulfated polysaccharide 
from Undaria pinnatifida was proven effective against hypersensitivity 
reactions by reducing the concentrations of both IL-4 and IL-13. Anti-
coagulant activity is the most studied property of marine sulfated 
polysaccharides and is similar to that of natural antioxidant heparin 
[19,20]. Cytotoxicity of marine sulfated polysaccharides against various 
cancer cell lines such as HeLa, HepG2, MCF-7 and melanoma B16were 
also well proven [21]. Studies show that, the sulfate content and the 
molecular weight play key roles in the bioactivities of these sulfated 
polysaccharides [17].

Sargassum swartzii (brown), Ulva fasciata and Chaetomorpha 
antennina (green) are the three main macro algae found in South Kerala 
coast. Sargassum swartzii was exploited for its larvicidal [22], anti HIV-
1, anti-inflammatory and analgesic activities [23]. Anti-microbial, 
haemolytic [24] and anti-cancer [25] potentials of Ulva fasciata are 
also well studied. Chaetomorpha antennina is proven to possess anti-
bacterial and antioxidant activity [26]. In the present study, we aimed 
to compare the antioxidant potentials of SPS from these three sources. 
We also have thrown light to correlate the chemical composition and 
the antioxidant potential among the three SPS.

Materials and Method
Chemicals

All chemicals used in this study were of analytical grade obtained 
from Sisco Research Laboratories (SRL), Mumbai, Sigma-Aldrich, New 
Delhi. 

Collection of seaweeds

Samples of Sargassum swartzii, Ulva fasciata and Chaetomorpha 
antennina were collected from Vizhinjam coast of Kerala, (Lat. 8°22’ N; 
Long. 76°59’ E on the west coast of India) during the month of January-
February.

Extraction and isolation of crude sulfated polysaccharides

The collected seaweeds were washed in tap water, dried under 
shade, powdered and stored in airtight containers. Crude sulfated 
polysaccharides were isolated from all the samples using cold acidic 
extraction method [21]. The samples were decolorized and defatted by 
soaking and continuous stirring in acetone: methanol solvent mixture 
(7:3) and then stirred in 1 N HCl for two days and then filtered. These 
steps were repeated twice and the filtrates were pooled and stored 
at 4°C overnight. Then the polysaccharides were precipitated using 
absolute ethanol and lyophilized to obtain crude sample. 

Determination of chemical composition

The compositions of sulfated polysaccharide moieties such as total 
carbohydrates, sulfate, uronic acid, sulfated polysaccharide, fucose and 
xylose present in all extracts were determined.

Total carbohydrate content was estimated by the phenol–sulfuric 
acid method as described by Pham Duc Thinh et al. [27]. 5% phenol 
and concentrated sulfuric acid were added to the test sample (10 mg/
ml), incubated for 20 min and optical density (OD) was read at 490 nm. 
Dextrose was used as standard.

The sulfate content was determined by barium chloride–gelatin 
method using potassium sulfate as standard [28].The reaction mixture 
was prepared by adding 2 g barium chloride to a solution of 0.6 g 
gelatin in 200 ml water which was kept overnight at 4°C. To the test 
solution (10 mg/ml) 4% TCA and 1 ml chloride – gelatin solution was 
added and optical density was read at 360 nm after 15 min incubation. 

Uronic acid content of the extract was estimated by carbazole 
method using glucoronic acid as standard [29].The test sample (10 
mg/ml) was heated in a boiling water bath for 10 min with 0.025 M 
borax. Then 0.1% carbazole (in methanol) was added and boiling was 
continued for 15 min. The optical density was read at 540 nm.

Total sulfated polysaccharides were determined by metachromatic 
assay using heparin as standard [30]. 0.005% toluidine blue solution 
and 0.2% NaCl were added to the test sample (10 mg/ml) and was 
mixed well for 30 s. Then n-hexane was added to the above mixture and 
the 5 ml aqueous layer was separated. Equal volume of absolute ethanol 
was added and the optical density was read at 631 nm.

Fucose content was determined using cysteine hydrochloride [31]. 
Concentrated sulfuric acid was added to the test sample (10 mg/ml) for 
3 min. 3% cysteine hydrochloride was added and the difference in the 
optical density at 396 nm and 427 nm was calculated.

The monosaccharide xylose was estimated using orcinol method 
[32]. 0.1 ml of sample (10 mg/ml) was heated in a boiling water bath for 
30 min. Optical density was read at 670 nm.

In vitro antioxidant activity of isolated polysaccharides

The antioxidant activity of all the three sulfated polysaccharides 
at different concentration (0.5 mg/ml-2 mg/ml) was determined by 
standard protocols. The antioxidant assays include DPPH (1-1-diphenyl 
2-picryl hydrazyl) radical scavenging activity [33], hydroxyl radical 
scavenging activity [34], hydrogen peroxide Scavenging activity [35], 
Total Antioxidant Activity [36] and reducing power [37].

Statistics

All the results were expressed as mean ± standard deviation. One 
way ANOVA was calculated by using an online software statistic 
calculator. The P values <0.05 were considered to be significant [38,39].

Results 
The sulfated polysaccharides were obtained from Sargassum 

swartzii, Ulva fasciata and Chaetomorpha antennina by ethanol 
precipitation and the total yield was found to be 11%, 1.5% and 1.3% 

Composition (%) Sargassum swartzii             Ulva fasciata               Chaetomorpha antennina
Carbohydrates 12.9 ± 1.59 12.3 ± 1.02 12.7 ± 1.08

Sulfate  10.6 ± 0.57 2.3 ± 0.13 1.5 ± 0.11
Uronic acid 7.7 ± 1.11 4 ± 0.54 4.5 ± 0.32

Fucose 2.9 ± 0.22 2.2 ± 0.05 3 ± 0.16  
Sulfated 

polysaccharide 1.2 ± 0.19 0.15 ± 0.12 2.2 ± 0.91

Xylose 0.16 ± 0.07 0.26 ± 0.04 0.02 ± 0.01

Table 1: Yield and chemical composition of sulfated polysaccharides.
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respectively. The chemical compositions all the three algae are given in 
Table 1. S. swartzii showed a higher yield when compared to other two 
algae. It also showed an elevated amount of total carbohydrate, sulfate, 
uronic acid and fucose content when compared to other algae. 

The antioxidant potential of crude sulfated polysaccharide 
from all the three algae was determined using various methods and 
compared with standard antioxidants. The DPPH radical scavenging 
activity is depicted in Figure 1A. All the samples exhibited a dose 
dependent increase in the DPPH scavenging activity. On comparing 
the scavenging potential of three algae, S. swartzii showed a higher 
DPPH scavenging effect. The half-maximal inhibitory concentration 
(IC50) value for S. swartzii was 1.7 mg/ml, for U. fasciata it was 3.8 mg/
ml and for C. antennina it was 6.2 mg/ml. Ascorbic acid exhibited 50% 
scavenging ability at a concentration of 20 μg/ml. 

Figure 1B shows the hydroxyl radical scavenging activity of all the 
samples. Here also S. swartzii showed a better activity when compared 
to others. The half-maximal inhibitory concentration (IC50) values for 
S. swartzii, U. fasciata and C. antennina was found to be 1.8, 2.6 and 1.9 
mg/ml respectively whereas ascorbic acid control showed IC50 at 282 

μg/ml. The scavenging ability of all samples was in a dose-dependent 
manner.

All the samples were potent dose-dependent inhibitors of hydrogen 
peroxide and exhibited a better effect below 0.5 mg/ml (Figure 1C). 
At 0.5 mg/ml, S. swartzii exhibited 71.2% scavenging of H2O2, for U. 
fasciata it was 62.7% andfor C. antennina was 60.3%. Ascorbic acid 
showed 57% inhibition at a concentration of 20 μg/ml. 

The total antioxidant activity of sulfated polysaccharides from all 
the three algae is displayed in Figure 2A. Here also S. swartzii showed a 
good activity at higher concentration than at lower dose. 2 mg/ml of S. 
swartzii showed 106.7 μg/ml equivalence of ascorbic acid, whereas for 
U. fasciata and C. antennina it was 36.6 and 99.5 μg/ml equivalence of 
ascorbic acid respectively. The positive control gallic acid (100 μg/ml) 
was equivalent to 83 μg/ml equivalence of ascorbic acid. 

The reducing power of sulfated polysaccharide from S. swartzii was 
found to be more efficient when compared to other two algae (Figure 
2B). 2 mg/ml of SPS from S. swartzii, U. fasciata and C. antennina 
showed 42, 22 and 24.4 μg/ml equivalence of ascorbic acid respectively. 
100 μg/ml of gallic acid, the positive control, was equivalent to 85 μg/
ml equivalence of ascorbic acid.

 
Figure 1: (A) DPPH radical scavenging activity of sulfated polysaccharides from S. swartzii, U. fasciata and C. antennina using ascorbic acid as the reference standard. 
The IC50 value for S. swartzii was 1.7 mg/ml, for U. fasciata it was 3.8 mg/ml and for C. antennina it was 6.2 mg/ml. Ascorbic acid exhibited 50% scavenging ability at 
a concentration of 20 μg/ml.
(B) Hydroxyl radical scavenging potential of sulfated polysaccharides from S. swartzii, U. fasciata and C. antennina. Ascorbic acid was used as the positive control. 
The IC50 values for S. swartzii, U. fasciata and C. antennina was found to be 1.8, 2.6 and 1.9 mg/ml respectively.
(C) The hydrogen peroxide scavenging potential of sulfated polysaccharides from S. swartzii, U. fasciata and C. antennina using Ascorbic acid as reference standard. 
At 0.5 mg/ml, S. swartzii exhibited 71.2% scavenging of H2O2. For U. fasciata it was 62.7% and for C. antennina 60.3% at the same concentration. Ascorbic acid 
showed 57% inhibition at a concentration of 20 μg/ml.
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 Figure 2: (A) The total antioxidant activity of sulfated polysaccharides from S. swartzii, U. fasciata and C. antennina using gallic acid as the positive control. 2 mg/ml 
of S. swartzii showed 106.7 μg/ml equivalence of ascorbic acid, whereas, for U. fasciata and C. antennina it was 36.6 and 99.5 μg/ml equivalence of ascorbic acid, 
respectively. The positive control gallic acid (100 μg/ml) was equivalent to 83 μg/ml equivalence of ascorbic acid.
(B) The reducing power of sulfated polysaccharides from S. swartzii, U. fasciata and C. antennina. 2 mg/ml of SPS from S. swartzii, U. fasciata and C. antennina 
showed 42, 22 and 24.4 μg/ml equivalence of ascorbic acid respectively. Gallic acid was used as the positive control. 

Discussion
The study is aimed at the comparison of sulfated polysaccharides 

from three marine algae, Sargassum swartzii, Ulva fasciata and 
Chaetomorpha antennina, with respect to their chemical composition 
and antioxidant activity. Acidic extraction method was applied for all 
the three algae. The yield and properties of isolated polysaccharides 
were highly influenced by the extraction procedure adopted for the 
same [40]. It is well known that the acidic extraction yields more 
sulfated polysaccharide than water extraction in Sargassum spp. [41]. 
Also in another method, which includes the precipitation of sulfated 
polysaccharide after removing alginate, the yield was found to be 
very less (4.3%) [42]. The brown algae Sargassum swartzii gave higher 
yield of sulfated polysaccharide when compared to other two green 
seaweeds. This higher yield is comparable to the yield obtained from 
Sargassum polycystum, 11.32 ± 0.12% (w/w) [41]. When the acidic 
extraction method was used for both the green algae in our study, the 
yield was very less. Extraction using hot water at 75-85°C, was found to 

be effective for polysaccharide isolation in Ulva species [43]. Thus, we 
could see that the current method is suitable for the isolation of sulfated 
polysaccharides from brown algae. 

Sulfated polysaccharides are complex group of molecules and 
marine algae are its one of the major non-animal source [44]. They are 
composed of mainly sulfate and monosaccharides repeats and display 
a wide structural diversity among different groups of marine algae 
[45]. Fucose, mannose, galactose, glucose, xylose and uronic acid are 
the main monosaccharides found in marine sulfated polysaccharides 
[18]. Earlier studies confirmed that the seaweeds contain large amount 
of polysaccharides [46]. All the three algal polysaccharides evaluated 
here were found to have almost similar and considerable percentage 
of total carbohydrate content. A sulfated polysaccharide isolated by 
Kokilam G et al. [47] from Sargassum tenerrimum was found to possess 
8.21% of total carbohydrate. Also in another report, the biochemical 
analysis of Chaetomorpha antennina [48] exhibited 19.68% and 18.4% 
of carbohydrate content respectively. Total carbohydrate content of the 
current three algae also correlates with these results. 



Citation: Kurup GM, Jose GM (2016) In Vitro Antioxidant Properties of Edible Marine Algae Sargassum swartzii, Ulva fasciata and Chaetomorpha 
antennina of Kerala Coast. J Pharma Reports 1: 112. 

Page 5 of 7

Volume 1 • Issue 2 • 1000112
J Pharma Reports
ISSN: JPR, an open access journal 

The brown algae Sargassum swartzii possess very high amount 
of sulfate content (10.6%) when compared to other two green algae. 
Evaluation of sulfate content of another brown algae Sargassum 
polycystum also reported comparable fraction of sulfate [41]. In another 
study, it was reported that brown algae possess more sulfate content 
than green algae [49]. Fucose is the most important monosaccharide in 
brown algae and our samples contained significant amount of fucose. 
But there is also presence of fucose in green algal polysaccharide. The 
fucose can also be present in the polysaccharides of green algae in rare 
cases [50]. Uronic acid content was found to be high in Sargassum than 
the other two green algae and similar trend is already reported [45] 
Brown algae are known to contain high amount of uronic acid in their 
polysaccharide structure [21].

The antioxidant capacity of sulfated polysaccharides from seaweeds 
is well-studied [51]. They are known to possess various antioxidant 
activities such as scavenging of free radicals like superoxide, hydroxyl 
and DPPH, lipid peroxide inhibition and ferric reducing antioxidant 
power [52]. In the current study the antioxidant property of all the 
three sulfated polysaccharides were evaluated and all of them exhibited 
antioxidant effects in a concentration dependent manner. 

DPPH radical scavenging assay is a simple method for the 
determination of antioxidant capacity of a compound. DPPH 
(2,2-diphenyl-1-picryl-hydrazyl-hydrate) is a stable free radical that 
gives purple color in ethanol solution and on reduction in the presence 
hydrogen donating antioxidants, turns the solution colorless [53]. Thus, 
the characteristic absorption shown by DPPH reduces in accordance 
with increased concentration of the antioxidant compound, which 
indicates the DPPH scavenging potential of the compound [54]. In the 
present examination, sulfated polysaccharides from all the three algae 
exhibited a dose dependent increase in the scavenging of DPPH radical 
and Sargassum was found to be more efficient. However, the effective 
concentration was found to be 2mg or above in all the three cases, which 
is much higher when compared to ascorbic acid. There are reports that 
substantiate this high concentration of sulfated polysaccharide from 
seaweeds for DPPH scavenging [54,55].

The hydroxyl radical scavenging effect of the samples is determined 
by using Fenton reaction. Here, hydroxyl radicals are generated 
using Ferric-ascorbate–EDTA–H2O2 system, which will later react 
with deoxyribose to produce thiobarbituric acid reactive substances 
(TBARS). When heated with Thiobarbituric acid (TBA), TBARS 
forms a pink chromogen and the intensity of the color will get reduced 
depending up on the antioxidant ability of the test compound [34]. 
Evaluation of the current samples results in the effective scavenging of 
hydroxyl radical in a dose dependent manner. At a concentration of 2 
mg/ml sulfated polysaccharides from Sargassum swartzii was found to 
be more effective in scavenging hydroxyl radical. In many literatures, 
it was reported that sulfated polysaccharides exhibit moderate or no 
defense against hydroxyl radical [56].

Hydrogen peroxide is a weak oxidizing agent that can cross 
membranes very rapidly and can oxidize and inactivate many essential 
enzymes. Thus, the cells have to eliminate H2O2 immediately for their 
biological existence [57].The H2O2 scavenging ability of an antioxidant 
compound can be evaluated by means of decrease in the optical density. 
Here sulfated polysaccharides from all the three algae showed a better 
ability to scavenge H2O2 in a dose dependent manner. All the three 
samples showed a better activity at a concentration below 0.5 mg/ml. 
This is much better than other reports on the H2O2 scavenging ability 
of sulfated polysaccharides [58]. The sulfated polysaccharide isolated 
from the red algae Pterocladia capillacea showed 45.76% inhibition of 
hydrogen peroxide at a concentration of 1 mg/ml [59].

The total antioxidant activity of the samples is evaluated as their 
ability to reduce molybdenum VI to molybdenum V and form the green 
colored phosphomolybdenum complex. There will be an increase in the 
intensity of the green color as the concentration of the sample increases 
[36]. Even though sulfated polysaccharides from Sargassum swartzii 
showed more activity, it is much lower when compared to that of 
standard gallic acid. Reducing power of a compound is another potent 
indicator of its antioxidant activity. It is the ability of the compound 
to reduce ferric ion to ferrous form, which is associated with a color 
change from yellow to Pearl’s Prussian Blue [60]. In the present study, 
all the samples exhibited a dose dependent increase in the reducing 
power. But, when compared to standard gallic acid it is too low. Thus 
total antioxidant and reducing power contributes much less to the 
antioxidant capacity of the sulfated polysaccharides in our study. 

In all the antioxidant assays, sulfated polysaccharides from the 
brown algae Sargassum swartzii showed better activity when compared 
to other two algae. This can be explained easily by the percentage of 
sulfate in the extracted polysaccharides. It has already proven that, 
sulfate content is the main factor that contributes to the biological 
activity of the sulfated polysaccharides [51]. This may vary with degree 
of sulfation and position of sulfate groups [61]. Since the polysaccharide 
isolated from Sargassum swartzii contains higher amount of sulfate, it 
can scavenge free radicals more effectively. The possible mechanism 
behind the ROS scavenging potentials of sulfated polysaccharide 
was suggested to be H-atom transfer and electron transfer between 
polysaccharides and free radicals [62].

Conclusion 
In conclusion, the sulfated polysaccharides isolated from all the 

three marine algae contained significant amount of carbohydrate. 
In brown algae Sargassum swartzii, sulfate content was found to be 
higher than the other two. All samples exhibited potent antioxidant 
capacity and the higher activity of Sargassum swartzii can be due to 
the presence high sulfate. Thus, these SPS can be effectively used for 
scavenging ROS in vitro and thus can reduce the risk of many diseases. 
Potential application of marine derived, novel antioxidant, sulfated 
polysaccharides in the food industry reveals a wide scope of these 
edible seaweeds. 
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